

Part - A

- Answer all questions on this paper itself.
- Indicate the relevant steps and the correct units when answering the questions.
- Marks are awarded as follows. In part A, 02 marks for each question and in part B, 10 marks for each question.
- 01. The annual assessed value of a house is Rs. **60 000.** If the provincial council charges annual rate amount of Rs. **4 500**, then find the annual rate percentage.
- 02. The figure represents a square lamina. If the shape of a sector is cut out, Find the perimeter of the remaining figure.

03. Solve.
$$\frac{2}{3x} - \frac{1}{6x} = \frac{1}{10}$$

04. Find the value of x^0

05. Solve (x+3)(x-8)=0

06. Select two congruent triangles from the given below and write the relevant case of congruency.

07. Fill in the blanks in the following by using suitable terms

In a rhombus are equal and its diagonals are bisected each other.

08. Shade the region of $\mathbf{A} \cap \mathbf{B}'$ in the given Venn diagram.

09. In between which whole numbers does the value of $\sqrt{57}$ lie?

- (i) 49 and 64
- (ii) 50 and 60
- (iii) 7 and 8

10. Except the triangular faces in the given prism, the area of the remaining faces are **348cm**². Find the length of this prism

11. If 3x - y = 7 and 5x + 9y = 25, then find the value of x + y without solving the equations.

12. The gradient of a straight line is 3 when passing through the point (0,4). Write the equation of that line as y = mx + c

Find the value of the x according to the data of the circle with 15. center "O".

51-60, 61-70 and 71-80 are few class intervals in a frequency distribution. Write down the 16. lower boundary and the upper boundary of the interval of 61-70.

(i) Lower boundary (ii) Upper boundary

Find the probability of a male get down in the next bus halt from a bus with 7 males and 6 females. 17.

If $\log_2 a = 5$, find the value of a. 18.

19. The curved surface area of a cylinder is 336cm² and the base circumference is 42cm. Find the height of the cylinder.

20. Length of the chord **AB** is **24cm** in the given circle with centre **O**.

If **OX=9cm**, find the radius of the circle.

21. Mr. Sampath travelled **14km** within **15 minutes** by his motorcycle. Find his speed in kilometers per hour.

22. AB is a vertical building of **25m** height. An observer observed a car on the horizontal ground from the roof top of the building (B) with a depression angle of 42°. Represent this information in the given figure.

23. **ABCD** and **CDEF** are two parallelograms. If the area of the triangle **ABC** is **12.5cm**², find the area of **CDEF**.

24. **AB** is a locus, which is equidistant from the point **O**.

By using the knowledge of loci and constructions, sketch the point **P** on **AB** as equidistant from **AO** and **BO**.

25. Find the value of x and y.

Part - B

- (01) (a) There are $\frac{2}{7}$ of m.c.q type questions in a certain model papers book. From the remaining questions $\frac{3}{4}$ are structured type questions. And all the remaining questions are essay type questions.
 - (i) Find what fraction of the whole questions are not belong to m.c.q type questions.
 - (ii) Find what fraction of the whole questions are structured type questions.
 - (iii) Write down the ratio between the essay type questions and the structured type questions in the simplest form.
 - (b) It has been estimated that 6 men will require 8 days to trim a land. If two men left due to sick after they had worked for two days, in how many more days can this task to be completed by the remaining men.

- (02) The figure shows a metal sheet consisting of a **PQRS** trapezium and a semicircle with **QR** as it's diameter.
 - (i) If the perimeter of **PQRS** trapezium is **66cm**, then find the length of **PS**.

	(ii)	Find the perimeter of whole figure with the semicircle.
	(iii)	Find the area of the semicircular portion.
	(iv)	If another trapezium shape metal sheet is used as its area equal to four times of the area of the semicircular portion and the length of QR and SR are not changed. Then find its PQ length.
(03)	(a)	Mr. Jayakodi imported an electrical item with the value of Rs. 40 000 and Rs. 16 000 he has to pay as its duty. (i) Find the duty percentage that Mr. Jayakodi has to pay.
		(ii) Mr.Jayakodi decided to mark the price of that item as get a profit of 20% from the value of the item after paying its duty. Find out the selling price of that electrical item.
	(b)	An investor invested Rs. 60 000 in a certain company. Market price of a share is Rs. 25 in that company and dividends of Rs. 4 per share is paid annually
		(i) How many shares did he buy?
		(ii) How much dividends income does he obtain at the end of a year?

