8 ශේණය ගණිතය 29 ඒකකය

භාවිතාව

<u>කැකුග</u> - හසිත හෙට්ටපාරච්ච (Dip. In Sci. N.I.E./O.U.S.L.)

පසුගිය සතියේ online පංතිය සඳහා සහභාගී වීමට නොහැකි වුනු සිසුන් සඳහා සහභාගී වූ සිසුන්ගේ උපකරයෙන් ලබා දුන් උපකාරක සටහනකි. පෙළ පොත අභාගස සම්පූර්ණයෙන් ආවරණය කර ඇති අතර පුශ්න පතුයක්ද අන්තර්ගතය.

පිළිතුරු ගුණුතුය

සම්භාවිතාව

Online & physical Class Details

<u>29.1 සිදුවීමක විය නැකියාව</u>

Hasitha Hettiarachchi 071 - 9020298

- ඇතැම් සිදුවීම් ස්ථිරවම සිදු වේ. එවැනි නියත වශයෙන් ම සිදු වන සිදුවීමක විය හැකියාව 1 ලෙස ගනු ලැබේ.
 උදා -
 - 1. ගලක් ඔසවා අතහැරිය විට බිමට වැටීම.
 - 2. පොතක ඊළඟට පෙරළෙන පිටු අංකය පූර්ණ සංඛ්යාවක් වීම.
 - 3. හෙට දින ඉර උදා වීම.
- ඇතැම් සිදුවීම් ස්ථිරවම සිදු නොවේ. එවැනි නියත වශයෙන් ම සිදු නොවන සිදුවීමක විය හැකියාව 0 ලෙස ගනු ලැබේ.
 උදා -
 - 1. ඉර ඔස්නාහිරින් උදා වීම.
 - 2. අමාවක දින පූර්ණ චන්දුයා දර්ශනය වීම.
 - 3. කළු ගලක් ජලයේ පාවීම.
- ඇතැම් සිදුවීම් සිදුවේ ද, නොවේ ද යන්න ස්ථීරව ම කිව නොහැකි ය. ඒවා අහඹු සිදුවීම් නම් වේ. එවැනි අහඹු සිදුවීමක විය හැකියාව 0ත් 1ත් අතර අගයක් ලෙස ගනු ලැබේ. උදා -
- කාසියක් උඩ දැමීමේ දී හිස පැත්ත උඩට ලැබීම.
- 2. ඊළඟ පන්දුවේ දී කිුකට් කීඩකයා දැවී යාම.
- 3. අද සවස වැස්සක් ඇති වීම.
- 4. දුම්රිය නියමිත වේලාවට පිටත් වීම.
- සිදුවීමේ හැකියාව සිදු නොවීමේ හැකියාවට වඩා වැඩි නම්, එම සිදුවීමේ විය හැකියාව ¹/₂ ත් 1ත් අතර අගයක් වේ.
 උදා -
 - එක් එක් පැත්තේ 1 සිට 6 තෙක් ඉලක්කම් ලකුණු කළ සාධාරණ දාදු කැටයක් උඩ දැමූ විට 2ට වඩා වැඩි ඉලක්කමක් උඩු අතට වැටීම.

- සිදුවීමේ හැකියාව සිදු නොවීමේ හැකියාවට වඩා අඩු නම්, එම සිදුවීමේ විය හැකියාව $\frac{1}{2}$ ත් අතර අගයක් වේ.
 - එක් එක් පැත්තේ 1 සිට 6 තෙක් ඉලක්කම් ලකුණු කළ සාධාරණ දාදු කැටයක් උඩ දැමූ විට 4ට වඩා වැඩි ඉලක්කමක් උඩු අතට වැටීම.
- යම් සිදුවීමක් සිදුවීම සහ එම සිදුවීම සිදු නොවීමේ විය හැකියාව සමාන නම්, සිද්ධිය සිදුවීමේ විය හැකියාව ¹/₂ ද සිද්ධිය සිදු නොවීමේ විය හැකියාව ¹/₂ ද වේ. උදා -
 - එක් එක් පැත්තේ 1 සිට 6 තෙක් ඉලක්කම් ලකුණු කළ සාධාරණ දාදු කැටයක් උඩ දැමූ විට 3ට වඩා වැඩි ඉලක්කමක් උඩු අතට වැටීම.

