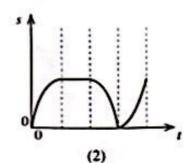
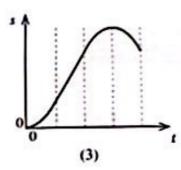
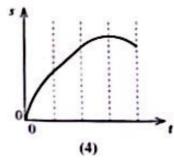
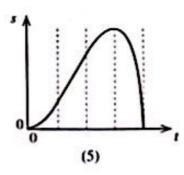

an	ලම නිම්කම් ආප්රිණ් (ලංකුරු පළ	he famujar way All	Rights Reserved							
(Security of the second									
අப்பக்கை சைத் கைகிய சுறு (උසස් சைகு) பிலகை, 2024 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Examination, 2024										
þ	<mark>හෞතික විදනව</mark> ටොණු සභ්මාධන Physics		01S I		පැය දෙකයි ඹුණල ගණ Two hours	ித்தியாலம்				
0	 8 දිනුරු පතුයේ 1 සිට 50 පෙන් ඉතාමක් ගැළපෙන 	ට පිළිතුරු සපයන් නියමිත ස්ථානයේ පිටුපස දී ඇති උපැ වූ එක් එක් පුශ්නය	න. ඔබේ විභාග අංකය ලි දෙස් සැලකිලිමන්ට කි	ියවන්න. (2), (3), (4), (5)						
	ලකුණු කරන්න.	ගණක යා	ත්තු භාවිතයට ඉඩ දෙනු	කොලැබේ.						
			$(g = 10 \text{ m s}^{-2})$							
	රිතකයක් ඇති නමුත් (1) ජලාන්ත් නියතය (3) ශක්තිය (5) ධ්වනි නිවුතා වේ. වර්නියර් කැලිපරයක ද දිගත් සමාන වර්නියර් (1) 0-025 mm	ටම ඉධාන පරිමාණයේ	(2) පෘෂ්ඨික ආත (4) සාපේක්ෂ පුං 1-0 cm ක අනුකොර (0කට බෙදා ඇත. කැ	තිය වේගය ටස් 20ක් ඇත. පු ල්පීරයේ කුඩාම	ධාන පරිමාණ	€5 ¢?				
3.	පුත්මප්තයක උපරිම උ තිරස සමග සාදන පුත්									
4.	(B) එකිනෙක ස්	වියෙන් සමාන නමු පර්ශ කරන වස්තුන ස්තුව මත කුියා ක ෙවේ. සත් සතා වේ.	මුත් දිශාවෙන් පුතිවීර වී මත පමණක් ඒවා ද් රයි. (2) (A) සහ (B) (4) (B) සහ (C)	ැද්ධ වේ. පුියා කරයි. වමණක් සතා ෙ						
5.	(B) ගැටුම සඳහා	ලන්න. රේඛීය ගමානා ස යෙක්ති සංස්ථිති නි	ංස්ථිති නියමය වලං	ගේ වේ.	වයක් වැදී කුවා	ටිය තුළට කාවැදේ				
	ඉහත පුකාශ අතුරෙන්. (1) (A) පමණක් සත: (3) (A) සහ (C) පමණ (5) (A), (B) සහ (C)	ණක් සතා වේ.	(2) (A) සහ (B) (4) (B) සහ (C) වි.							


- වියෝනයක් (µ^{*}) පිළිබඳ පහත ප්‍රත්‍ය සලකා බලන්න.
 - (A) එය ලෙස්ටෝනය (lepton) කි.
 - (B) එය ක්වාක් (quark) තුනකින් සෑදී ඇත.
 - (C) එහි ස්කන්ටය ඉලෙක්ටෝනයක ස්කන්ටයට වඩා වැඩි ය.


ඉහත පුතාය අතුරෙන්,


- (1) (A) පමණක් සහා වේ.
- (2) (A) සහ (B) පමණක් සත ෙවේ.
- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A).(B) සහ (C) සියල්ලම සභා වේ.
- කාලය(t) සමග වස්තුවක ප්‍රවේශය(v) හි විචලනයේ ප්‍රස්තාරය රූපයේ දැක්වේ. ඊට අනුරුප විස්ථාපන(s) - කාල(t) වක්‍රය වඩාත්ම භෞදින් නිරුපණය කරනු ලබන්නේ,



- 8. වෘත්තාකාර තැටියක සේන්දය හරහා යන ලම්බක අක්ෂයක් වටා අවස්ථිති සූර්ණය 8 kg m² වේ. එය සේන්දයෙන් සුම්බව විවර්තනි කොට ඇති අතර ආරම්භයේදී 40 rad s⁻¹ නියත කෝකික වේගයකින් සුම්ණය වේ. නියත ව්‍යාවර්ථයක් 10s තුළ යෙදු විට තැටියේ කෝකික වේගය 20 rad s⁻¹ දක්වා අඩු වේ. යොදන ලද ව්‍යාවර්ථයේ ව්‍යාලත්වය කොපමණ ද?
 - (1) 8 N m
- (2) 16 Nm
- (3) 32 Nm
- (4) 40 N m
- (5) 80 Nm
- නක්ෂතු දුරේක්ෂයක් සාමාන‍ය සිරුමාරුවේ ඇත. අවතෙක් කාවයේ නාභිය දුර 80 cm සහ කෝණික විශාලනය
 20ක් නම් අවතෙන් කාවය සහ උපතෙන අතර දුර කොපමණ ද?
 - (1) 40 cm
- (2) 76 cm
- (3) 84 cm
- (4) 96 cm
- (5) 100 cm
- 10. පුහවයක් 1000Hz සංඛ්‍යාතයකින් යුත් ධවනි තරංග නිකුත් කරමින් 0·9v ප්‍රවේශයකින් නිශ්චල නිරීක්ෂකයකු වෙනට එක එල්ලේ ගමන් කරයි. මෙහි v යනු වාතයේ ධ්වනි වේගයයි. නිරීක්ෂකයාට ඇතෙන ශබ්දයේ සංඛ්‍යාකය කොපමණ ද?
 - (1) 1040 Hz
- (2) 1100 Hz
- (3) 1111 Hz
- (4) 1900 Hz
- (5) 10 000 Hz

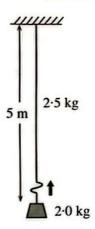
	ෆැරඩේගේ විදයුත් වුම්බක පේරණය පිළිබඳ නියමය සම්බන්ධ වන්නේ, (1) ආරෝපණ සංස්ථිති නියමයට ය. (2) ශක්ති සංස්ථිති නියමයට ය. (3) චලිතය පිළිබඳ නිව්ටන්ගේ තෙවන නියමයට ය. (4) කෝණික ගමාතා සංස්ථිති නියමයට ය. (5) රේඛීය ගමාතා සංස්ථිති නියමයට ය. අරය $2r$ වූ සමජාතීය ඒකාකාර වෘත්තාකාර තහඩුවකින් අරය r වූ වෘත්තාකාර කොටසක් රූපයේ දැක්වෙන පරිදි ඉවත් කරනු							
	ලැබේ. තහඩුවේ ඉතිරි කොටසේ ගුරුත්ව කේන්දුය පිහිටීමට වඩාත්ම ඉඩ ඇති ලක්ෂාය වනුයේ, $ (1) \ A \qquad \qquad (2) \ B \qquad \qquad (3) \ C $ $ (4) \ D \qquad \qquad (5) \ E $							
13.	A සහ B ධ්වනි පුභව දෙකක් එක්තරා ලක්ෂායක සිට r දුරකින් තබා ඇත. එම ලක්ෂායේදී මනිනු ලබන ධ්වනි තීවුතා මට්ටම පිළිවෙළින් 72 dB සහ 92 dB වේ. එම ලක්ෂායේදී A පුභවයේ ධ්වනි තීවුතාවය I (W m $^{-2}$) නම්, එම ලක්ෂායේදී B පුභවයේ ධ්වනි තීවුතාවය කුමක් ද? (1) $1\cdot 3I$ (2) $10I$ (3) $20I$ (4) $25I$ (5) $100I$							
14.	පරිපූර්ණ පරිණාමකයක පාථමික දඟරයේ වට 200 ක් සහ ද්විතීයික දඟරයේ වට 400 ක් ඇත. පාථමිකය වර්ග මධානා මූල චෝල්ටියතාව $V_{\rm r.m.s.}=110~{\rm V}$ වන පුතාාවර්තක චෝල්ටීයතා පුභවයකට සම්බන්ධ කළ විට $I_{\rm r.m.s.}=10~{\rm A}$ ධාරාවක් එහි ගලයි. ද්වීතීයිකයේ r.m.s. චෝල්ටීයතාව සහ r.m.s. ධාරාව පිළිවෙළින් දෙනු ලබන්නේ, $(1)~55~{\rm V},~20~{\rm A}$ $(2)~440~{\rm V},~5~{\rm A}$ $(3)~220~{\rm V},~10~{\rm A}$ $(4)~220~{\rm V},~5~{\rm A}$ $(5)~55~{\rm V},~10~{\rm A}$							
15.	තිරස් හුමණ වේදිකාවක් මතුපිට තබා ඇති කුඩා කාසියක් සහ මතුපිට පෘෂ්ඨය අතර ස්ථිතික ඝර්ෂණ සංගුණකය 0.36 ක් වේ. හුමණ වේදිකාවේ හුමණ වේගය $30 \mathrm{rpm}$ (විනාඩියකට පරිහුමණ) වේ. හුමණ වේදිකාවේ මැද සිට කාසිය ලිස්සා නොයන උපරිම දුර කොපමණ ද? ($\pi=3$ ලෙස ගන්න.) (1) 4 cm (2) 12 cm (3) 36 cm (4) 40 cm (5) 72 cm							
16.	වෙනස් දවාවෙලින් සාදන ලද ස්කන්ධ පිළිවෙළින් 10 kg සහ 5 kg වූ A සහ B පෙට්ටි දෙකක් රූපයේ පෙන්වා ඇති පරිදි රජ තිරස් පෘෂ්ඨයක් මත තබා ඇත. A පෙට්ටිය සහ පෘෂ්ඨය අතර ගතික සර්ෂණ සංගුණකය 0.5 වේ. A පෙට්ටියට 100 N තිරස් බලයක් යෙදූ විට A සහ B පෙට්ටි අතර පුතිකිුයා බලය 40 N වේ. B පෙට්ටිය සහ තිරස් පෘෂ්ඨය අතර ගතික සර්ෂණ සංගුණකය කොපමණ වේ ද?							
17.	(1) 0.7 (2) 0.6 (3) 0.5 (4) 0.4 (5) 0.3 එක්තරා උෂ්ණත්වයකදී මිලිමීටර කියවීම් $5 \times 10^{-5} \mathrm{mm}$ දක්වා නිරවද g වන පරිදි මිනුමක් ලබා ගැනීම සඳහා වාතෙමීටර කෝදුවක් භාවිත කළ යුතු ය. මැනීමේදී අනුදත් (අවසර දිය හැකි) උපරිම උෂ්ණත්ව විචලනය කොපමණ ද (වානේවල රේඛීය පුසාරණතාව $1 \times 10^{-5} \mathrm{eC}^{-1}$ වේ.)							
	(1) 0·1 °C (2) 0·2 °C (3) 1 °C (4) 2 °C (5) 5 °C							
18.	රූපයේ දැක්වෙන පරිදි පුතිරෝධක පහක් සහ බැටරියක් සම්බන්ධ කොට ඇත. බැටරියේ වී.ගා.බ. $6.0~\rm V$ වන අතර එයට නොගිණිය හැකි අභාන්තර පුතිරෝධයක් ඇත. R_4 පුතිරෝධකය හරහා චෝල්ටීයතාව කොපමණ ද? $(1)~0.7~\rm V \qquad (2)~0.8~\rm V \qquad (3)~1.2~\rm V \qquad $							

Scanned with

CS CamScanner

The scanner of the sca

19. දිග 5·0 m සහ ස්කන්ධය 2·5 kg වන ඒකාකාර කඹයක් දෘඪ ආධාරකයක සිරස්ව එල්ලා ඇත. රූපයේ පෙන්වා ඇති පරිදි කඹයේ නිදහස් කෙළවරට 2·0 kg ක ස්කන්ධයක් සම්බන්ධ කොට ඇත. තරංග ආයාමය 2·0 cm වූ තීර්යක් ස්පන්දයක් කඹයේ පහළ කෙළවරේ ජනනය කරනු ලැබේ. කඹයේ මුදුනට ස්පන්දය පැමිණි විට එහි තරංග ආයාමය කොපමණ ද?