- (04) (a) A bag contains identical 3 red balls and 2 blue balls. Tharindu takes out a ball randomly and marks its colour and put it back to the same bag.
 - (i) A portion of a tree diagram drawn to indicate the probabilities of a ball is taken by Tharindu at random from the bag being a red or blue. Complete the given tree diagram.

Blue

- (ii) After Tharindu, Kavindu takes a ball randomly from this bag. Extend the above tree diagram to show the events of getting a red or blue ball by Kavindu.
- (iii) Find the probability of getting different colour balls by both of Tarindu and Kavindu.

- (b) (i) According to the above event of getting a ball by both of Tarindu and Kavindu, mark the elements of the sample space on the given grid.
 - (ii) Encircle the event of both getting same colour balls and find its probability.

(05) A teacher is uploaded a video of his lesson to his YouTube channel at 3 p.m.The below given incomplete frequency distribution and corresponding incomplete histogram have been represented the number of viewers who watched that video in the same day when at 10 p.m.

Time (class intervals)	3 - 5	5 - 6	6 - 7	7 - 10
No. of viewers	•••••	••••••	16	24

- (i) Complete the above frequency table by considering the histogram.
- (ii) Complete the below histogram by considering the frequency table.

- (iii) Draw the frequency polygon by using the histogram.
- (iv) To get a mean number of viewers as 9 who watched this video within one hour, further how many number of viewers have to watch this video?

වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව

al Department of Education - NWP

Provincial Department of Education - NWP

දෙවන වාර පරීක්ෂණය - 11 ශුේණිය - **2023** Second Term Test - Grade 11 - 2023

Mathematics - II

Time: 3 hours

Name / Index No.

- Answer 10 questions selecting five questions from part A and five questions from part B.
- Each question carries 10 marks.
- The volume of a right circular cylinder with base radius r and height h is π r² h and volume of a cone with base radius r and height h is $\frac{1}{3}$ π r² h

Part - A

(01) The following leaflet was pasted on a refrigerator at a certain trade center.

Th	The selling price of the refrigerator - Rs. 120 000				
When outright purchasing 10% discount is given.	First make a down payment of Rs. 20 000 and the remaining amount can be paid in 20 equal monthly installments at 24%				
	annual interest rate. The interest is calculated in the method of reducing balance.				

Show that, if this refrigerator is purchased on an installment plan rather than an outright purchase, an additional amount of Rs. 33 000 will be payable.

(02) An incomplete table of the x values and the y values prepared to draw the graph of the function $\mathbf{v} = 4\mathbf{x} - \mathbf{x}^2$ is given below.

х	-1	0	1	2	3	4	5
У	-5	0	3		3	0	-5

- (a) (i) Find the value of y when x = 2
 - (ii) Draw the graph of the function using a suitable scale.
- (b) Using the graph,
 - (i) Write the equation of the axis of symmetry
 - (ii) Find the roots of the equation $4x x^2 = 0$
 - (iii) When the above graph moves downward along the y axis by 1 unit, the function can be expressed in the form $y = b (x a)^2$. Write the values of a and b.