<u>29.1 අභනාසය</u>

- (1) ස්ථීරවම සිදුවන සිදුවීම් 3ක් ලියන්න.
- (2) ස්ථීරවම සිදුනොවන සිදුවීම් 3ක් ලියන්න.
- (3) අහඹු සිදුවීම් 3ක් ලියන්න.
- (4) 1, 2, 3, 4 ලෙස පැතිවල ලකුණු කර ඇති සාධාරණ සවිධි චතුස්තල කැටයක් වරක් උඩ දමා යටට හැරී වැටෙන පැත්තේ ඇති අංකය නිරීක්ෂණය කිරීමේ පරීක්ෂණයේ පුතිඵල ලියා දක්වන්න.
 - 1. ස්ථිරවම සිදුවන සිදුවීම් 3ක් ලියන්න.
 - ✓ ගලක් ජලයට දැමු විට ගිලීම.
 - ✓ ගසකින් වැටුණු ගෙඩියක් බිමට වැටීම.
 - √ හිරු නැගෙනහිරෙන් උදා වීම.
 - 2. ස්ථිරවම සිදුනොවන සිදුවීම් 3ක් ලියන්න.
 - √ ගලක් ජලයට දැමු විට පාවීම.
 - ✓ අද සඳුදා නම් හෙට බදාදා වීම.
 - √ හිරු බස්නාහිරෙන් උදා වීම.

- 3. අහඹු සිදුවීම් 3ක් ලියන්න.
 - මිනිසකු මිය යන දවස සඳුදාවක් වීම.
 - √ කාසියක් උඩ දැමීමේ දී නිස ලැබීම.
 - √ අද සවස වැසි ඇතිවීම.
- 4. 1, 2, 3, 4 ලෙස පැතිවල ලකුණු කර ඇති සාධාරණ සවිධි චතුස්තල කැටයක් වරක් උඩ දමා යටට හැරි වැටෙන පැත්තේ ඇති අංකය නිරීක්ෂණය කිරීමේ පරීක්ෂණයේ පුතිඵල ලියා දක්වන්න.

{1, 2, 3, 4}

(5) පහත දැක්වෙන වගුව සම්පූර්ණ කරන්න.

අනු අංකය	සිදුවීම	විය හැකියාවේ අගය හෝ එය පිහිටන පුාන්තරය $(0, 1, \frac{1}{2}, 0 ext{ or } \frac{1}{2} ext{ of } අතර,$ $\frac{1}{2} ext{ of } 1 ext{ of } අතර)$
1	ගසකින් ගිලිහුණු ගෙඩියක් පොළොවට වැටීම	1
2	නැගෙනහිරින් ඉර පෑයීම	•••••
3	අද සඳුදා නම් හෙට බදාදා වීම	•••••
4	තරමින් සමාන රතු පබළු 10ක් හා නිල් පබළු 2ක් ඇති බෑගයකින් ගත් පබළුවක් රතු පාට පබළුවක් වීම	••••••
5	පැතිවල 1, 1, 1, 2, 2, 2 ආකාරයට ලකුණු කර ඇති සාධාරණ දාදු කැටයක් උඩ දැමීමේ දී වැටෙන පැත්තේ 1 ලැබීම	••••••
6	තරගයක දී, කාසියේ වාසිය ලැබීම	•••••
7	1 - 6 තෙක් අංක ලියූ සාධාරණ දාදු කැටයක් ඉහළ දැමූ විට 2ට වැඩි සංඛාහවක් ලැබීම	••••••
8	ඔත්තේ සංඛන දෙකක ඓක¤ය ඉරව්ට සංඛනාවක් වීම	•••••
9	ඔබේ පන්තියේ තෝරා ගත් ළමයකුගේ උපන් දිනය ජනවාරි 2 වීම	••••••
10	මිනිසකු මිය යන දවස සඳුදාවක් වීම	•••••

- 5. පහත දැක්වෙන වගුව සම්ජූර්ණ කරන්න.
 - (i) ගසකින් ගිලිනුණු ගෙඩියක් පොළොවට වැටීම
 - (ii) නැගෙනහිරින් ඉර පෑයීම