(2) 2·0 cm

(3) 2.5 cm

(4) 3·0 cm

(5) 4·0 cm

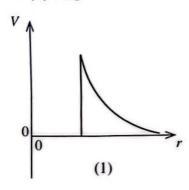
20. සමාන දිගකින් යුත් කම්බි හතරක් එකම ආතතියකට බඳුන් කොට ඇත. මෙම කම්බිවල ගුණ පහත පරිදි වේ.

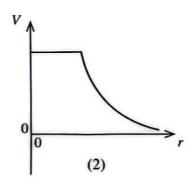
කම්බිය	දුව්ෂයේ යං මාපාංකය (×10 ¹¹ N m ⁻²)	විෂ්කම්භය (mm)
A	2.0	1.0
В	2.0	2.0
C	1.0	1.0
D	1.0	2.0

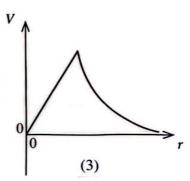
පහත සඳහන් කුමන පුකාශය සතා වේ ද?

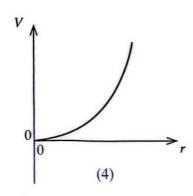
(1) A කම්බිය ට විශාලතම විතතිය ඇත. (2) B කම්බිය ට විශාලතම විතතිය ඇත.

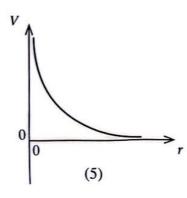
(3) C කම්බිය ට විශාලතම විතතිය ඇත. (4) D කම්බිය ට විශාලතම විතතිය ඇත.

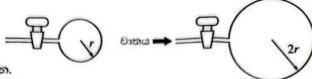

(5) සියලුම කම්බිවලට එකම විතතිය ඇත.


21. අරය 2 cm වූ සිහින් සැහැල්ලු වෘත්තාකාර පුඩුවක් දුවයක මතුපිට පෘෂ්ඨයට යන්තමින් පහළින් තබා ඇත. මෙම පුඩුව දුව මතුපිටින් ඉහළට ඇද ගැනීමට $0.04\,\mathrm{N}$ බලයක් අවශා නම්, (දුව පටලය යන්තමින් කැඩීමට පෙර) දුවයේ පෘෂ්ඨික ආතතිය කොපමණ ද?

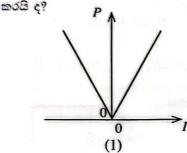

(1) 4 N m⁻¹

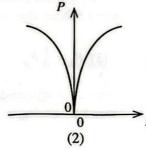

(2) 2 N m^{-1} (3) $\frac{1}{\pi} \text{ N m}^{-1}$ (4) $\frac{1}{2\pi} \text{ N m}^{-1}$ (5) $\frac{1}{4\pi} \text{ N m}^{-1}$

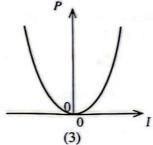

22. ඒකාකාර ලෙස ආරෝපණය කළ ලෝහමය කුහර ගෝලීය කබොලක කේන්දුයේ සිට ඇති දුර (r) සමග විදxුත් විභවයේ (V) විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ,

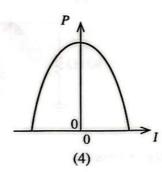


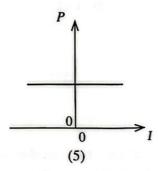
23. රූපයේ පෙන්වා ඇති පරිදි ඉතා පටු නළයක කෙළවර, අරය r වන සබන් බුබුලක් සාදා ඇත. පසුව බුබුලේ අරය 2r දක්වා ඉහළ නංවා ගැනීමට තවත් වාතය සමෝෂ්ණ ලෙස බුබුල තුළට පිඹින ලදී.

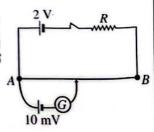

පහත පුකාශ සලකා බලන්න.


- (A) මුමුල තුළ පීඩනය වැඩි වේ.
- (B) මුබුලේ පෘෂ්ඨික විභව ශක්තිය හතර ගුණයකින් වැඩි වේ.
- (C) මුබුලේ පරිමාව හතර ගුණයකින් වැඩි වේ.


ඉහත පුකාශ අතුරෙන්,


- (1) (A) පමණක් සතා වේ.
- (2) (B) පමණක් සතා වේ.
- (3) (A) සහ (B) පමණක් සතෘ වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) සියල්ලම සතා වේ.


24. නියත උෂ්ණත්වයක පවත්වා ගනිමින් ඒකාකාර ලෝහ කම්බියක් හරහා I ධාරාවක් ගලයි. පහත දැක්වෙන කුමන පුස්තාරය කම්බියේ I ධාරාව සමග කම්බියේ ක්ෂමතා උත්සර්ජනය P හි විචලනය වඩාත්ම හොඳින් නිරූපණය


- 25. ස්පර්ශව පවතින තුනී වීදුරු කාච දෙකක සංයුක්ත බලය +3D (ඩයොප්ටර) වේ. එක් කාචයක් උත්තල සහ එහි නාභීය දුර 20cm වේ නම් අනෙක් කාචයේ වර්ගය සහ නාභීය දුර කුමක් ද?
 - (1) උත්තල, 50 cm

(2) අවතල, 50 cm

(3) උත්තල, 12·5 cm

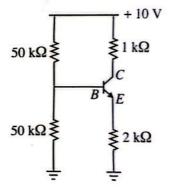
(4) අවතල, 12·5 cm

- (5) අවතල, 10 cm
- 26. රූපයේ පෙන්වා ඇති AB විභවමාන කම්බියේ දිග $100~{\rm cm}$ වන අතර පුතිරෝධය $10~\Omega$ වේ. එය R පුතිරෝධයක් සහ අභාන්තර පුතිරෝධය නොගිණිය හැකි වී.ගා.බ. $2~{\rm V}$ වූ කෝයෙක් සමග ශ්‍රේණිගතව සම්බන්ධ කොට ඇත. කුඩා $10~{\rm mV}$ වී.ගා.බ.යක් සහිත පුභවයක් සඳහා සංතුලන දිග $40~{\rm cm}$ වන බව සොයා ගන්නා ලදී. R හි අගය කොපමණ ද?

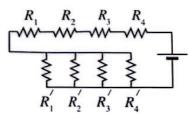
- (1) 790Ω
- (2) 800Ω
- (3) 900Ω

- (4) 1000Ω
- (5) 1500Ω
- 27. විකිරණශීලි $^{235}_{92}$ U, $^{231}_{91}$ Pa බවට ක්යෙ වීමේදී පහත සඳහන් කුමන අංශු වීමෝචනය වේ ද?
 - (1) එක් ඇල්ෆා අංශුවක් සහ එක් ඉලෙක්ටුෝනයක්
 - (2) එක් පුෝටෝනයක් සහ නියුටෝන හතරක්
 - (3) එක් ඇල්ෆා අංශුවක් සහ එක් පොසිටුෝනයක්
 - (4) එක් ඇල්ෆා අංශුවක් සහ එක් නියුටෝනයක්(5) එක් ඇල්ෆා අංශුවක් සහ පොසිටුෝන දෙකක්

Scanned with

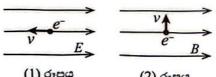

GS CamScanner

- 28. පරිමාව 75 m³ වන සංවෘත කාමරයක් තුළ වාතයේ නිරපේක්ෂ ආර්දුතාවය 0·04 kg m⁻³ වන අතර සාපේක්ෂ ආර්දුතාවය 75 % වේ. එම උෂ්ණත්වයේදීම කාමරය ජල වාෂ්පවලින් සන්තෘප්ත කිරීමට නම් කාමරයට කොපමණ අමතර ජල වාෂ්ප ස්කන්ධයක් එකතු කළ යුතු ද?
 - (1) 0.5 kg
- (2) 0.75 kg
- (3) 1.0 kg
- (4) 1.25 kg
- (5) 1.5 kg
- 29. ආරම්භයේ අනන්ත දුරකින් පිහිටි ලක්ෂායීය ආරෝපණ තුනක් සමපාද තුකෝණයක ශිර්ෂ කරා ගෙන එන ලදී. ඒවායින් ආරෝපණ දෙකක ආරෝපණය +q බැගින් වේ. තිුකෝණයේ ශීර්ෂවලට ආරෝපණ තුන ගෙන ඒමේදී විදයුත් ක්ෂේතුය මගින් සිදු කරන ලද සම්පූර්ණ කාර්යය ශුනෳ වීමට නම් තෙවන ආරෝපණයේ අගය කුමක් විය යුතු ද?
- (2) $-\frac{q}{3}$
- (3) -q


- 30. ඝනත්වය eta වූ දවාපයකින් සැදුනු කුඩා ඝන ගෝලයක් ටැංකියක ජල මතුපිටට පහළින් H ගැඹුරක සිට නිසලතාවයෙන් මුදා හරී. ජලයේ ඝනත්වය $ho \left(
 ho > eta
 ight)$ වේ. ගෝලය ජල මතුපිටේ සිට ඉහළ යන උපරිම උස කුමක් ද? සියලු දුස්සුාවී බල සහ ජලයේ පෘෂ්ඨික ආතතිය නොසලකා හරින්න.

- (2) $\frac{\beta}{\rho}H$ (3) $\left(1+\frac{\rho}{\beta}\right)H$ (4) $\left(1-\frac{\beta}{\rho}\right)H$ (5) $\left(\frac{\rho}{\beta}-1\right)H$
- $31. \ A$ සහ B යන ඝන ගෝල දෙකක් සර්වසම පෘෂ්ඨීය ගුණ ඇති එකම දුවෳයකින් සාදා ඇත. A ගෝලයේ විෂ්කම්භය B ගෝලයේ විෂ්කම්භයෙන් හරි අඩකි. ඒවා එකම උෂ්ණත්වයකට රත් කර පසුව සමාන පරිසර තත්ව යටතේ සිසිල්වීමට ඉඩ හරිනු ලැබේ. A සහ B හි ආරම්භක සිසිලන ශීඝුතා පිළිවෙළින් R_A සහ R_B වේ. පහත සඳහන් කුමක් සතා වේ ද?
- (1) $R_A = R_B$ (2) $R_A = \frac{1}{2} R_B$ (3) $R_A = \frac{1}{4} R_B$ (4) $R_A = 2R_B$ (5) $R_A = 4R_B$
- 32. පරිපථ රූප සටහනෙහි පෙන්වා ඇති ටුාන්සිස්ටරය කිුයාකාරී කලාපයේ කුියාත්මක වේ. $V_{
 m CE}$ හි ආසන්න අගය කොපමණ ද? $V_{
 m BE}=0.6\,{
 m V}$ යැයි උපකල්පනය කරන්න.
 - (1) 1.6V
- (2) 3·4 V
- (3) 4·6V

- (4) 5·2 V
- (5) 7·4 V



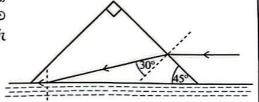
- 33. $30\,^{\circ}\mathrm{C}$ පවතින ජලය $100\,\mathrm{g}$ ක ස්කන්ධයක් සහ $-10\,^{\circ}\mathrm{C}$ පවතින අයිස් $100\,\mathrm{g}$ ක ස්කන්ධයක් පරිවරණය කරන ලද භාජනයක, පරිසරය සමග තාප හුවමාරුවක් නොවන පරිදි මිශු කරන ලදී. අයිස් සහ ජලයේ විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $2 \times 10^3
 m J kg^{-1} K^{-1}$, $4 \times 10^3
 m J kg^{-1} K^{-1}$ සහ අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත තාපය $3 \times 10^5
 m J kg^{-1}$ බව උපකල්පනය කරන්න. මිශුණයේ සමතුලිත උෂ්ණත්වය කොපමණ ද?
 - (1) 5°C
- (2) 0°C
- (3) -5°C
- (4) -10°C
- (5) -25°C
- 34. රූපයේ දැක්වෙන ආකාරයට සමාන්තරගත පුතිරෝධක කට්ටලයක් සහ ශ්රණිගත පුතිරෝධක කට්ටලයක් සම්බන්ධ කර ඇත. පුතිරෝධකවල පුතිරෝධ අගයන් සමාන හෝ සමාන නොවිය හැක. පහත කුමන පුකාශය **සැමවිටම** සතා ද?