- (03) (a) Solve. $\frac{2x-1}{3} = \frac{x+1}{3} + \frac{4}{3}$
 - (b) The price of 2 watches of the same type and a pair of sunglasses is Rs. 2 700 and the price of a pair of sunglasses is the same after a 30% discount is given on the marked price of the watch.
 - (i) By taking the price of a watch as x rupees and the price of a pair of sunglasses as y rupees, construct a pair of simultaneous equations.
 - (ii) By solving them, find separately the price of a watch the price of a pair of sunglasses.
- (04) (i) Candidates who have applied for recruitment in a particular vocational training institute can either visit the institute or attend the interview through zoom technology. From the morning of the interview day within "t" period of time, the number of people who joined the interview through zoom technology is indicated by $2t^2 + 3t + 10$ and the number of people who came to the institute and participated for the interview is indicated by $t^2 + 2t + 3$. If there are 10 people who joined the interview through zoom technology more than the number of candidates who came to the institute and participated for the interview, show that $t^2 + t 3 = 0$.
 - (ii) By taking the value of $\sqrt{13}$ as 3.6, solve the above equation using the formula or by some other method. Then, show that the duration of the interview is 1 hour and 18 minutes.
- (05) An observer in a boat moored at a point **P** in the sea, sees the top **B** of a lighthouse **AB** with the height of **100** m, at an angle of elevation of **30**°. The boat travels at a speed of **20** m per minute along a rectilinear path towards the lighthouse in **4 minutes** and stops at the point **Q**.
 - (i) Find the distance of **PQ**.
 - (ii) Draw a scale diagram including the above informations, using the scale 1:2000
 - (iii) Using the scale diagram, find the angle of depression of the boat at **Q** when observed from the top **B** of the lighthouse.
- (06) The following table shows the information about the number of customers who visited the cash deposit and withdrawal machine placed infront of a certain financial institution and withdrew money during a period of one hour. (5 10 means greater than or equal 5 and less than 10. All the class intervals are in multiples of Rs. 1 000)

The amount withdrawn (in multiple of 1000)	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40
Number of customers	2	3	8	12	7	5	3

- (i) Write the modal class.
- (ii) By taking the mid value of the modal class as the assumed mean, find the mean amount of money withdrawn by a customer in an hour.
- (iii) Express the number of customers who withdrew more than Rs. 25 000, as a percentage of the total number of customers.

- (07) (a) A machine that automatically accelerates and operates produces rubber balls. This machine automatically stops every fifteen minutes and restarts after five minutes. The machine produces 4 rubber balls in the first minute and every minute there after produces 3 rubber balls more than the previous minute.
 - (i) Write the number of rubber balls produced in the first 4 minutes respectively and state which type of progression is it.
 - (ii) Find the number of rubber balls produced in the 15th minute.
 - (iii) Show that the number of rubber balls produced by this machine in 15 minutes exceeds 370.
 - (b) In the geometric progression 3, 6, 12, 24, find the sum of the first 8th terms, using the formula.
- (08) Use only a straight edge with a cm / mm scale and a pair of compasses for the following geometric constructions. show the construction lines clearly
 - (i) Construct the triangle ABC, such that AB = 7 cm, $BAC = 90^{\circ}$ and AC = 6 cm
 - (ii) Construct the locus of points equidistance from **A** and **C**, and name the intersection point of that locus and the side **BC** as **O**. Then construct the circle taking **O** as the center and **OA** as the radius.
 - (iii) Construct a line parallel to AB through C and name the point it meets the circle as D.
 - (iv) Give reasons why **BD** // **AC**.
- (09) The following figure shows a right circular conical shaped vessel rested on a support with the circular opening radius "a" and height of twice of its radius and a solid circular cylinderical vessel with the radius "r" and height 2r. If the conical shaped vessel is completely filled with water and the same volume of water is poured in to the cylinderical vessel, it is filled to half of it's height. Show that $a = \sqrt[3]{\frac{3}{2}} \mathbf{r}$ and using the logarithms table, find the value of "a" to the nearest first decimal place when r = 3. 25 cm.

- In the triangle **PQR**, **S** is the mid point of the side **PQ**. **T** is a point on the side **PR** such that $\mathbf{RT} = \frac{1}{3} \mathbf{PR}$. The line drawn parallel to **QT** through **S**, meets the side **PR** at **U**. The straight lines **SR** and **QT** meet at **O**. show that $\mathbf{OT} = \frac{1}{4} \mathbf{QT}$.
- (11) In the circle with the center **O** shown in the figure, **E** is the mid point of the chord **AB**. The produced line **EO** meets the side **AC** at **F**. Furthermore, produced line **CO** meets the circle at **D**.
 - (i) Giving reasons, find the magnitude of \mathbf{AEF}
 - (ii) Show that $\overrightarrow{AFE} = \overrightarrow{BCD}$
 - (iii) Prove that AB : CO = BD : AF

(12) Mr. Nirmal who came for a book fair, bought 15 translated books, 13 novels and additionally 7 other books. The total number of books he bought was 30.