✓ 1 ·

- (iii)අද සඳුදා නම් තෙට බදාදා වීම
- (iv) තරමින් සමාන රතු පඩළු 10ක් හා නිල් පඩළු 2ක් ඇති බෑගයකින් ගත් පඩළුවක් රතු පාට පඩළුවක් වීම

$$\checkmark \frac{1}{2}$$
 ත් 1ත් අතර

(v) පැතිවල 1, 1, 1, 2, 2, 2 ආකාරයට ලකුණු කර ඇති සාධාරණ දාදු කැටයක් උඩ දැමීමේ දී වැටෙන පැත්තේ 1 ලැබීම

$$\sqrt{\frac{1}{2}}$$

(vi) තරගයක දී, කාසියේ වාසිය ලැබීම

$$\sqrt{\frac{1}{2}}$$

(vii) 1 - 6 තෙක් අංක ලියූ සාධෘරණ දාදු කැටයක් ඉහළ දැමූ විට 2ට වැඩි සංඛ්යාවක් ලැබීම

$$\sqrt{\frac{1}{2}}$$
 ත් 1ත් අතුර

- (viii) ඔත්තේ සංඛන ලදකක ඓකෘය ඉරට්ට සංඛනවක් වීම
 - (ix) ඔබේ පන්තියේ තෝරා ගත් ළමයකුගේ උපන් දිනය ජනවාරි 2 වීම

$$\checkmark$$
 0 ත් $\frac{1}{2}$ ත් අතර

(x) මිනිසකු මිය යන දවස සඳුදාුවක් වීම

$$\checkmark$$
 0 ත් $\frac{1}{2}$ ත් අතර

29.2 පරික්ෂණාත්මක සම්භාවිතාව

- ලැබිය හැකි ප්තිඵල දන්නා නමුත් පරීක්ෂණය කිරීමට ප්‍ථම ප්‍රතිඵලය නිශ්චිතවම කිවනොහැකි පරීක්ෂණයකට සසම්භාවී පරීක්ෂණයක් යැයි කියනු ලැබේ. ඒවා අහඹු පරීක්ෂණ ලෙස ද හැඳින්වේ.
- සසම්භාවී පරීක්ෂණයක් එකම තත්ත්ව යටතේ පුනපුනා කිහිප වාරයක් සිදු කළ විට එහි යම් පතිඵලයක් ලැබීමේ සාර්ථක භාගය පහත පරිදි සෙවිය හැකි ය.

A පුතිඵලයේ සාර්ථක භාගය $=rac{A}{2}$ පුතිඵලය ලැබුණු වාර ගණන පරීක්ෂණය කළ මුළු වාර ගණන

✓ උදා : රුපියල් දෙකේ කාසියක් 20 වාරයක් උඩ දැමූ විට වාර 11ක් හිස (Head/ Front) ද, වාර 9ක් අගය (Tail/ Back) ද වැටුණි නම්,

තිස වැටීමේ සාර්ථක භාගය
$$=rac{11}{20}$$

අගය වැටීමේ සාර්ථක භාගය
$$=rac{9}{20}$$

- පරීක්ෂණය කරන වාර ගණන (n) වැඩි කරන විට යම් ප්‍රතිඵලයක සාර්ථක භාගයේ අගය යම් නියත අගයක් කරා එළඹෙන්නේ නම්, එම අගය ඉහත පරීක්ෂණය එක් වරක් සිදු කිරීමේ දී එම ප්‍රතිඵලය ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව ලෙස හැඳින්වේ.
- √ උදා : රුපියල් දෙකේ කාසියක් උඩ දැමූ විට,

හිස වැටීමේ පරීක්ෂණාත්මක සම්භාවිතාව
$$= \frac{1}{2}$$

අගය වැටීමේ පරීක්ෂණාාත්මක සම්භාවිතාව
$$= \frac{1}{2}$$

✓ උදා : ඝනකාකාර දාදු කැටයක් දැමු විට,

අංක
$$1$$
 වැටීමේ පරීක්ෂණාත්මක සම්භාවිතාව $=\frac{1}{6}$

අංක
$$5$$
 වැටීමේ පරීක්ෂණාාත්මක සම්භාවිතාව $=\frac{1}{6}$

- ✓ උදා :ස්ථ්රව ම සිදු වන සිද්ධියක, පරීක්ෂණාත්මක සම්භාවිතාව = 1
- ✓ උදා :ස්ථිරව ම සිදු නොවන සිද්ධියක,
 පරීක්ෂණාත්මක සම්භාවිතාව = 0
- ✓ ඉහත විශේෂ අවස්ථා දෙක හැරුණු විට සසම්භාවී පරීක්ෂණයකින් ලැබිය හැකි පතිඵලයක් ලැබීමේ සම්භාවිතාවෙහි අගය 0 හා 1 අතර පවතී.
- සසම්භාවි පරීක්ෂණයක කිසියම් පතිඵලයක සම්භාවිතාව නොදන්නා විට, පරීක්ෂණය සිදු කරන වාර ගණන සුදුසු ලෙස වැඩි කර ලබා ගන්නා සාර්ථක භාගයේ අගය එම පතිඵලයේ සම්භාවිතාව නිමානය කිරීමට සුදුසු අගයක් වේ.