- (1) සමාන්තරගත පුතිරෝධක කට්ටලයේ එක් එක් පුතිරෝධකය හරහා ගලන ධාරාව එකම වේ.
- (2) ශ්‍රේණිගත පුතිරෝධක කට්ටලයේ එක් එක් පුතිරෝධකය හරහා චෝල්ටීයතා බැස්ම එකම වේ.
- (3) ශ්රීණිගත පුතිරෝධක කට්ටලයේ ඕනෑම තනි පුතිරෝධකයක පුතිරෝධ අගයට වඩා සමස්ත ජාලයේ මුළු පුතිරෝධය වැඩි වේ.
- (4) සමස්ත ජාලයේ මුළු පුතිරෝධය සමාන්තරගත පුතිරෝධක කට්ටලයේ විශාලතම පුතිරෝධයට වඩා අඩු ය.
- (5) සමස්ත ජාලයේ මුළු පුතිරෝධය ජාලයේ ඕනෑම තනි පුතිරෝධකයක පුතිරෝධයට වඩා අඩු ය.

35. එක් ඉලෙක්ටෝනයක් ඒකාකාර විදයුත් ක්ෂේතුයකට (E) පුතිවිරුද්ධව චලනය වන අතර තවත් ඉලෙක්ටෝනයක් ඒකාකාර චුම්බක ක්ෂේතුයකට (B) ලම්බකව චලනය වන අයුරු (1) සහ (2) රූපවල දැක්වේ. එක් එක් අවස්ථාව සඳහා ඉලෙක්ටෝනවල ඩි බෝග්ලි තරංග ආයාමය පිළිවෙළින්, (2) වැඩිවේ, අඩුවේ.

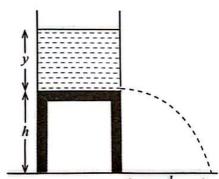
(1) වැඩිවේ, වැඩිවේ.

(3) අඩුවේ, චෙනස් නොවේ.


(4) අඩුවේ, අඩුවේ.

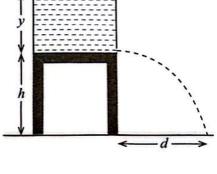
(5) වැඩිවේ, වෙනස් නොවේ.

- 36. අරය 2 mm වූ ගෝලාකාර ජල බිඳිත්තක් වාතය හරහා 8 cm s⁻¹ ක ආන්ත පුවේගයකින් පහළට වැටේ. එවැනි සර්වසම ජල බිඳිති අටක (8) පරිමාවක් ඇති ගෝලාකාර ජල බිඳුවක් වාතය හරහා වැටෙන ආන්ත පුවේගය කොපමණ ද?
 - (1) 8 cm s^{-1}
- (2) 16 cm s^{-1}
- (3) 24 cm s⁻¹
- (4) 32 cm s^{-1}
- (5) 64 cm s⁻¹
- 37. සෘජුකෝණාසුාකාර සමද්වීපාද වීදුරු පුිස්මයක පතුල රූපයේ පෙන්වා ඇති පරිදි දුව පෘෂ්ඨයක් යන්තමින් ස්පර්ශ කරයි. දුව මතුපිටට සමාන්තරව ඒකවර්ණ ආලෝක කිරණයක් පිස්මයට ඇතුළු වී වීදුරු සහ දුව අතුරු මුහුණත ඔස්සේ ගමන් කරයි. දුවයේ වර්තනාංකය කොපමණ ද?

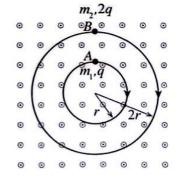


(1) $\sqrt{2}$

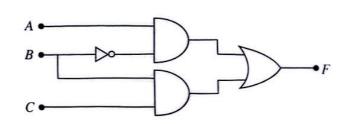
(2) $\sqrt{2} \sin 75^{\circ}$ (3) $\sqrt{2} \sin 60^{\circ}$


(4) $\frac{2}{\sin 75^\circ}$ (5) $\frac{2}{\sin 60^\circ}$

38. විශාල හරස්කඩ වර්ගඵලයක් සහිත ජල ටැංකියක් උස $\,h$ වන ආධාරකයක් මත තබා ඇත. ටැංකියේ පතුලට සමීපව ඇති කුඩා සිදුරකින් නිකුත් වන තිරස් ජල ධාරාවක් රූපයේ පෙන්වා ඇති පරිදි ටැංකියේ කෙළවරක සිට d තිරස් දුරකින් පොළොවේ වැදේ. ටැංකියේ පවතින ජලයේ උස (y)


- (1) $\frac{d^2}{h}$ (2) $\frac{d^2}{2h}$ (3) $\frac{d^2}{4h}$

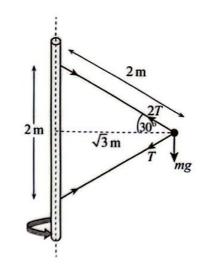
- (4) $\frac{2d^2}{h}$ (5) $\frac{4d^2}{h}$
- ${f 39}$. පිළිවෙළින් ස්කන්ධ m_1,m_2 සහ ආරෝපණ q,2q වූ A සහ B ආරෝපිත අංශු දෙකක් ඒකාකාර චුම්බක ක්ෂේතුයකට ලම්බකව රූපයේ දැක්වෙන පරිදි අරයයන් පිළිවෙළින් r,2r වූ වෘත්තාකාර මාර්ගවල ගමන් කරයි. Aසහ B අංශුවල වේග පිළිවෙළින් v_1,v_2 නම්, $\frac{m_2v_2}{m_1v_1}$ අනුපාතයේ අගය කොපමණ ද?



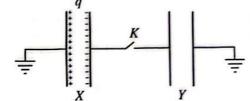
- (1) 1
- (2) $\sqrt{2}$
- (3) 2

- (4) 3
- (5) 4

- $oldsymbol{40}$. A,B සහ C පුදාන තුනක් සහිත පෙන්වා ඇති තාර්කික පරිපථය සලකා බලන්න. පරිපථයේ F පුතිදානය වඩාත්ම හොඳින් නිරූපණය කරන බූලියානු පුකාශනය කුමක් ද?
 - (1) $F = \overline{B}A + BC$ (2) $F = \overline{B}A + \overline{B}C$
 - (3) $F = BA + \overline{B}C$ (4) F = BA + BC
 - $(5) \quad F = \overline{B}A + B\overline{C}$



41. රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය m වූ ලෝහමය බෝලයක් දිග 2·0 m බැගින් වූ සැහැල්ලු කම්බි දෙකකින් සිරස් දණ්ඩකට සම්බන්ධ කර ඇත. කමබි තදින් ඇදී තිබෙන පරිදි 2·0 m පරතරයකින් දණ්ඩට දෘඪව සවිකර ඇත. ඇටවුම නියත කෝණික පුවේගයකින් දණ්ඩේ අක්ෂය වටා හුමණය වේ. පහළ කම්බියේ ආතතිය (T) මෙන් ඉහළ කම්බියේ ආතතිය දෙගුණයකි (2T). බෝලයේ කෝණික පුවේගය (rad s⁻¹) කොපමණ ද?



- (2) $\sqrt{\frac{3}{2}}g$
- (3) $\sqrt{3g}$

- (4) 3√g
- (5) $5\sqrt{g}$

42. X සහ Y සර්වසම ධාරිතුක දෙකක් රූපයේ පෙන්වා ඇති පරිදි K විවෘත ස්විච්චියක් සහිත කම්බියක් මගින් සම්බන්ධ කර ඇත. ආරම්භයේදී Xධාරිතුකයට q ආරෝපණයක් ලබා දෙන අතර Y අනාරෝපිතව පවතී. ස්වීච්චිය වැසූ පසු ධාරිතුක පිළිබඳ කර ඇති පහත පුකාශ සලකා බලන්න.

- (A) X ධාරිතුකයේ ආරෝපණය $\frac{q}{2}$ දක්වා අඩුවේ.
- (B) X ධාරිතුකය හරහා වෝල්ටීයතාව එහි ආරම්භක අගයෙන් වෙනස් නොවේ.
- (C) X ධාරිතුකයේ ගබඩා වී ඇති ශක්තිය ආරම්භක අගයෙන් හරි අඩකට අඩුවේ. ඉහත පුකාශ අතුරෙන්,
- (1) (A) පමණක් සතා වේ.
- (2) (B) පමණක් සතා වේ.
- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) සියල්ලම සතා වේ.
- $m{43}$. ති්රසට ආනතිය $m{ heta}$ වූ ආනත තලයක ඉහළ අර්ධය සුමට වන අතර පහළ අර්ධය රළු වේ. තලයේ මුදුනේ සිට නිසලතාවයෙන් ගමන් අරඹන කුට්ටියක් පහළට ලිස්සා ගොස් තලය පාමුලදී නැවත නිසල වේ. තලයේ පහළ අර්ධය සහ කුට්ටිය අතර ගතික ඝර්ෂණ සංගුණකය μ දෙනු ලබන්නේ,

(1)
$$\mu = 2 \tan \theta$$

(2)
$$\mu = \cos \theta$$

(3)
$$\mu = \tan \theta$$

$$(4) \quad \mu = 2 \sin \theta$$

(5)
$$\mu = 3 \tan \theta$$

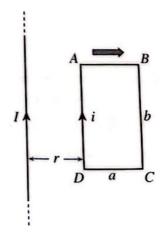
44. පෘථිවිය වටා වෘත්තාකාර පථයක ගමන් කරන චන්දිකාවක චාලක ශක්තිය, ගුරුත්වාකර්ෂණ විභව ශක්තිය සහ මූළු ශක්තිය පිළිවෙළින් K, V සහ E මගින් දෙනු ලබයි. පහත කුමන සම්බන්ධතාවය **සහප** වේ ද?

(1)
$$E = -K$$
 (2) $V = -K$

$$(2) \quad V = -K$$

$$(3) V = E$$

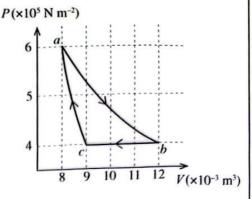
(4)
$$K = -2E$$


$$(5) \quad K = V$$

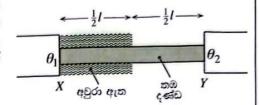
45. පළල a සහ දිග b වූ ABCD ඍජුකෝණාසුාකාර කම්බි පුඩුවක් රූපයේ පෙන්වා ඇති පරිදි ස්ථාවර I ධාරාවක් රැගෙන යන දිගු සෘජු කම්බියක් සමග ඒකතලව තබා ඇත. පුඩුව දකුණට චලනය කරන විට කම්බිය සහ පුඩුවේ AD පැත්ත අතර ඇති දුර r වන අවස්ථාවේ පුඩුවේ පේරිත ධාරාව i වේ. පුඩුව මත ඇති සඵල වුම්බක බලයේ විශාලත්වය කුමක් ද?

(1) $\frac{\mu_0 Ii}{2\pi} \frac{b}{a}$ (2) $\frac{\mu_0 Ii}{2\pi} \frac{(r+a)}{r}$ (3) $\frac{\mu_0 Ii}{2\pi} \frac{r}{(r+a)}$

(4)
$$\frac{\mu_0 Ii}{2\pi} \frac{ab}{r(r+a)}$$
 (5) $\frac{\mu_0 Ii}{2\pi} \frac{r(r+a)}{ab}$

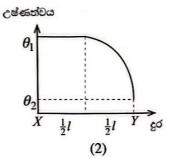


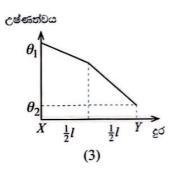
46. රූපයේ පෙන්වා ඇති P-V සටහන මගින් පරිපූර්ණ වායුවක යම් $P(\times 10^5~{
m N~m^{-2}})$ abca තාපගතික වකුයක් විදහා දක්වයි. a ලක්ෂායේදී වායුවේ උෂ්ණත්වය $327~{
m ^{\circ}C}$ නම් c ලක්ෂායේදී වායුවේ උෂ්ණත්වය 6 කොපමණ ද?

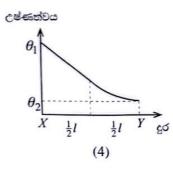


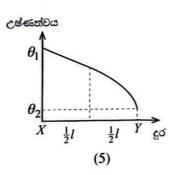
- (2) 227 °C
- (3) 300 °C

- (4) 327 °C
- (5) 450 °C

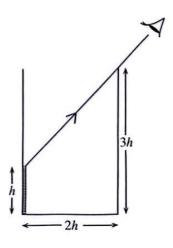


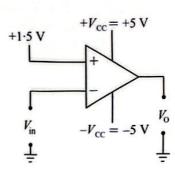

47. XY තඹ දක්ඩේ දිග I වේ. දක්ඩේ එක් අර්ධයක් හොඳින් අවුරා ඇති අතර ඉතිරි අර්ධය අවුරා නොමැත. X කෙළවර θ_1 උෂ්ණත්වයක පවත්වාගෙන ඇති අතර Y කෙළවර θ_2 උෂ්ණත්වයේ ඇත $(\theta_1 > \theta_2)$. අනවරත අවස්ථාවට පත් වූ පසු කුමන පුස්තාරය මගින් දණ්ඩ ඔස්සේ උෂ්ණත්ව විචලනය වඩාත් හොඳින් නිරූපණය කරයි ද?