- (i) Copy the given diagram and represent the above information in it.
- (ii) How many translated novels did Mr. Nirmal buy?
- (iii) Find the number of non translated novels bought by Mr. Nirmal
- (iv) In the venn diagram you copied, shade the region that represents the translated books which are not novels.
- (v) Find the probability that the book chosen at random is a novel or a translated book, among the books he bought.

සියලුම හිමිකම ඇවිරිණි. / All Rights Reserved. විශ Depa	3ඹ පළාත් අශි rtment of P දෙවන වාර පරික Second Term T	ධිපාපන දෙපාර්තමේන්තුව Provincial Education - NWP ෂණය - 10 -11 මෙනි - 2023 Test - Grade 10 -11 - 2023	Bedge) Department of Provincial Education Bedge) Depa Bedge) Depa Bedge) Depa Bedge) Depa Bedge) Depa Bedge) Department of Provincial Education Bedge) Department of Provincial Inducation Bedge) Department of Provincial Inducation Bedge) Department of Provincial Education Bedge) Department of Provincial Education
විෂයය Subject		විභාග අංකය Index No.	
විභාග ශාලාවෙන් පිටතට ගෙනයාම තහනම. Not to b	e removed from the Exami	ination Hall.	
(13) WV	W.Pas	tPapers.Wiki (1	3)

Answer Sheet

Mathematics (1 / 5)

Paper I - Part - A

$ \begin{array}{c cccc} 01. & 7.5\% \\ & 4500 \\ \hline & 60000 \\ \end{array} $ $ \begin{array}{c ccccc} 02 & 50 & cc \\ \end{array} $	x 100%	1	02
4	$\begin{array}{l} \text{m} \\ - \times 2 \times \frac{22}{7} \times 14 \end{array}$	1	02
$\begin{array}{c c} 03 & x = \\ \frac{3}{6x} \end{array}$	$=\frac{1}{10}$	1	02
	48 ⁰ • Ĉ or C = 66 ⁰	1	02
05 x =	-3 or $x = 8$ for one answer	1	02
Identi	$\triangle \equiv LMN \triangle (A.A.S.)$ fying triangles or indicating ase of congruency	1	02
1 1	perpendicularly or one answer	1	02
08 . A	В		02
09 49 c	or 64		02
10 29cr 348	n ÷ 12	1	02
11 x+y= 8x+8	=5 3y=40	1	02
1 1 -	$3x + 4$ $3x + c \qquad \text{of } = mx + 4$	1	02
13 2 ¹⁷ 8 ×	2^{14}	1	02
14 $12x^2y$	2		02

15	20 ⁰ obtaining 100 ⁰ or 80 ⁰	1	02
16	60.5 70.5 for one correct answer.	1	02
17	7 13		02
18	32 $2^5 = b$	1	02
19	8cm 336/42	1	02
20	15cm 90°, 12 cm or for pythegorous relation.	1	02
21	56 kmh ⁻¹		02
	$14 \div \frac{15}{60}$ or 56	1	
22	B 42°	1	
	A marking 90°, 25 m and 42° for 02 data	1	02
23	25 cm² (lying between on the same base and in between same parallel lines if no reason.	1	02
24	A B		
	correct sketch marking P	1 1	02
25	$x = 126^0$ y = 8 cm	1 1	02

Grade 11 Answer Sheet Mathematics (2 / 5)