29.2 අභනාසය

(1) බෑගයක එක සමාන වූ පබළු 3ක් ඇත. ඒවා රතු, නිල් හා කහ ලෙස වර්ණ ගන්වා ඇත. පළමුව පබළුවක් ගෙන වර්ණය සටහන් කර, නැවත මල්ලට දමා දෙවැනි වර පබළුවක් ගනු ලැබේ. මෙසේ පරීක්ෂණය 50 වතාවක් කිරීමෙන් පසු ලැබුණු පුතිඵල සටහන මෙසේ වේ.

පබළුව	ලැබුණු වාර ගණන	
රතු	18	
රතු නිල්	17	
කහ	15	

- (i) රතු පබළුව ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
- (ii) නිල් පබළුළු ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
- (iii) කහ පබළුව ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
- (2) 1 සිට 4 තෙක් ඉලක්කම් ලියූ සමබර චතුස්තල දාදු කැටයක් වාර 40ක් උඩ දැමීමේ දී ලැබුණු පුතිඵල මෙසේ ය.

ඉලක්කම	ලැබුණු වාර ගණන	
1	8	
2	11	
3	10	
4	11	

- (i) අංක 2 ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
- (ii) ඉරට්ට සංඛාාවක් ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
- (iii) පුථමක සංඛාාවක් ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
- (iv) අංක 1ට වඩා වැඩි සංඛාාවක් ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.

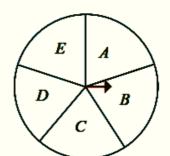
29.2 අභනාසය

- 1. බෑගයක එක සමාන වූ පබළු 3ක් ඇත. ඒවා රතු, නිල් හා කහ ලෙස වර්ණ ගන්වා ඇත. පළමුව පබළුවක් ගෙන වර්ණය සටහන් කර, නැවත මල්ලට දමා දෙවැනි වර පබළුවක් ගනු ලැබේ. මෙසේ පරීක්ෂණය 50 වතාවක් කිරීමෙන් පසු ලැබුණු පුතිඵල සටහන මෙසේ වේ.
 - රතු පබළුව රුැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
 - $\frac{18}{50}$
- නිල් පබළුළු ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න.
 - $\frac{17}{50}$

- iii. කහ පබළුව ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න. $\frac{15}{50}$
- 2. 1 සිට 4 තෙක් ඉලක්කම් ලියූ සමබර චතුස්තල දාළ කැටයක් වාර 40ක් උඩ දැමීමේ දී ලැබුණු පුතිඵල මෙසේ ය.සේ පරීක්ෂණය 50 වතාවක් කිරීමෙන් පසු ලැබුණු පුතිඵල සටහන මෙසේ වේ.
 - i. අංක 2 ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න. $\frac{11}{40}$
- ii. ඉරට්ට සංඛ**ත**වක් ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න. $\frac{22}{40}$
- iii. පුථමක සංබහාවක් ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න. 21 40
- iv. අංක 1ට වඩා වැඩි සංඛනවක් ලැබීමේ පරීක්ෂණාත්මක සම්භාවිතාව සොයන්න. $\frac{32}{40}$

29.3 සෛද්ධාන්තික සම්භාවිතාව

 යම් සසම්භාවී පරීක්ෂණයක සෑම ප්‍රතිඵලයක් ම ලැබීමට සමාන හැකියාව ඇති විට, එහි තෝරාගත් ප්‍රතිඵලයක සෙද්ධාන්තික සම්භාවිතාව පහත පරිදි සෙවිය හැකි යය.