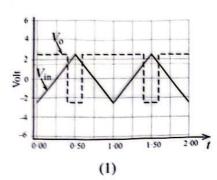


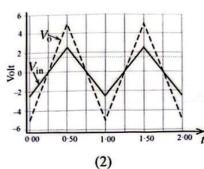

င်ဖော်လောပ်ပ

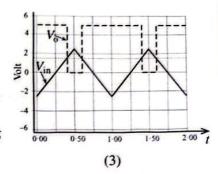
(1)

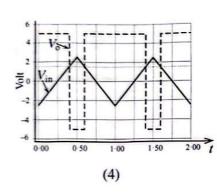


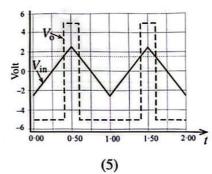


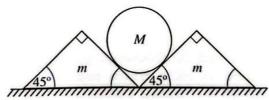

- 48. රූපයේ දැක්වෙන පරිදි ඇස පිහිටා ඇති විට නිරීක්ෂකයෙකුට බීකරයක බිත්තියට සවි කර ඇති තුනී ප්ලාස්ටික් තීරුවක ඉහළ කෙළවර දැකිය හැකි ය. තීරුවේ දිග h ද බීකරයේ විෂ්කම්භය 2h සහ බීකරයේ උස 3h වේ. ඉන්පසු 2h උසක් දක්වා පාරදාශා දුවයකින් බීකරය පුරවනු ලැබේ. දැන් නිරීක්ෂකයාට ඇසේ පිහිටීම වෙනස් නොකර තීරුවේ පහළ කෙළවර දැකිය හැක. දුවයේ වර්තනාංකය කොපමණ ද?
 - (1) $\frac{5}{2}$
- (2) $\sqrt{\frac{5}{2}}$
- (3) $\frac{3}{2}$


- (4) $\frac{4}{3}$
- (5) $\sqrt{\frac{3}{2}}$




49. රූපයේ පෙන්වා ඇති සැපයුම් වෝල්ටීයතාවය ±5 V වන කාරකාත්මක වර්ධක පරිපථය සලකා බලන්න. උච්චයේ සිට උච්චයට (peak-to-peak) වෝල්ටීයතා අගය 5 V (-2·5 V සිට +2·5 V පරාසයක ඇති) වන තිකෝණාකාර ප්‍රතාවර්තක වෝල්ටීයතාවක් (V_{in}) කාරකාත්මක වර්ධකයේ අපවර්තන ප්‍රදානයට යොදනු ලබන අතර අපවර්තන තොවන ප්‍රදානයට +1·5 V වන නියත චෝල්ටීයතාවක් යොදනු ලැබේ. පහත කුමක් මගින් කාලය / සමග ප්‍රතිදාන චෝල්ටීයතාවෙහි (V₀) විචලනය වඩාත්ම හොඳින් නිරූපණය කරයි ද?





50. එක එකෙහි ස්කන්ධය m වන සර්වසම සෘජුකෝණාසුාකාර සමද්වීපාද කුඤ්ඤ දෙකක් රඑ තිරස් පෘෂ්ඨයක් මත එකිනෙකට යාබදව තබා ඇත. රූපයේ දැක්වෙන පරිදි ස්කන්ධය M වූ ඝන සිලින්ඩරයක් කුඤ්ඤ මත සමතුලිතව තබා ඇත. සිලින්ඩරය සහ කුඤ්ඤ අතර ඝර්ෂණයක් නොමැති බව උපකල්පනය කරන්න. කුඤ්ඤ සහ තිරස් පෘෂ්ඨය අතර ස්ථිතික ඝර්ෂණ සංගුණකය μ වේ. කුඤ්ඤ ලිස්සායාමකින් තොරව සමතුලිත කළ හැකි M හි විශාලතම අගය කුමක් ද?

- $(1) \quad \frac{m}{\sqrt{2}}$
- $(2) \quad \frac{\mu m}{\sqrt{2}}$
- $(3) \quad \frac{\mu m}{1+\mu}$
- $(4) \quad \frac{\mu m}{1-\mu}$
- $(5) \quad \frac{2\mu m}{1-\mu}$

සියලුම හිමිකම් ඇවරිකි / භුණුට පුණිර්පුණිකාගයුනා, usg./ All Rights Reserved]

ඉංහා විභාග අදහරප්රම්පදව දී ඉංහා විභාග අදහරු **Department of Examinations, Sri Lanka**ා දෙපාරප්රම්තිතුව දී ඉංහා විභාග අදහරප්රම්තිතුව හම්කාසේට අර්ගණය නියාක්ෂයක්ව වූහම්කයේට අර්ගණය ප්රතික්ෂයට අර්ගණයට අර්ගණය ප්රතික්ෂයක්ව ලිහම්කයට අර්ගණය නියාක්ෂයක්ව

අධායයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Examination, 2024

භෞතික විදනාව பௌதிகவியல் II II Physics

B කොටස – රචනා

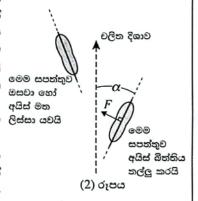
පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. $(g = 10 \text{ m s}^{-2})$

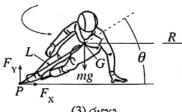
- ullet සටහන: උදාහරණයක් වශයෙන් 65210 සංඛාාව දශම ස්ථාන දෙකකට වැටයූ පසු $6\cdot 52 imes 10^4$ ලෙස විදාාත්මක අංකනයෙන් (scientific notation) ලිවිය හැක.
- පහත ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

අයිස් මත ලිස්සා යෑමේදී (1) රූපයේ පෙන්වා ඇති අයිස් මත ලිස්සන සපත්තුවක (skate) තලය (blade) අයිස් මත පීඩනයක් යොදා තුනි අයිස් ස්තරයක් දිය කොට තලය සහ අයිස් අතර ස්තේහනය (lubrication) සපයයි. මෙය 'පීඩන දියවීම' ලෙස හැඳින්වේ. සපත්තුවේ තලයේ පහළ පෘෂ්ඨයේ දිග 30 cm වන අතර පළල 1 mm වේ. අයිස් මත ලිස්සන එක් සපත්තුවක් මත තම බර යොදන මිනිසෙකුට සාමානාෳ වායුගෝලීය පීඩනය මෙන් 20ගුණයක් දක්වා පීඩනයක් ඇති කළ හැකිය. අයිස් සහ තලය අතර ඝර්ෂණ සංගුණකය මුළුමුනින්ම පාහේ ශුනා වේ. එබැවින් ඉදිරියට යාමට ඇති එකම මග වන්නේ (2) රූපයේ දැක්වෙන පරිදි සපත්තුවේ තලය මගින් දිය නොවු අයිස් බිත්තිය තල්ලු කිරීමයි.

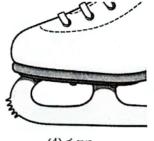
අයිස් මත ලිස්සා යන්නා තම දකුණු පාදය පිටුපසින් තබා තල්ලු කරන විට අයිස් මගින් සපත්තු තලය මත F බලයක් යෙදේ. චලිත දිශාවට ඇති F බලයේ සංරචකය මගින් අයිස් මත ලිස්සා යන්නා ඉදිරියට තල්ලු කරයි. ඒ අතර සපත්තුව සහිත ඔහුගේ වම් පාදය ඔසවා තබා ගැනීම හෝ අයිස් පෘෂ්ඨය මත ලිස්සා යෑම සිදු කරයි. අයිස් මත ලිස්සා යන්නා ඉදිරියට යන විට ඔහු ඉහත කිුිිියාව වම් පාදයට මාරු කොට එයින් අයිස් තල්ලු කොට දකුණු පාදය ඔසවා තබා ගනියි. මෙම කිුයාවලිය අඛණ්ඩව නැවත නැවතත් සිදු කෙරේ.

ස්කන්ධය m වූ අයිස් මන ලිස්සා යන්නා තිරස් අයිස් පෘෂ්ඨයක් මන වෘත්තාකාර මාර්ගයක $\,$ ලිස්සා යවයි තියත වේගයකින් ගමන් කරන විට ඔහු මත කිුයාකරන බල (3) රූපයේ දැක්වේ.


මෙහි G යනු අයිස් මත ලිස්සා යන්නාගේ ස්කන්ධ කේන්දුය ද, P යනු සපත්තුවක් සහ අයිස් පෘෂ්ඨය අතර ස්පර්ශ ලක්ෂාlphaය ද, L යනු P සහ G අතර දුර ද වේ. අයිස් මගින් සපත්තුව මත කිුයාත්මක වන බලයේ තිරස් සහ සිරස් සංරචක පිළිවෙළින් $F_{_{\mathbf{X}}}$ සහ $F_{_{\mathbf{Y}}}$ වේ. වෘත්තාකාර මාර්ගයේ අරය R වේ.


අයිස් මත ලිස්සා යන්නෙකුගේ බැමුම් (spin) චලිතයක් සාක්ෂාත් කර ගැනීම සඳහා (4) රූපයේ පෙන්වා ඇති ඉදිරි කෙළවරේ කුඩා දැති සහිත කුරු ඇති විශේෂිත වූ තලයක් භාවිත කරයි. මෙම දැති සහිත කුරු අයිස් තුළට හාරා අවශා වාාවර්තය ලබා ගැනීම මගින් බැමුම් සිදු කර ගනී.

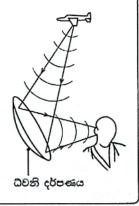
- (a) 'පීඩන දියවීම' යන්නෙන් අදහස් කරන්නේ කුමක් ද?
- (b) (i) සාමානා සපත්තු පැළඳ 60 kg ක ස්කන්ධයක් ඇති පුද්ගලයෙකු එක් පාදයකින් අයිස් පෘෂ්ඨයක් මතුපිට සිටගෙන සිටින්නේ නම්, ඔහු අයිස් පෘෂ්ඨය මත ඇති කරන පීඩනය කොපමණ ද? එක් සපත්තුවක පතුලේ පෘෂ්ඨීය වර්ගඑලය 300 cm² වේ.
 - (ii) ඔහු සාමානා සපත්තුව වෙනුවට අයිස් මත ලිස්සන සපත්තුවක් පැළඳ සිටී නම් ඔහු මගින් අයිස් පෘෂ්ඨය මත යෙදෙන පීඩනය කොපමණ ද? ඡේදයෙන් අයිස් මත ලිස්සන සපත්තු තලයේ මානයන් ලබා ගන්න. තලයෙහි පහළ පෘෂ්ඨයේ හැඩය සෘජුකෝණාසුාකාර බව උපකල්පනය කරන්න.
 - (iii) එනයින් ඉහත (b) (ii) හි ලබාගත් පීඩනය වායුගෝලීය පීඩනය මෙන් 20 ගුණයක් බව පෙන්වන්න. (වායුගෝලීය පීඩනය $1\cdot 0 \times 10^5 \, \mathrm{Pa}$ වේ.)
- (c) අයිස් මත ලිස්සා යන්නෙක් අයිස් මතුපිටක් මත ඉදිරියට ගමන් කරන්නේ කෙසේ ද?



(1) රූපය

(3) රූපය

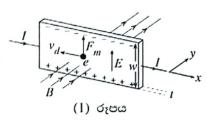
(4) රූපය


[දසවැනි පිටුව බලන්න.