Paper I - Part - B

	Paper I - Part - B		
01 (a)	(i) not m.c.q. $= 1 \frac{2}{7}$		
()	$=\frac{5}{7}$	01	
	(ii) structured $=\frac{5}{7} \times \frac{3}{4}$	01	
	$= \frac{15}{28}$	01	
	(iii) no. of essay type questions. $= 1 - \left(\frac{2}{7} + \frac{15}{28}\right)$ $= 1 - \frac{23}{28}$	01	
	$= \frac{5}{28}$	01	
	ratio $= \frac{5}{28} : \frac{15}{28}$ = 1: 3	01	06
(b)	estimated man $= 6 \times 8$ $= 48$	01	
	task completed $= 2 \times 6$ = 12		
	remaining task = 48 - 12 = 36	01	
	no. of days for remaining 4 men $= \frac{36}{4}$	01	
	= 9 additional no. of $= (9+2) - 8$	01	
	days = 3	01	04
			10
02	(i) Length of PS = $66 - (22 + 14 + 14)$ = 16 cm	02	02
	(ii) = $2 \times \frac{22}{7} \times 7 \times \frac{1}{2} + 22 + 16 + 14$	02	
	=22+22+16+14		
	= 74 cm	01	03
	(iii) area = $\frac{22}{7} \times 7 \times 7 \times \frac{1}{2}$	01	
	$= 77 \text{cm}^2$	01	02
	(iv) area = 77×4 = 308	01	
	$308 = \frac{1}{2} \times 14 (14 + Pa)$	01	
	308 = 98 + 7PQ		
	210 = 7PQ $30cm = PQ$	01	03
	`		10

03	(a) (i) duty percentage =		
	$\frac{16\ 000}{40\ 000} \times 100\ \%$	01	
	= 40 %	01	02
	(ii) value after paying duty = $ \frac{40\ 000}{\frac{16\ 000}{56\ 000}} $	01	
	selling price = $\frac{120}{100}$ × 56 000	02	
	= Rs. 67 200	01	04
	(b) (i) no. of shares bought = $\frac{60\ 000}{25}$	01	
	= 2 400	01	
	divident income = 2 400 x 4 = Rs.9 600	01 01	04
			10
04	(i) Kavindu $\frac{3}{5}$ Red Tharindu	01	
	$\frac{3}{5}$ Red $\frac{2}{5}$ Blue	01	
	$\frac{2}{5}$ Blue $\frac{3}{5}$ Red	01	
	$\frac{2}{5}$ Blue	01	
	(ii) $\left(\frac{3}{5} \times \frac{2}{5}\right) + \left(\frac{2}{5} \times \frac{3}{5}\right)$	01	
	$\frac{6}{25} + \frac{6}{25}$	01	
	$\frac{12}{25}$		06
	(b) Marking correct points.	02	
	encircle the correct points.	01	
	Probability = $\frac{13}{25}$	01	10 10

Grade 11 Answer Sheet Mathematics (3 / 5)

05	(i) 3 - 5 5 - 6 12 4	02	02
	(ii) drawing the correct coloumns relevant to the class interval (iv) No. of $= 9 \times 7$ veiwers $= 63$ $= 63 - (12 + 4 + 16 + 6)$	01 02 03 01 24)	03 03
	= 63 - 56 = 7	01	02
		01	10
-			
	Paper II - Part - A		
01.	Amount when outright purchasing =		
	$\frac{=90}{100}$ × 120 000	01	
	$= \phi_{\bar{l}}. 108 \ 000$	01	
	remaining amount to be payed as = 120 000 - 20	000	
	installments = 100 000	01	
	value of one month units = $\frac{100\ 000}{20}$ = Rs. 5 000	01	
	interest for one month unit =		
	$\frac{24}{100} \times 5000 \times \frac{1}{12}$	01	
	= 100	01	
	No. of month units = $\frac{20}{2}$ (20 + 1)	01	
	= 210	01	

	total interest = 210 x 100		
	= 21 000	01	
	total amount = 120 000		
	$\frac{+21\ 000}{141\ 000}$	01	
	extra amount payable =		
	141 000		
	- 108 000		
	33 000	01	10
			==
02.	(a) (i) 4	01	
	(ii) drawing correct axis	01	
	marking correct points smooth curve.	01	04
		01	04
	(b) (i) $x = 2$	02	
	(ii) $x = 0$ $x = 4$	01	
	(iii) $y = 3 - (x - 2)^2$ a = 2	01	
	a = 2 $b = 3$	01	06
			10
03.	(a) $\frac{2x-1}{3} - \frac{x+1}{3} = \frac{4}{3}$	01	
	3 3		
	$\frac{x-2}{3} = \frac{4}{3}$	01	
	x = 6	01	03
	(b) price of a watch = Rs. x		
	price of a pair of sunglasses = Rs. y		
	2x + y = 2700 - 1	01	
	0.7x - y = 0	01	
	$7x - 10y = 0 (2)$ $(1) \times 10$	71	
		01	
	20x + 10x = 27000 - (3) $(2) + (3)$	UI	
	$ 27x = 27000 \\ x = 1000 $	01	
	x = 1 000 for substitution	01	
	2x + y = 2700 $2000 + y = 2700$	UI	
	y = 700	01	
	price of a watch = Rs. 1000 price of a pair of sunglasses = Rs. 700	01	07
	price of a pair of sunglasses 10s. 700		
			10