29.3 අතනාසය

- (1) පැතිවල අංක 1 සිට 6 තෙක් ලකුණු කරන ලද සමබර දාදු කැටයක් උඩ දැමීමෙන් පසු පහත එක එකෙහි සම්භාවිතාව සොයන්න.
 - (i) ලැබුණ අංකය 5 වීම
 - (ii) ලැබුණ අංකය ඉරට්ට සංඛාහවක් වීම
 - (iii) ලැබුණ අංකය සමචතුරසු සංඛනාවක් වීම

- (2) බෑගයක සුදු පබළු 3ක් ද, කළු පබළු 2ක් ද, නිල් පබළු 1ක් ද ඇත. අහඹු ලෙස පබළුවක් ගත් විට පහත එක එකෙහි සම්භාවිතාව සොයන්න.
 - (i) සුදු පබළුවක් ලැබීම
 - (ii)කළු පබළුවක් ලැබීම
 - (iii) නිල් පබළුවක් ලැබීම
 - (iv) සුදු හෝ කළු පබළුවක් ලැබීම
 - (v) කළු පබළුවක් නොලැබීම
 - (vi) රතු පබළුවක් ලැබීම

- - (i) දර්ශකය D මත නැවතීම
 - (ii) දර්ශකය A හෝ D මත නැවතීම
 - (iii) දර්ශකය $B,\,C$ හෝ E මත තැවතීම

29.3 අභනාසය

- පැතිවල අංක 1 සිට 6 තෙක් ලකුණු කරන ලද සමබර දාදු කැටයක් උඩ දැමීමෙන් පසු පහත එක එකෙහි සම්භාවිතාව සොයන්න.
 - i. ලැබුණ අංකය ් වීම.

6

ii. ලැබුණ අංකය ඉරුර්ට සංඛපාවක් වීම.

 $\frac{3}{6} = \frac{1}{2}$

iii. ලැබුණ අංකය සමචත්රසු සංඛනවක් වීම.

 $\frac{2}{6} = \frac{1}{3}$

2. බෑගයක සුදු පබළු 3ක් ද, කළු පබළු 2ක් ද, නිල් පබළු 1ක් ද ඇත. අහඹු ලෙස පබළුවක් ගත් විට පහත එක එකෙහි සම්භාවිතාව සොයන්න.

v. කළු පඩළුවක් නොදැඩීම.

vi. රතු පබළුවක් ලැබීම.

 $\frac{1}{6} = \frac{1}{3}$

i. සුදු පබළුවක් ලැබීම

$$\frac{3}{6} = \frac{1}{2}$$

- ii. කළු පබළුවක් ලැබීම.
- iii. නිල් පබළුවක් ලැබීම.
- සුදු හෝ කළු පබළුවක් ලැබීම.
- 0 යි.

- 3. රූපයෙහි දැක්වෙන ආකාරයේ වෘත්තාකාර ආස්තරය සමාන කොටස් 5කට බෙදා එම කොටස් A, B, C, D හා E ලෙස නම් කර ඇත. එහි කේන්දයේ සවිකර ඇති දර්ශකය කරකවා නැවතීමට ඉඩනැරිය විට දර්ශකය නවතින ස්ථානය ලබාගත හැකි ය. මේ අනුව පහත එක එකෙහි සම්භාවිතාව සොයන්න.
 - i. දර්ශකය **D**∕මත නැවතීම.
- ii. දර්ශකය A නෝ D මත නැවතීම.
- iii. දර්ශකය B, 🖋 හෝ E මත නැවතීම.

Hasitha Hettiarachchi 071 - 9020298

නාලන්දා විදහලය - කොළඹ 10

චීකක පරික්ෂණය

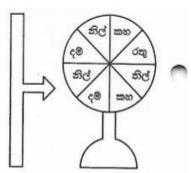
8 ශුේණිය

ගණිතය

සම්භාවිතාව

01. කාසියක් 20 වරක් උඩ දැමූ විට ලැබූ පුතිඵල පහත දැක්වේ.

පෙරඑණ පැත්ත	පෙරඑණු වාර ගණන	සාර්ථක භාගය
සිරස	13	
අගය	7	


- (i) එක් එක් පැත්ත පෙරළීමේ සාර්ථක භාග ලියමින් තුන්වෙනි තීරය සම්පූර්ණ කරන්න.
- (ii) සිරස ලැබීමේ සාර්ථක භාගය කුමක් ද?
- (iii) අගය ලැබීමේ සාර්ථක භාගය කුමක් ද?
- පසුගිය අ. පො. ස. (සා/පෙළ) විභාගයේ දී එක් එක් පන්තියේ සිසුන් සමත් අසමත් තොරතුරු පහත දැක්වේ.