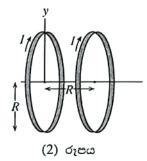
- (d) (i) අයිස් මත ලිස්සා යන්නාගේ චලිතයේ දිශාවට යොමුවන බලයේ සංරචකය කුමක් ද? ඔබගේ පිළිතුර F සහ lpha ඇසුරෙන් ලියා දක්වන්න.
 - (ii) α කෝණය ශූනා වේ නම් ඔහුට ඉදිරියට යා හැකි ද? ඔබගේ පිළිතුරට හේතුව දක්වන්න.
- (e) (i) නොනවත්වා පාද මාරු කිරීම මගින් යෙදෙන බලයේ සාමානයේ $180~{
 m N}$ නම් චලිත දිශාව ඔස්සේ $60~{
 m kg}$ ක ස්කන්ධයක් ඇති අයිස් මත ලිස්සා යන්නාගේ ත්වරණය (a) නිර්ණය කරන්න. $\alpha=30^{\circ}$ ලෙස ගත්ත. වෙනත් පුතිරෝධක බල මනු මත කිුයා නොකරන බව උපකල්පනය කරන්න.
 - (ii) මනු නිසලතාවයෙන් ගමන් අරහා 5 s තුළ ත්වරණය වූ පසු ඔහුගේ වේගය (v) කොපමණ ද?
- (f) වෘත්තාකාර මාර්ගයක ගමන් ගන්නා අයිස් මත ලිස්සා යන්නාගේ වේගය $v',\ v'=\sqrt{\frac{gR}{\tan\theta}}$ මගින් දෙනු ලබන බව (3) රූපය භාවිත කරමින් පෙන්වන්න.
- (g) රූපය (4) හි පෙන්වා ඇති තලයේ දැති සහිත කුරු තිබීමේ අරමුණ කුමක් ද?
- (h) ස්කන්ධය 60 kg වන අයිස් මත නර්තනයේ යෙදෙන තැනැත්තියක් (5) රූපයේ පෙන්වා ඇති පරිදි තිරස් අතට දිගු කර ඇති දැන් සහිතව 60 rpm ක කෝණික වේගයකින් සිරස් අක්ෂයක් වටා බැමෙයි. ඉන් පසුව (6) රූපයේ දැක්වෙන පරිදි දැන් ඇගේ සිරුරට ඉතා සමීපව ගෙන එමින් ඇය තම දැන් සම්පූර්ණයෙන් හකුලා ගනී. දිගු කරන ලද දැන් එක එකෙහි දිග 60 cm සහ ස්කන්ධය 7 kg බැගින් වූ ඒකාකාර දඬු ලෙස සැලකිය හැකි ය. දැන් නොමැතිව සිරුරේ ඉතිරි කොටස ස්කන්ධය 46 kg සහ අරය 20 cm වන සන සිලින්ඩරයක් ලෙස සැලකිය හැකිය. සම්පූර්ණයෙන් හකුලා ගන්නා ලද දැන් සහිත ශර්රය ස්කන්ධය 60 kg සහ අරය 20 cm වන සන සිලින්ඩරයක් ලෙස සැලකිය හැකි ය. ස්කන්ධය M සහ දිග L වන දණ්ඩක, දණ්ඩට ලම්බකව එහි එක් කෙළවරක් වටා අවස්ථිති සූර්ණය $\frac{1}{3}ML^2$ මගින් දෙනු ලබයි. ස්කන්ධය M සහ අරය R වන සන සිලින්ඩරයක මධ්ය අක්ෂය වටා අවස්ථිති සූර්ණය $\frac{1}{2}MR^2$ මගින් දෙනු ලබයි. (π =3 ලෙස ගන්න.)

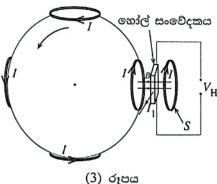
(5) රූපය (6) රූපය

- (i) නර්තනයේ යෙදෙන තැනැත්තියගේ දැන් සම්පූර්ණයෙන් දිගු කොට ඇති විට භුමණ අක්ෂය වටා ඇයගේ මුළු අවස්ථිති සූර්ණය නිර්ණය කරන්න. හුමණ අක්ෂය හා උරහිස් සන්ධිය අතර දුර නොසලකා හරින්න.
- (ii) ඇගේ දැත් සම්පූර්ණයෙන් හකුලා ගෙන ඇති විට හුමණ අක්ෂය වටා ඇයගේ මුළු අවස්ථිති සූර්ණය නිර්ණය කරන්න.
- (iii) එනයින් ඇගේ දැන් සම්පූර්ණයෙන් හකුලා ගෙන ඇති විට ඇයගේ කෝණික වේගය rpm වලින් ගණනය කරන්න.
- (iv) ඉහත (h) (iii) හි පිළිතුර සොයා ගැනීමට ඔබ භාවිත කළ සංස්ථිති නියමය නම් කරන්න.
- (v) ඇයගේ ආරම්භක සහ අවසාන හුමණ චාලක ශක්තීන් ගණනය කරන්න. හුමණ චාලක ශක්තියේ ඇති වූ චෙනස ඔබ පහදා දෙන්නේ කෙසේ ද?
- (vi) නිසලතාවයෙන් පටන් ගෙන 60 rpm කෝණික වේගයක් අයත් කර ගැනීමට ඇයට 10 s ගතවේ නම්, අයිස් මගින් දැති සහිත කුරු මත යෙදිය යුතු වහාවර්තය කොපමණ ද? කි්යාවලිය පුරාම ඇයගේ කෝණික ත්වරණය නියත යැයි උපකල්පනය කරන්න.
- 6. (a) ධ්වනි පුභවයක් මගින් දී ඇති ලක්ෂායක ඇති කරන ධ්වනි තිවුතාව I සහ ශුවාතා දේහලීය I_0 නම්, එම ලක්ෂායේදී ධ්වනි තිවුතා මට්ටම $(oldsymbol{eta})$ සමීකරණයක් මගින් අර්ථ දක්වන්න.
 - (b) ගුවන් යානයක එන්ජිමක් මගින් නිකුත් කරන ධ්වනි තීවුතාව යම් ලක්ෂායකදී $2\cdot 0\times 10^{-2}\,\mathrm{W\,m^{-2}}$ වේ. $I_0 = 1\cdot 0\times 10^{-12}\,\mathrm{W\,m^{-2}}$ සහ $\log\,2 = 0\cdot 3$ ලෙස ද $\log(ab) = \log(a) + \log(b)$ ලෙස ද භාවිත කළ හැක.
 - (i) එම ලක්ෂායේදී ධ්වති තීවුතා මට්ටම සොයන්න.
 - (ii) ගුවන් යානයට එන්ජින් දෙකක් ඇත්නම්, එම ලක්ෂ‍‍‍යයේදීම සම්පූර්ණ ධ්වනි තීවුතා මට්ටම කොපමණ ද? ගුවන් යානයේ එන්ජින් දෙකේ සිට අදාළ ලක්ෂුුය සම දුරකින් පිහිටා ඇතැයි සලකන්න.
 - (c) (i) දෙවන ලෝක සංගුාමය ආරම්භක සමයේදී, රේඩාර් පහසුකම් නොමැති වූ අතර, ඒ නිසා ගුවත් යාතා අතාවරණය කර ගැනීම සඳහා ගුවත් යාතා මගින් නිපදවන ධීවති තරංග භාවිත කරන ලදී. මිනිස් කණක් මගින් ගුවත් යාතයක් අනාවරණය කර ගැනීම සඳහා ධීවති තිවුතා මට්ටම අවම තරමින් 30 dB විය යුතු නම් ගුවත් යාතය මගින් කණෙහි ජනිත කළ යුතු අනුරූප අවම ධීවති තිවුතාවය සොයන්න.
 - (ii) ධ්වනි තරංග පරාවර්තනය කිරීමට සහ නාභිගත කර එය හඳුනාගැනීමේ සංවේදිතාවය වර්ධනය කර ගැනීමට ධ්වනි දර්පණ (acoustic mirrors) භාවිත විය. රූපයේ පෙන්වා ඇති පරිදි සඵල වර්ගඵලය 4 m² වූ ධ්වනි දර්පණයක් මගින් සඵල වර්ගඵලය 10 cm² වූ කණක් මතට ධ්වනිය ඒකරාශි කරයි. ගුවන් යානයක් හඳුනාගැනීම සඳහා ධ්වනි දර්පණයේ පතනය විය යුතු අවම ධ්වනි තීවුතාවය කොපමණ විය යුතු ද? දර්පණය මගින් ධ්වනි ශක්තිය අවශෝෂණය කිරීම නොසලකා හරින්න. ධ්වනි දර්පණයේ සිට කණ දක්වා පුගමනය වීමේදී ධ්වනි ශක්තියේ හානියක් සිදු නොවන බව උපකල්පනය කරන්න.


[එකොදොස්වැනි පිටුව බලන්න.

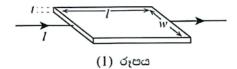
- (iii) ගුවන් යානයක් තම එන්ජින් මගින් $480~\mathrm{W}$ ධ්වනි ක්ෂමතාවක් ජනනය කරයි. ඒකාකාර ගෝලීය ධ්වනි ව**හාප්තියක්** උපකල්පනය කරන්න. (π =3 ලෙස ගන්න.)
 - (I) ගුවන් යානයේ සිට කණ දක්වා පුගමනය වීමේදී ධ්වනි ශක්තියෙන් 95% ක් වායුගෝලය අවශෝෂණය කර ගනී නම් ධ්වති දර්පණය නොමැති විට ගුවන් යානය අනාවරණය කර ගත හැකි උපරිම දුර ඉහත (c) (i) හි ලබාගත් අගය භාවිත කොට සොයන්න. ($\sqrt{5}=2\cdot24$ ලෙස ගන්න.)
 - (II) ගුවන් යානයේ සිට ධ්වනි දර්පණය දක්වා පුගමනය වීමේදී ධ්වනි ශක්තියෙන් 99.9% ක් වායුගෝලය අවශෝෂණය කර ගතී නම් ධ්වනි දර්පණය ඇති විට ගුවන් යානය අනාවරණය කර ගත හැකි උපරිම දුර ඉහත (c) (ii) හි ලබාගත් අගය භාවිත කොට සොයන්න. ධ්වනි දර්පණයේ සිට කණ දක්වා පුගමනය වීමේදී ධ්වනි ශක්තියේ හානියක් සිදු නොවන බව උපකල්පනය කරන්න.
- (d) පොළොවේ සිටින ගුවත් නිරීක්ෂකයෙකු, ඔහුගේ හිසට ඉහළින් වැටී ඇති සරල රේඛීය පථයක, පොළොවට සමාන්තරව, පොළොව මට්ටමේ සිට $3000\,\mathrm{m}$ සිරස් උසකින් $125\,\mathrm{m\,s^{-1}}$ පුවේගයකින් පියාසර කරන ගුවන් යානයක් හඳුනා ගනී. කාලය t=0 හිදී නිරීක්ෂකයාට ගුවන් යානයේ සිට ඇති තිරස් දුර $4000\,\mathrm{m}$ වේ. ගුවන් යානය මගින් නිකුත් කරන ධ්වනියේ සංඛාාතය $100\,\mathrm{Hz}$ වේ. වාතය තුළදී ධ්වනි වේගය $300\,\mathrm{m\,s^{-1}}$ ලෙස උපකල්පනය කරන්න.
 - (i) t = 0 s, t = 32 s සහ t = 64 s කාල අගයන් සඳහා පොළොවේ සිටින පුද්ගලයාට ඇසෙන ධ්වතියේ සංඛ්‍යාතය සොයන්න.
 - (ii) ඉහත අවස්ථා සඳහා කාලය (t) ට එදිරිව නිරීක්ෂිත සංඛාාතය (f) හි විචලනය පෙන්වීමට දළ සටහනක් අඳින්න.
- (e) අතිධ්වනික (supersonic) ජෙට් යානයක් u පුවේගයකින් සරල රේඛීය මාර්ගයක $3000\,\mathrm{m}$ උසකින් පොළොවට සමාන්තරව පියාසර කරයි. එම උසෙහිදී වාතයේ ධ්වනි වේගය v වේ.
 - (i) u < v , u = v සහ u > v යන අවස්ථාවන් සඳහා ජෙට යානයෙන් වීමෝචනය වී සම්ජේෂණය වන වෘත්තාකාර තරංග පෙරමුණු ඇඳ පෙන්වන්න.
 - (ii) u>v තත්වය සඳහා ජෙට් යානයක මැක් අංකය M (Mach number), $M=\frac{u}{v}$ ලෙස ද මැක් කෝණය α (Mach angle මැක් කේතුවේ ශීර්ෂ කෝණයෙන් හරි අඩකි), $\sin\alpha=\frac{v}{u}$ ලෙස ද අර්ථ දැක්වේ. ජෙට් යානයේ පුවේගය මැක් 2 (Mach 2) නම්, නිරීක්ෂකයාට සාජුවම ඉහළින් ජෙට් යානය ගමන් කර කොපමණ වේලාවකට පසුව ඔහුට ස්වනික ගිගුරුම ඇසෙනු ඇති ද? එම උසෙහිදී ධ්වනියේ වේගය $v=300\,\mathrm{m\,s^{-1}}$ වේ. $\sqrt{3}=1.73$ ලෙස ගන්න.
- (a) පෘෂ්ඨික ආතති සංගුණකය අර්ථ දක්වන්න.
 - (b) දිගු වීදුරු කේශික නළ තුනක් හරි අඩක් දුව තුළ පවතින පරිදි ස්පර්ශ කෝණය (i) 0°, (ii) 90° සහ (iii) 135° වූ වෙනස් දුවවල සිරස් අතට ගිල්වා ඇත. එක් එක් අවස්ථාව සඳහා නළය තුළ දුව මාවකයේ හැඩය, දුව කඳේ උස සහ නළයෙන් පිටත එය සමීපයේ දුව මතුපිට හැඩය පෙන්වන දළ සටහනක් අඳින්න.
 - (c) පෘෂ්ඨික ආතති සංගුණකය T වූ දුවයක දුව පෘෂ්ඨය සිදුරු නොවී එය මතුපිට පාවිය හැකි කුඩා ඝන ගෝලයක උපරිම අරය $(r_{\rm m})$ සඳහා පුකාශනයක් වනුත්පන්න කරන්න. ගෝලයේ දුවායේ ඝනත්වය eta වන අතර එය දුවයේ ඝනත්වයට වඩා වැඩි වේ. ගෝලය සාදා ඇති දුවාය හා දුවය අතර ස්පර්ශ කෝණය ශුනා සැයි උපකල්පනය කරන්න. අරය r වූ ගෝලයක පරිමාව $\frac{4}{3}$ πr^3 වේ.
 - (d) සෙංගමාලය ඇති රෝගීන් හඳුනා ගැනීම සඳහා මුතුාවල පිත් ලවණ ඇති බව හඳුනා ගැනීමට හේ (Hay) ගේ පරීක්ෂණය සිදු කරයි. පිත් ලවණ මගින් මුතුාවල පෘෂ්ඨික ආතතිය අඩු කරයි. හේ ගේ පරීක්ෂණය සඳහා ගන්නා ලද මුතුා සාම්පලයක් මතට ඒකාකාර ගෝලාකාර අංශු සහිත ගෙන්දගම් කුඩු ඉසිනු ලැබේ.
 - (i) ඉහත (c) හි වයුත්පන්න කළ පුකාශනය භාවිතයෙන් සාමානx මුතුා මත පාවිය හැකි ගෝලාකාර ගෙන්දගම් අංශුවල උපරිම අරය $(r_{\rm m})$ ගණනය කරන්න. ගෙන්දගම්වල සනත්වය $2000~{
 m kg~m^{-3}}$ වේ. සාමානx මුතුාවල පෘෂ්ඨික ආතතිය $6.5 \times 10^{-3} {
 m N m^{-1}}$ වේ. ඔබගේ පිළිතුර mm වලින් එක් දශම ස්ථානයකට දෙන්න.
 - (ii) පිත් ලවණ තිබේ නම් සහ පුද්ගලයා සෙංගමාලය සඳහා ධනාත්මක ලෙස හඳුනාගෙන තිබේ නම් ගෙන්දගම් අංශු ගිලී යනු ඇත. හේ ගේ පරීක්ෂණ සදහා ඉහත (d) (i) හි ගණනය කළ අගය අනුව අරය $0.9\,r_{\rm m}$ ගෙන්දගම් අංශු භාවිත වේ. සෙංගමාලය ඇති රෝගියෙකුගේ මූතුාවල මෙම අංශු යන්තමින් ගිලී ගියහොත්, බලපෑමට ලක් වූ මුතුාවල පෘෂ්ඨික ආතතිය ගණනය කරන්න. ඔබගේ පිළිතුර විදාාත්මක අංකනයෙන් එක් දශම ස්ථානයකට වටයන්න.
 - (e) අරය $0.4~{
 m mm}$ වූ කේශික නළයක් බලපෑමට ලක් නොවූ මුතුා සාම්පලයේ සිරස් අතට ගිල්වා ඇත්නම් කේශික උද්ගමනය ගණනය කරන්න. සාමානා මුතුාවල ඝනත්වය $1020~{
 m kg}~{
 m m}^{-3}$ වේ. මුතුා සහ වීදුරු අතර ස්පර්ශ කෝණය 30° ක් වේ. මුබගේ පිළිතුර ${
 m mm}$ වලින් ආසන්න පූර්ණ සංඛාාවට දෙන්න. $(\sqrt{3}=1.73~{
 m e}$ ලස ගන්න.)
 - (ƒ) තත්පරයක් තුළ සර්වසම අරයන් සහිත ඉතා කුඩා මුතුා බිඳිති නිපදවන විදුහුත් දියර ඉසිනයක් භාවිතයෙන් තවත් පරීක්ෂණ කුමයක් නිර්මාණය කළ හැකිය. සාමානා මුතුා සාම්පලයකින් බිඳිති සෑදීම සඳහා අවශාවන ක්ෂමතාවට පිත් ලවණ සහිත මුතුා සාම්පලයකින් බිඳිති සෑදීම සඳහා අවශාවන ක්ෂමතාව දරන අනුපාතය කොපමණ ද? සාම්පල දෙකේම මුතුාවල ඝනත්ව සමාන යැයි උපකල්පනය කරන්න. ඔබගේ පිළිතුර දශම ස්ථාන දෙකකට දෙන්න.