Grade 11 Answer Sheet Mathematics (4 / 5)

04.				
$\begin{array}{c} t^2+t+7-10=0 \\ t^2+t-3=0 \\ t^2+t=3 \\ t^2+t+\frac{1}{4}=3+\frac{1}{4} \\ (t+1)^2=\frac{13}{4} \\ (t+1)^2=\pm\sqrt{\frac{13}{4}} \\ (t+1)^2=\pm\sqrt{\frac{13}{4}} \\ 01 \\ t=-\frac{1\pm3.6}{2} \\ 01 \\ t=-\frac{1\pm3.6}{2} \\ 01 \\ t=-\frac{1+3.6}{2} \\ 01 \\ t=-\frac{1+3.6}{2} \\ 01 \\ 01 \\ 01 \\ 02 \\ 01 \\ 02 \\ 02 \\ 02$	04.	$2t^{2} + 3t + 10 - (t^{2} + 2t + 3) = 10$	01	
$\begin{array}{c} t^2+t-3=0 \\ t^2+t=3 \\ t^2+t+\frac{1}{4}=3+\frac{1}{4} \\ (t+1)^2=\frac{13}{4} \\ (t+1)^2=\pm\sqrt{\frac{13}{4}} \\ (t+1)^2=\pm\sqrt{\frac{13}{4}} \\ (t+1)^2=\pm\sqrt{\frac{13}{4}} \\ 01 \\ t=-\frac{1\pm3.6}{2} \\ 02 \\ =1.3 \\ since t>0 \\ t=1.3 \\ 1.3 \times 60=78 \\ 1 \text{ hour } 18 \text{ minutes} \\ \\ \hline 05 \\ (i) \ PQ=20\times40 \\ =80 \text{ m} \\ (ii) \ B \\ \hline 5 \text{ cm} \\ \hline \\ M \\ \hline A \\ \hline \\ M \\ \hline \\ Completing the scale drawing \\ (iii) \ 47^\circ\pm1 \\ \hline \\ 06. \ (i) \ 20-25 \\ \hline \\ \hline \\ Mid \ value \ deviation \ frequency \ fd \\ \hline \\ 7.5 \ -15 \ 2 \ -30 \\ 12.5 \ -10 \ 3 \ -30 \\ 12.5 \ -10 \ 3 \ -30 \\ 12.5 \ -10 \ 3 \ -30 \\ 37.5 \ 15 \ 3 \ 45 \\ \hline \\ \hline \\ \hline \\ \hline \\ Mid \ value \ coloumn \ deviation \ fd \\ \hline \\ \hline \\ mid \ value \ coloumn \ deviation \ fd \\ \hline \\ \hline \\ mid \ value \ coloumn \ deviation \ fd \\ \hline \\ \hline \\ mid \ value \ coloumn \ deviation \ fd \\ \hline \\ \hline \\ \hline \\ mid \ value \ coloumn \ deviation \ fd \\ \hline \\ $			01	
$t^{2} + t + \frac{1}{4} = 3 + \frac{1}{4}$ $(t + 1)^{2} = \frac{13}{4}$ $(t + 1)^{2} = \pm \sqrt{\frac{13}{4}}$ 01 $t = -\frac{1 \pm 3.6}{2}$ $1 = -\frac{1 \pm 3.6}{$				
$(t+1)^2 = \frac{13}{4}$ $(t+1)^2 = \pm \sqrt{\frac{13}{4}}$ $1 = -\frac{1}{2} \pm 3.6$ $1 = -\frac{1+3.6}{2}$ $2 = 1.3$ $3 = -2.3$ $3 = -2.3$ $3 = -2.3$ $3 = -2.3$ $4 = -1.3$ $1.3 \times 60 = 78$ $1 \text{ hour } 18 \text{ minutes}$ $01 = \frac{10}{2}$ $05 \text{ (i) } PQ = 20 \times 40$ $= 80 \text{ m}$ $01 = \frac{10}{2}$ $05 \text{ (ii) } PQ = 20 \times 40$ $= 80 \text{ m}$ $01 = \frac{10}{2}$ $06 \text{ (iii) } 47^\circ \pm 1$ $07 = \frac{10}{2}$ $10 = \frac{10}{2}$		1	01	