පන්තිය	විභාගයට පෙනී සිටි මුළු ශිෂා සංඛාාව	ව්භාගය සමත් ශිෂා සංඛානව	විභාගය සමත් වීමේ සාර්ථක භාගය
11 A	40	38	ration is sent to
11 B	39	35	
11 C	45	40	
11 D	48	43	
11 E	46	42	

එක් එක් පන්තියේ විභාගය සමත් වීමේ සාර්ථක භාගය ගණනය කරන්න. පැති 6 කින් යුත් දාදු කැටයක 1, 1, 2, 2, 3, 3 ලෙස අංකනය කර ඇත. එම

(i) 2 ලැබීමේ සම්භාවිතාව සොයන්න.

- (ii) ති්කෝණ සංඛ්‍යාවක් ලැබීමේ සම්භාවිතාව සොයන්න.
- (iii) ඔත්තේ සංඛ‍‍යාවක් ලැබීමේ සම්භාවිතාව සොයන්න.
- 04. ලොතර්යියක් සඳහා සකසන ලද වාසනා චක්‍යක් රූපයේ දැක්වේ. චක්‍ය කරකැවීමෙන් පසු ඊතල සලකුණ අසල නවතින පාට,
 - (i) රතු වීමේ සම්භාවිතාව සොයන්න.
 - (ii) දම් වීමේ සම්භාවිතාව සොයන්න.
 - (iii) නිල් වීමේ සම්භාවිතාව සොයන්න.

- 05.
- (i) විදුලි බල්බ 50 ක් ඇති පෙට්ටියකින් අහඹු ලෙස ගත් බල්බයක් පත්තු තොවීමේ සම්භාවිතාව 1/10 ක් බව පවසයි. පෙට්ටිය පරීක්ෂා කළ විට තිබිය හැකි දැවී ගිය බල්බ සංඛ්‍යාව කිය ද?
- (ii) මේ හා සමාන පෙට්ටී 2 ක් පරීක්ෂා කළ විට තිබිය හැකි දැවී ගිය බල්බ සංඛ‍‍‍ාව කිය ද?

සැකසුම :- වසන්ත වඩුගේ මයා

නාලන්දා විදනාලය - කොළඹ 10

චීකක පරික්ෂණය

8 ශේුණිය

ගණිතය

සම්භාවිතාව

1.

(i)
$$\frac{13}{20}$$
, $\frac{7}{20}$

(ii)
$$\frac{13}{20}$$

(iii)
$$\frac{7}{20}$$

3.

Answer

(i)
$$\frac{2}{6} = \frac{1}{3}$$

(ii)
$$\frac{4}{6} = \frac{2}{3}$$

(iii)
$$\frac{4}{6} = \frac{2}{3}$$

(ලකුණු 20)

(ලකුණු 20)

2.

(i)
$$\frac{38}{40} = \frac{19}{20}$$

4.

(ii)
$$\frac{35}{39}$$

(i)
$$\frac{1}{8}$$

(iii)
$$\frac{40}{45} = \frac{8}{9}$$

(ii)
$$\frac{2}{8} = \frac{1}{4}$$

(iv)
$$\frac{43}{48}$$

(iii)
$$\frac{3}{8}$$

(v)
$$\frac{42}{46} = \frac{21}{23}$$

(ලකුණු 20)

(ලකුණු 20)

5.

$$(i)$$
 $\frac{1}{10} = \frac{5}{50}$ එම නිසා නොදැල්වෙන බල්බ ගණන 5යි.

$$(ii) \frac{1}{10} = \frac{10}{100}$$
 එම නිසා නොදැල්වෙන බල්බ ගණන 10යි.

(ලකුණු 20)

අප උපකාරක පංතියේදී ලබා දෙන මෙම නිබන්ධනය ද ඇතුලු සිංහල ගණිතය සහ විදසාව විෂය වලට අයත් මෙවැනි නිබන්ධන රාශියක් pdf ලෙස 3in1 Group එකෙන් ලබා ගත හැක.

සුවහසක් සාමානා පෙළ විභාගයට පෙනී සිටින දරුවන් වෙනුවෙන් වාණිජ අරමුණකින් තොරව සතුටින් ලබා දෙන නිබන්ධන නම වෙනස් කර අලෙවි කිරීමට කටයුතු නොකරන්න. පාසල් හෝ උපකාරක පංති සඳහා මෙම නිබන්ධනය යොදා ගත හැකිය. ඔබ විසින් ලබා දෙන Like එක Comment එක අපට ශක්තියකි.

3 in l youtube නාලිකාව ඔස්සේ නැරඹිය හැකිය.