[දොදොස්වැනි පිටුව බලන්න.

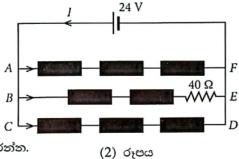

8. (a) පළල w සහ හනකම / වූ (1) රූපයේ පෙන්වා ඇති සාජුකෝණාසුාකාර තුනී පුවරුවක් ආකාරයෙන් වූ ලෝහ සන්නායකයක් සලකා බලන්න. නියන / ධාරාවක් +x දිශාවට ගලා යන අතර පුම්බක සුාව හනත්වය B වූ ඒකාකාර පුම්බක ක්ෂේතයක් පුවරුවේ තලයට ලම්බකව +y දිශාවට කියා කරයි. ඉලෙක්ටුෝනවල ජලාවිත පුවේගය v_d වේ. අනවරත අවස්ථාවට පැමිණි පසු පුවරුවේ ඉහළ පෘෂ්ඨයේ සාණ ආරෝපණ එකතු වන අතර පහළ පෘෂ්ඨයේ ධන ආරෝපණ ඉතිරි වේ. එවිට පුවරුවේ ඉහළ සහ පහළ පෘෂ්ඨ අතර විහව අන්තරයක් ස්ථාපිත වන අතර එය හෝල් වෝල්ටීයතාව V_H ලෙස හැඳින්වේ.

- (i) හෝල් චෝල්ටීයතාව $V_{\rm H}$ සඳහා පුකාගනයක් චූම්බක සුාව ඝනත්වය B, ධාරාව I, සන්නායකයේ ඒකක පරිමාවක වලනය වන ඉලෙක්ටුෝන සංඛ්යාව II, ඉලෙක්ටුෝන ආරෝපණය ℓ සහ පුවරුවේ ඝණකම I ඇසුරෙන් වහුත්පන්න කරන්න.
- (ii) $B = 0.4 \,\mathrm{T}, I = 32 \,\mathrm{A}, n = 10^{28} \,\mathrm{m}^{-3}, e = 1.6 \times 10^{-19} \,\mathrm{C}$ යහ $t = 2 \,\mathrm{mm}$ නම් V_{H} නිර්ණය කරන්න.
- (iii) වෙනත් කිසිවක් වෙනස් නොකර, සම්පූර්ණ සන්නායකය ඉලෙක්ටුෝනවල ප්ලාවිත පුවේගයට සමාන නියත පුවේගයකින් – x දිශාවට වලනය කළහොත් හෝල් චෝල්ටීයතාවයේ විශාලත්වයට කුමක් සිදු වේ ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
- (iv) රූපය (1) හි පෙන්වා ඇති පරිදි පුවරුව නිශ්චලව ඇති විට ඉලෙක්ටුෝනයක් මත කිුිිියාකරන චුම්බක බලය සහ හෝල් විදයුත් ක්ෂේතු තීවුතාවය $F_{\rm m}$ සහ E මගින් පිළිවෙළින් නිරූපණය කරයි. ආරෝපණ වාහක සෘණ ආරෝපිත වෙනුවට ධන ආරෝපිත නම් $v_{\rm d}, F_{\rm m}$ සහ E යන එක් එක්හි දිශාවන්ට කුමක් සිදු වේ ද? (වෙනස් වේ හෝ වෙනස් නොවේ)
- (b) හෝල් ආවරණ සංවේදක කියාත්මක වන්නේ ඒවා වුම්බක ක්ෂේතුයක තැබූ විට සිදුවන චෝල්ටීයතා වෙනස්වීම අනාවරණය කර ගැනීමෙනි. ඒකාකාර වුම්බක ක්ෂේතුයක් උත්පාදනය කර ගැනීම සඳහා (2) රූපයෙහි පෙන්වා ඇති පරිදි එක් එක්හි එකම අරයක් හා එකම වට සංඛ්‍යාවක් සහිත වූ සහ එකම ධාරාවක් ගලා යන අරයට සමාන වූ දුරකින් තබා ඇති සර්වසම වෘත්තාකාර දඟර දෙකක් භාවිත කළ හැක. එමගින් දඟර දෙක අතර ඇතිවන වුම්බක සුාව ඝනත්වය 1·4B₀වන අතර මෙහි B₀ යනු තනි දඟරයක කේන්දුයේ ඇති වුම්බක සුාව ඝනත්වයයි.

- (i) බයෝ-සවා නියමයෙන් පටන්ගෙන වට සංඛාාව N වූ අරය R වූ I ධාරාවක් රැගෙන යන වෘත්තාකාර දඟරයක කේන්දුයේ ඇති වුම්බක සුාව සනත්වය (B_0) සඳහා පුකාශනයක් ලබා ගන්න. පුකාශනයේ අනෙක් සංකේතය නම් කරන්න.
- (ii) N = 1000, I = 2 A සහ R = $0\cdot 12$ m නම එක් දඟරයක කේන්දුයේ ඇති වුම්බක සුාව ඝනත්වය B_0 ගණනය කරන්න. (μ_0 = 4π × 10^{-7} T m A^{-1} සහ π = 3 ලෙස ගන්න)
- (iii) ඉහත (b) හි දක්වා ඇති ඡේදය අදාළ කර ගනිමින්, දඟර දෙක $0\cdot 12~\mathrm{m}$ ක දුරින් තැබුවහොත් ඒවා අතර පවතින ඒකාකාර වුම්බක සුාව සනත්වයේ අගය ගණනය කරන්න.
- (c) හුමණ වස්තූන්ගේ හුමණ වේග අනාවරණය කර ගැනීමට හෝල් ආවරණ සංවේදක භාවිත කරයි. පරිමිතිය වටා සමාන පරතරවලින් එකම ධාරාව රැගෙන යන සර්වසම දඟර හතරක් සවිකර ඇති හුමණය වන රෝදයක් (3) රූපයේ පෙන්වයි. රෝදයේ ඇති දඟරවලට සර්වසම වූ එම ධාරාවම රැගෙන යන අතිරේක දඟරයක් (\$\omega\$), හෝල් සංවේදකයක් සමග එය අසල ස්ථාවරව තබා ඇත. හුමණය වන රෝදයේ ඇති එක් දඟරයක් \$\omega\$ ස්ථාවර දඟරය හා හෝල් සංවේදකය සමග හරි කෙළින් පැමිණි විට ඒකාකාර වුම්බක ක්ෂේතයක් ස්ථාපිත වන අතර හෝල් සංවේදකයේ චෝල්ටීයතා ස්පන්දයක් ජනනය කිරීමට ඉඩ සලසයි. රෝදය හුමණය වන විට එක් එක් පෙළගැස්මේදී චෝල්ටීයතා ස්පන්දයක් නිපදවා හුමණ වේගය අනාවරණය කර ගැනීමට අවස්ථාව සලසයි.

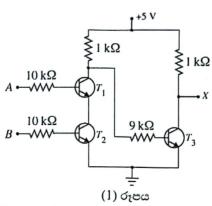

- (i) හෝල් සංවේදකය මගින් ජනනය කරන ස්පන්ද සංඛානතය f_0 නම්, රෝදයේ හුමණ සංඛානතය f සඳහා පුකාශනයක් f_0 අැසුරෙන් ලියා දක්වන්න.
- (ii) f_0 = තත්පරයකට ස්පන්ද 240 නම් රෝදයේ හුමණ වේගය ω , rpm වලින් ගණනය කරන්න.
- (iii) රෝදයේ හුමණ වේගය 7200 rpm ඉක්මවන විට අනතුරු ඇඟවීමේ නළාවක් කියාරම්භ විය යුතුය. අනතුරු ඇඟවීම කියාත්මක වන හෝල් සංවේදකයේ ස්පන්ද සංඛාාතය නිර්ණය කරන්න.
- (iv) පුායෝගිකව විශාල හෝල් චෝල්ටීයතා ලබා ගැනීමට ලෝහ වෙනුවට අර්ධ සන්නායක භාවිත කරයි. අර්ධ සන්නායකයක් විශාල හෝල් චෝල්ටීයතාවක් නිපදවන්නේ ඇයි?