$(t+1)^2 = \pm \sqrt{\frac{13}{4}} \qquad 01$ $t = -\frac{1 \pm 3.6}{2} \qquad 02$ $t = -\frac{1 + 3.6}{2} \qquad 02$ $= 1.3 \qquad = -2.3 \qquad 01$ since $t > 0$ $t = 1.3 \qquad = -2.3 \qquad 01$ $1.3 \times 60 = 78$ $1 \text{ hour } 18 \text{ minutes}$ $05 (i) PQ = 20 \times 40$ $= 80 \text{ m}$ $(ii) B$ 5 cm $A \qquad 4 \text{ cm} \rightarrow 0$ $drawing AB according to the relevant scale drawing an angle of elevation 30^\circ marking Q and 4 cm completing the scale drawing (iii) 47^\circ \pm 1 \qquad 02 06. (i) 20 - 25 106. (i) 20 - 25 12.5 -15 2 -30 12.5 0.12.5 0.17.5 -5 8 -40 0.17.5 -5 -5 -7 -35 -7 $		· ·		
$t = -\frac{1 \pm 3.6}{2}$ $t = -\frac{1 + 3.6}{2} \text{or} t = -\frac{1 - 3.6}{2} 02$ $= 1.3 = -2.3 01$ $since t > 0$ $t = 1.3 01$ $1.3 \times 60 = 78$ $1 \text{ hour } 18 \text{ minutes}$ $05 (i) PQ = 20 \times 40$ $= 80 \text{ m}$ $(ii) B$ 5 cm $A 4 \text{ cm} 01$ $Grawing AB according to the relevant scale drawing an angle of elevation 30° marking Q and 4 cm completing the scale drawing (iii) 47^{\circ} \pm 1 02 06 06. (i) 20 - 25 12.5 -10 3 -30 -100 17.5 -5 8 -40 12.5 12.5 -10 3 -30 -100 17.5 -5 8 -40 12.5 -100 17.5 -5 8 -40 -100 17.5 -5 8 -40 -100 -$		-	0.1	
$t = \frac{-1 + 3.6}{2}$ $t = \frac{-1 + 3.6}{2} \text{ or } t = -1 - 3.6$ $= 1.3 \qquad = -2.3$ $\text{since } t > 0$ $t = 1.3 \qquad 01$ $1.3 \times 60 = 78$ $1 \text{ hour } 18 \text{ minutes}$ $01 \qquad 01$ $05 (i) PQ = 20 \times 40$ $= 80 \text{ m}$ $(ii) B$ 5 cm $A \qquad 4 \text{ cm} \qquad 02$ $\text{drawing AB according to the relevant scale drawing an angle of elevation } 30^{0}$ $\text{marking Q and 4 cm}$ $\text{completing the scale drawing}$ $(iii) 47^{0} \pm 1$ $02 \qquad 06$ $(iii) 47^{0} \pm 1$ $05 \qquad 01 \qquad 02$ $06 \qquad 01 \qquad 02$ $06 \qquad 02 \qquad 06$ $07 \qquad 01 \qquad 01$ $10 \qquad 01 \qquad 01$ $17.5 \qquad -5 \qquad 8 \qquad -40$ $17.5 \qquad -5 \qquad -5 \qquad 8 \qquad -40$ $17.5 \qquad -5 \qquad -5 \qquad -7 \qquad 35$ $17.5 \qquad -7 \qquad 35$ 1		$(t+1)^2 = \pm \sqrt{\frac{13}{4}}$	01	
$t = \frac{-1+3.6}{2} \text{ or } t = -\frac{1-3.6}{2}$ $= 1.3$ $= -2.3$ $\text{since } t > 0$ $t = 1.3$ $1.3 \times 60 = 78$ $1 \text{ hour } 18 \text{ minutes}$ 01 $05 \text{ (i) } PQ = 20 \times 40$ $= 80 \text{ m}$ $(ii) B$ 5 cm A A 4 cm $drawing AB according to the relevant scale drawing an angle of elevation 30^{\circ} or marking Q and 4 cm completing the scale drawing (iii) 47^{\circ} \pm 1 02 06. \text{ (i) } 20 - 25 \frac{\text{Mid value}}{x} \frac{\text{deviation}}{x} \frac{\text{frequency}}{x} \frac{\text{fd}}{x} 7.5 - 15 = 2 - 30 12.5 - 10 = 3 - 30 17.5 - 5 = 8 - 40 27.5 - 5 = 8 - 40 27.5 - 5 = 7 - 35 32.5 - 10 = 5 - 50 27.5 - 5 = 7 - 35 32.5 - 10 = 5 - 50 27.5 - 5 = 8 - 40 29.5 - 100 29.5 - 100 20.$		$t = -\frac{1 \pm 3.6}{2}$	01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 1.3 $= -2.3$	01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			01	