[දගතුන්වැනි පිටුව බලන්න.


9. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

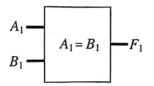
(a) පුතිරෝධකතාව ho වන සන්නායක දුවායකින් සාදා ඇති දිග l, පළල w සහ ඝනකම t වන තුනී තාපන මූලාවයවයකට (1) රූපයේ පෙන්වා ඇති පරිදි සාජුකෝණාසුාකාර පටියක ආකාරයේ හැඩයක් ඇත.


- (i) තාපන මූලාවයවයේ R පුතිරෝධය සඳහා පුකාශනයක් ho,l,w සහ t ඇසුරෙන් ලියා දක්වන්න.
- (ii) $l=100~{
 m mm}, w=20~{
 m mm}, t=5~{
 m \mu m}$ සහ $ho=8 imes10^{-5}\Omega~{
 m m}$ නම් තාපන මූලාවයවයක පුතිරෝධය ගණනය කරන්න.
- (b) ඉහත තුනී තාපන මූලාවයවයන් භාවිතයෙන් (2) රූපයේ පෙන්වා ඇති ස්ථානිය තාප විකිත්සාව සඳහා පැළඳිය හැකි තාපන පැඩයක් (heating pad) නිර්මාණය කර ඇත. තාපන මූලාවයවයන් 40 Ω පුතිරෝධයක් සමග රූපයේ දැක්වෙන පරිදි සකස් කර පැඩය අභාන්තර පුතිරෝධය නොගිණිය හැකි 24 V d.c. සැපයුමකට සම්බන්ධ කොට ඇත. තාපන මූලාවයවයන් සාජුකෝණාසු මගින් නිරූපණය කොට ඇත. අවශා විකිත්සක තාපය ලබා දීම සඳහා තාපන පැඩය අවම වශයෙන් 7·0 W නිපදවිය යුතු ය.

- (i) පරිපථයේ AF ශාඛාවේ සහ BE ශාඛාවේ පුතිරෝධය ගණනය කරන්න.
- (ii) BE ශාඛාව හරහා ධාරාව ගණනය කරන්න.
- (iii) BE ශාඛාවේ සහ සම්පූර්ණ පරිපථයේ ක්ෂමතා උත්සර්ජනය ගණනය කරන්න. තාපන පෑඩය අවශා ක්ෂමතාව නිපදවන්නේ ද?
- (iv) සියලු තාපන මූලාවයවයන්වල ඝනකම හරි අඩකින් අඩු කළහොත් පරිපථයේ සම්පූර්ණ ක්ෂමතා උත්සර්ජනය ගණනය කරන්න.
- (v) දිග l, පළල w ට සමාන වුවහොත් (1) රූපයේ පෙන්වා ඇති තාපන මූලාවයවයේ පුතිරෝධය, මූලාවයවයේ පෘෂ්ඨික වර්ගඵලයෙන් (lw) ස්වායත්ත වන බව පෙන්වන්න.
- (vi) ඝනකම 5 μm වන ඉහත තාපන මූලාවයවයේ ඉහළ පෘෂ්ඨයේ ඒකක සමවතුරසුයකට පුතිරෝධය ගණනය කරන්න.
- (c) එක මත එක තැන්පත් කර තුනී ස්තර දෙකකින් සාදා ඇති ප්‍රතිරෝධක මූලාවයවයන්ගෙන් තාපන පෑඩයක් සමන්විත වී ඇතැයි උපකල්පනය කරන්න.
 - 1 ස්තරය: උෂ්ණත්වය සමග පුතිරෝධකතාව වෙනස් නොවන දුවෳයකින් සාදා ඇත.
 - 2 ස්තරය: ආරම්භයේදී 1 ස්තරයේ පුතිරෝධකතාවට සමාන වන නමුත් උෂ්ණත්වය වැඩි වන විට පුතිරෝධකතාව වැඩි වන දුවෳයකින් සාදා ඇත.
 - තාපන පෑඩය නියත වෝල්ටීයතා පුභවයකින් කිුිිියාත්මක වේ. කාලය සමග විකරණය කරන ලද තාපන පෑඩයේ ක්ෂමතා උත්සර්ජනයට කුමක් සිදු වේ දැයි හේතු දක්වමින් පැහැදිලි කරන්න.
- (d) පරිපථවලට ජවය සැපයීමට භාවිත කරන d.c. සැපයුමක් සුදුසු අවකර පරිණාමකයක් භාවිතයෙන් ගොඩනගා ගත හැකිය. මෙහිදී, 240 V (r.m.s.) a.c. පුදාන චෝල්ටීයතාවක් 12 V (r.m.s.) සහ 48 V (r.m.s.) අතර වෙනස් කළ හැකි පුතිදාන a.c. චෝල්ටීයතාවකට පරිවර්තනය කිරීම සඳහා පරිණාමකය භාවිත වේ. පරිණාමකයේ පුාථමික දඟරයේ පොටවල් 800ක් ඇත. පුතිදාන අදියරේදී, පරිණාමකයේ පුතිදානය d.c. චෝල්ටීයතාවක් බවට පරිවර්තනය කරනු ලබයි.
 - (i) පරිණාමකයේ ද්විතීයිකයේ වෝල්ටීයතාව ($V_{
 m S}$)ට පුාථමිකයේ චෝල්ටීයතාව ($V_{
 m p}$) දරන අනුපාතය පුාථමික දඟරයේ වට සංඛ $_{
 m S}$ ව සංඛ $_{
 m S}$ ව ලයා දක්වන්න.
 - (ii) ද්විතීයික දඟරයේ r.m.s. චෝල්ටීයතාව 12 V සහ 48 V අතර විචලනය කළ හැකි නම්, ද්විතීයික දඟරයට අවශා පොටවල් ගණනේ පරාසය ගණනය කරන්න.
 - (iii) පුතිදාන d.c. වෝල්ටීයතාව, පරිණාමක ද්විතීයිකයේ r.m.s. පුතිදාන චෝල්ටීයතාව මෙන් 80% ක් වේ. පූර්ණ සාජුකරණය කරන ලද අපේක්ෂිත d.c. පුතිදාන චෝල්ටීයතාව 24 V නම්, පරිණාමකයේ පුතිදාන r.m.s. චෝල්ටීයතාව ගණනය කරන්න.
 - (iv) පරිණාමකය, 24 V d.c. දී 120 W පරිභෝජනය කරන භාරයකට ජවය සපයයි. ජූල් තාපනය නිසා ද්විතීයිකයේ ක්ෂමතා හානිය භාරය පරිභෝජනය කරන ක්ෂමතාවය මෙන් 10% ක් නම් පරිණාමකයේ පුතිදාන r.m.s. ධාරාව ගණනය කරන්න.

(B) කොටස

(a) ස්වීච්චි ලෙස කියා කරන වුාන්සිස්ටර වලින් සාදා ඇති (1) රූපයේ දැක්වෙන AND ද්වාර පරිපථය සලකා බලන්න. පරිපථය T_1,T_2 සහ T_3 npn වුාන්සිස්ටර තුනකින් සමන්විත වේ. A සහ B පුදාන, T_1 සහ T_2 වුාන්සිස්ටරවල කියාකාරීත්වය පාලනය කරන අතර T_3 වුාන්සිස්ටරය අවසාන X පුතිදානය පාලනය කරයි. පරිපථය $V_{\rm CC} = +5\,{\rm V}$ ජව සැපයුමකින් කියාත්මක වේ. සියලුම වුාන්සිස්ටර සඳහා $V_{\rm BE} = 0.7\,{\rm V},\,\beta = 100$, සහ සන්තෘප්ත අවස්ථාවේ $V_{\rm CE} = 0.2\,{\rm V}$ ලෙස උපකල්පනය කරන්න. T_1 සහ T_2 සඳහා අවශා සංගුාහක ධාරා 4 mA වන අතර T_3 සඳහා එය $4.8\,{\rm mA}$ වේ.


- (i) A සහ B පුදාන දෙකම $5\ {
 m V}$ වන අවස්ථාව සලකා බලන්න.
 - ${
 m (I)}\ T_2$ හි පාදම ධාරාව ගණනය කරන්න. එනයින් $\ T_2$ සන්තෘප්ත අවස්ථාවේ ඇති බව පෙන්වන්න.
 - $({
 m II})$ $T_{
 m I}$ හි පාදම ධාරාව ගණනය කරන්න. එනයින් $T_{
 m I}$ සන්තෘප්ත අවස්ථාවේ ඇති බව පෙන්වන්න.
- (ii) $A = 5 \, {
 m V}$ සහ $B = 0 \, {
 m V}$ හෝ $A = 0 \, {
 m V}$ සහ $B = 5 \, {
 m V}$ යන අවස්ථාව සලකා බලන්න. සංගුාහකයේ සිට විමෝචකය දක්වා ධාරා සන්නයනය සලකා බලමින් T_1 සහ T_2 එක එකෙහි කිුියාකාරී තත්ත්වය (සංවෘත හෝ විවෘත ; ON හෝ OFF) සඳහන් කරන්න. ගණනය කිරීම් අවශා නොවේ.
- (iii) T_1 හෝ T_2 හෝ කපා හැරි (OFF) අවස්ථාවේ කිුයාත්මක වන විට T_3 හි පාදම ධාරාව ගණනය කරන්න. එනයින් T_3 සන්තෘප්ත අවස්ථාවේ ඇති බව පෙන්වන්න.
- (iv) පහත සඳහන් පුදාන අවස්ථා සඳහා පුතිදාන චොල්ටීයතා V_{χ} හි අගයන් මොනවාද? එක් එක් අවස්ථාව සඳහා T_3 හි මෙහෙයුම් ආකාරය (සංවෘත හෝ විවෘත; ON හෝ OFF) සඳහන් කරන්න.

1 අවස්ථාව : $A=5\,\mathrm{V}$ සහ $B=5\,\mathrm{V}$

2 අවස්ථාව : $A=5\,\mathrm{V}$ සහ $B=0\,\mathrm{V}$

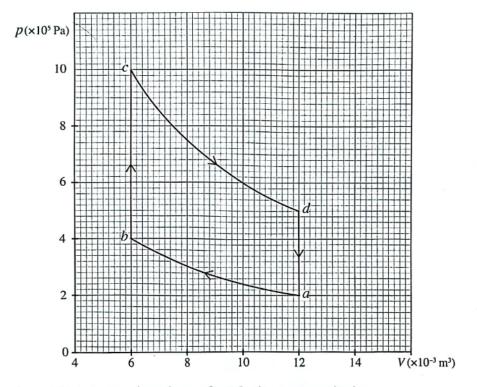
3 අවස්ථාව : $A=0\,\mathrm{V}$ සහ $B=0\,\mathrm{V}$

(b) රූපය (2) හි දැක්වෙන A_1 සහ B_1 ද්වීමය සංඛ $\mathfrak m$ දෙකක් සංසන්දනය කරන තාර්කික සංසන්දකයක කට්ටි රූප සටහන (block diagram) සලකා බලන්න. F_1 පුතිදානය 1 බවට පත්වන්නේ A_1 සහ B_1 සමාන නම් පමණි.

- (i) සංසන්දකයේ සතානතා වගුව ලියා දක්වන්න.
- (ii) ඉහත සතාතා වගුව භාවිතයෙන් සංසන්දකයේ තාර්කික පුකාශනය ලියා දක්වන්න.
- ත එය භාවිත කර
- (iii) A_1 සහ B_1 පුදාන සහිත XOR ද්වාරයක සතාතා වගුව සහ තාර්කික පුකාශනය ලියා දක්වන්න. එය භාවිත කරමින් සංසන්දකය සඳහා තාර්කික පුකාශනයක් ලියා දක්වන්න.
- (iv) XOR ද්වාරයක් සහ NOT ද්වාරයක් භාවිත කර සංසන්දකයේ තාර්කික පරිපථය ඇඳ දක්වන්න.
- (v) XOR ද්වාර පමණක් භාවිත කර සංසන්දකයේ තාර්කික පරිපථය ඇඳ දක්වන්න. ඉඟිය: XOR ද්වාරයක එක් පුදානයක් අවශා පරිදි තාර්කික 1 හෝ 0 ට ස්ථීරව සම්බන්ධ කරන්න.
- (vi) ඉහත (2) රූපයේ දැක්වෙන කට්ටි රූප සටහන සහ එක් අමතර පුදාන 3ක් සහිත තාර්කික ද්වාරයක් භාවිත කරමින්, A_1 සහ B_1 , A_2 සහ B_2 , A_3 සහ B_3 සංසන්දනය කරන 3-බිටු (3-bit) සංසන්දකයක් සඳහා සංයුක්ත රූප සටහන අඳින්න.
- (c) P සහ Q වර්ග දෙකක තාර්කික ද්වාර සලකා බලන්න. ඒ සඳහා පුදාන සහ පුතිදානවල තාර්කික චෝල්ටීයතා මට්ටම් වගුවේ දක්වා ඇත.

තාර්කික	පුදානය		පුතිදානය		
ද්වාරය	තාර්කික 1	තාර්කික 0	තාර්කික 1	තාර්කික 0	
P	2 V සිට 5 V	0 V &∂ 0·8 V	2·7 V සිට 5 V	0 V සිට 0·4 V	
Q	3·5 V සිට 5 V	0 V සිට 1·5 V	4·95 V සිට 5 V	0 V සිට 0·05 V	

තාර්කික පරිපථයක් තැනීම සඳහා P සහ Q වර්ගවලින් තාර්කික ද්වාර භාවිත කරනු ලබයි.

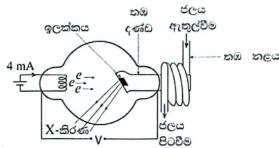

- (i) එක් පරිපථයක, P හි පුතිදානය Q හි පුදානයට සම්බන්ධ වේ. පරිපථය නියමිත පරිදි කිුිිියාත්මක වනු ඇතැයි ඔබ අපේක්ෂා කරන්නේ ද? කෙටියෙන් පැහැදිලි කරන්න.
- (ii) වෙනත් පරිපථයක, Q හි පුතිදානය P හි පුදානයට සම්බන්ධ වේ. පරිපථය නියමිත පරිදි කියාත්මක වනු ඇතැයි ඔබ අපේක්ෂා කරන්නේ ද? කෙටියෙන් පැහැදිලි කරන්න.

[පහදොස්වැනි පිටුව බලන්න.

${f 10.}$ (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (a) සංවෘත පද්ධතියක් සඳහා තාප ගති විදාහවේ පළමු නියමය $\Delta Q = \Delta U + \Delta W$ ලෙස ලිවිය හැක. එක් එක් පදය පැහැදිලිව හඳුන්වන්න.
- (b) සමෝෂ්ණ කියාවලියක්, නියන පීඩන කියාවලියක් සහ ස්ථිරතාපී කියාවලියක් යන්නෙන් ඔබ අදහස් කරන්නේ කුමක් ද?
- (c) එකම ලක්ෂායෙන් පටන් ගෙන එය A ලෙස සලකුණු කර ඉහත කියාවලි තුනම එකම p-V රූප සටහනක ඇඳ පෙන්වන්න. සමෝෂ්ණ, නියත පීඩන සහ ස්ථීරතාපී කියාවලීන් පිළිවෙළින් AX, AY සහ AZ ලෙස සලකුණු කරන්න.
 - (i) බොයිල් නියමය පිළිපදින්නේ කුමන කිුයාවලියේ ද?
 - (ii) චාල්ස් නියමය පිළිපදින්නේ කුමන කිුයාවලියේ ද?
 - (iii) නියත පීඩන කියාවලියක පීඩනය P_1 හි දී පරිමාව V_1 සිට V_2 දක්වා වැඩි කළහොත් ΔW සඳහා පුකාශනයක් P_1 , V_1 සහ V_2 ඇසුරෙන් ලියා දක්වන්න.
- (d) රොබර්ට ස්ටර්ලිං විසින් 1816දී සොයා ගන්නා ලද ස්ටර්ලිං (Stirling) එන්ජිම, තාපය යාන්තික ශක්තිය බවට පරිවර්තනය කරයි. එය සංවෘත පරිපූර්ණ වායු පද්ධතියක් වෙනස් උෂ්ණත්වයන්ට නිරාවරණය කිරීමෙන් ලැබෙන චකි්ය කිුිියාවලියක් මගින් කිුිියාත්මක වේ. එක්තරා ස්ටර්ලිං චකුයක්, දී ඇති p-V රූප සටහනෙහි abcda චකි්ය කිුිියාවලියෙන් පෙන්වා ඇත.



- (i) හේතු දක්වමින් ab,bc,cd සහ da යන කියාවලි වර්ග හතර හඳුන්වන්න.
- (ii) a ලක්ෂායේ උෂ්ණත්වය $273\,^{\circ}\mathrm{C}$ නම් b,c සහ d ලක්ෂායන්හි උෂ්ණත්ව සොයන්න.
- (iii) bc වැනි සිරස් රේඛාවකින් නිරූපණය වන කිුයාවලියක් සඳහා අභාන්තර ශක්තියේ වෙනස $\Delta U_{bc} = \frac{3}{2} \left(P_c P_b \right) V_b$ සමීකරණය මගින් ලබා දේ. මෙහි P_b සහ P_c යනු පිළිවෙළින් b සහ c යන ලක්ෂාවල පීඩනය වේ. b හිදී පරිමාව V_b වේ. bc සහ da කිුයාවලීන්හිදී පද්ධතියට සැපයෙන තාප ශක්තිය ගණනය කරන්න.
- (iv) ගණනය කිරීම සඳහා පමණක් ab සහ cd සරල රේඛා යැයි උපකල්පනය කර, ab සහ cd කිුයාවලීන් හිදී සිදු කරන ලද කාර්යය සොයන්න.
- (v) ඉහත (d)(iv) හි ඇති උපකල්පනයම භාවිත කරමින් එක් වකුයක් තුළ සිදු කරන ලද සඵල කාර්යය ගණනය කරන්න.
- (vi) ඉහත $(d)(\mathrm{iv})$ හි ඇති උපකල්පනයම භාවිත කරමින් abcda චකි්ය කියාවලියේ කාර්යක්ෂමතාව ගණනය කරන්න.

[දහසයවැනි පිටුව බලන්න.

(B) කොටස

(a) රූපයේ දැක්වෙන්නේ X- කිරණ නළයක කුමානුරූප රූප සටහනකි. එය $V=30~{
m kV}$ දී කියාත්මක වන අතර සූතිකා ධාරාව $4~{
m mA}$ වේ.

- (i) තත්පරයකට ඉලක්කයට වදින ඉලෙක්ටුෝන සංඛnාව (n) නිර්ණය කරන්න. ඉලෙක්ටුෝන ආරෝපණය = $1.6 \times 10^{-19} {
 m C}$
- (ii) තත්පරයකට ඉලක්කයට වදින ඉලෙක්ටුෝනවල සම්පූර්ණ චාලක ශක්තිය K ගණනය කරන්න. සූතිකාවෙන් වීමෝචනය වන ඉලෙක්ටුෝනවල චාලක ශක්තිය නොසැලකිය හැකි යැයි උපකල්පනය කරන්න.
- (iii) ඉහත (a)(ii) හි ගණනය කරන ලද ශක්තියෙන් 95% ක් ඉලක්ක ලෝහය තුළ තාපය බවට පරිවර්තනය වේ. ගලා යන ජලයට සම්බන්ධ කර ඇති සර්පිලාකාර තඹ බටයකින් ආවරණය වූ තඹ දණ්ඩක් භාවිතයෙන් මෙම ජනනය වන තාපය ඉවතට ගනු ලැබේ. ජලයේ උෂ්ණත්ව වැඩිවීම 57 $^{\circ}$ C නම් ජල පුවාහයේ ස්කන්ධ ශීසුතාව m (kg min $^{-1}$ වලින්) ගණනය කරන්න. ජලයේ විශිෂ්ට තාප ධාරිතාව $4000~{
 m J~kg}^{-1}$ ලෙස ගන්න.
- (b) (i) විමෝචනය වන X-කිරණවල අවම තරංග ආයාමය (λ_{\min})ගණනය කරන්න. ප්ලාන්ක් නියතය $h=6.6\times 10^{-34}~{
 m J~s}$ සහ ආලෝකයේ වේගය $c=3.0\times 10^8~{
 m m~s^{-1}}$ වේ.
 - (ii) ඉහත ගණනය කළ λ_{\min} අගය ඉලක්ක දුවාය මත රඳා පවතී ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
 - (iii) සූතිකා ධාරාව වැඩිවුවහොත් ඉහත ගණනය කළ λ_{\min} අගය වෙනස් වේ ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
 - (iv) ඉලක්ක ලෝහ සාමානෳයෙන් ටංස්ටන් හෝ මොලිබඩිනම් වලින් සාදා ඇත. මෙයට හේතු මොනවා ද?
- (c) (i) තීවුතාව $5 \times 10^3~{
 m W~m^{-2}}$ වූ X-කිරණ කදම්බයක් සඵල වර්ගඵලය $0\cdot 01~{
 m m^2}$ වන මිනිස් ඉන්දියයක් මතට පතනය වේ. එක් තත්පරයකදී ඉන්දියයට ලබා දෙන සම්පූර්ණ ශක්තිය ගණනය කරන්න.
 - (ii) ඉන්දියයේ ස්කන්ධය $0.5~{
 m kg}$ නම් අවශෝෂක මාතුාව ${
 m Gray}$ වලින් ගණනය කරන්න. $(1{
 m Gy}\!=\!1{
 m Jkg}^{-1})$
 - (iii) X-කිරණ ඵලදායි ලෙස අවහිර කිරීමට හෝ නිවාරණය (shield) කිරීමට භාවිත කළ හැකි වඩාත්ම සුදුසු දුවෳයක් සඳහන් කරන්න.
 - (iv) (I) විකිරණ පරිසරයක වැඩ කරන පුද්ගලයින් සඳහා විකිරණවල සඵල අවශෝෂක මාතුාව (Sv වලින්) මැනීම වැදගත් වන්නේ ඇයි?
 - (II) අවශෝෂක මාතුාව එක සමාන වන විට පවා සඵල අවශෝෂක මාතුාව විවිධ විකිරණ වර්ග අතර වෙනස් වීමට හේතුව කුමක් විය හැකි ද?
- (d) අධි ශක්ති ඉලෙක්ටුෝනයකින් පරමාණුවකට පහර දෙන විට අභාන්තර ඉලෙක්ටුෝනයක් මුදා හරිමින් අභාන්තර ශක්ති මට්ටමේ පුරප්පාඩුවක් ඇති කළ හැක. ශක්ති මට්ටම් අතර වෙනසට සමාන ශක්තියක් සහිත පෝටෝනයක් වීමෝචනය කරමින් එම පුරප්පාඩුවට පිටතින් වූ ඉලෙක්ටුෝනයක් සංකුමණය විය හැක. මෙම කි්යාවලියට නිශ්චිත සංඛානයක් සහිත X-කිරණ ජනනය කළ හැක. ඉහළ සහ පහළ මට්ටම්වල ශක්තීන් පිළිවෙළින් E_1 සහ E_2 නම්, වීමෝචනය වන X-කිරණ පෝටෝනයේ සංඛානය f, $hf = E_1 E_2$ මගින් ලබා දේ. මෙහි h යනු ප්ලාන්ක් නියතයයි.
 - (i) ඇලුමිනියම් සඳහා E_1 = $-74~{\rm eV}$ සහ E_2 = $-1624~{\rm eV}$ නම්, ඉහළ ශක්ති මට්ටමේ සිට පහළ ශක්ති මට්ටම දක්වා ඉලෙක්ටොන සංකුමණයක් සිදුවන විට විමෝචනය වන Λ -කරණ පොටොනයේ ශක්තය (${\rm eV}$ වලන) ගණනය කරනන.
 - (ii) නිපදවන X-කිරණ පෝටෝනයේ අනුරූප තරංග ආයාමය නිර්ණය කරන්න. $hc=1240~{
 m eV}$ nm ලෙස ගන්න.
- (e) ශක්තිය, තරංග ආයාමය සහ විනිවිද යන බලය අනුව, දෘඪ X-කිරණ සහ මෘදු X-කිරණ එකිනෙකින් වෙනස් වන්නේ කෙසේ ද?

* * *

කෙට් සටහන්|පසුගිය පුශ්න පතු|වැඩ පොත් සඟරා| 0/L පුශ්න පතු|A/L පුශ්න පතු අනුමාන පුශ්න පතු අතිරේක කියවීම් පොත් | School Book ගුරු අතපොත්

පෙර පාසලේ සිට උසස් පෙළ දක්වා සියළුම පුශ්න පතු, කෙටි සටහන්, වැඩ පොත්, අතිරේක කියවීම් පොත්, සඟරා रिर्णा राष्ट्रिया प्रतिकार विराधित विर

www.LOL.lk වෙබ් අඩවිය වෙත යන්න