05 (i) $PQ = 20 \times 40$ $= 80 \text{ m}$ (ii) B 5 cm drawing AB according to the relevant scale drawing an angle of elevation 30° marking Q and 4 cm completing the scale drawing (iii) $47^{\circ} \pm 1$ 06. (i) $20 - 25$			01	
1 1 2 20 \times 40 = 80 m		1 hour 18 minutes		10
Color Col	05			02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	01	02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 cm		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30		
drawing an angle of elevation 30° marking Q and 4 cm completing the scale drawing (iii) $47^{\circ} \pm 1$ 06. (i) $20 - 25$ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			02	
completing the scale drawing (iii) $47^{\circ} \pm 1$ 06. (i) $20 - 25$ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		drawing an angle of elevation 30°	02	
(iii) $47^{\circ} \pm 1$ 06. (i) $20 - 25$ $ \begin{array}{ c c c c c c c c } \hline Mid value & deviation & frequency & fd & & & & \\ \hline 7.5 & -15 & 2 & -30 & -100 & & \\ 12.5 & -10 & 3 & -30 & -100 & & \\ 17.5 & -5 & 8 & -40 & & \\ 22.5 & 0 & 12 & 0 & & \\ 27.5 & 5 & 7 & 35 & & \\ 32.5 & 10 & 5 & 50 & +130 & & \\ 37.5 & 15 & 3 & 45 & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & \\ \hline & & & & & & \\ \hline & & & & & \\ $			02	06
$\begin{array}{ c c c c c c c c c }\hline 06. & (i) & 20 - 25 \\\hline\hline \hline 06. & (i) & 20 - 25 \\\hline\hline \hline \hline Mid value & deviation & frequency & fd \\\hline \hline 7.5 & -15 & 2 & -30 \\\hline 12.5 & -10 & 3 & -30 \\\hline 17.5 & -5 & 8 & -40 \\\hline 22.5 & 0 & 12 & 0 \\\hline 27.5 & 5 & 7 & 35 \\\hline 32.5 & 10 & 5 & 50 \\\hline 37.5 & 15 & 3 & 45 \\\hline \hline & & & & & & & & & & & & & & & & & $			02	
06. (i) $20 - 25$ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(111) 17 = 1	02	02
$\begin{array}{ c c c c c c c c }\hline \text{Mid value} & \text{deviation} & \text{frequency} & \text{fd} \\\hline\hline \hline & 7.5 & -15 & 2 & -30 \\ 12.5 & -10 & 3 & -30 \\ 17.5 & -5 & 8 & -40 \\ 22.5 & 0 & 12 & 0 \\ 27.5 & 5 & 7 & 35 \\ 32.5 & 10 & 5 & 50 \\ 37.5 & 15 & 3 & 45 \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$				
$\begin{array}{ c c c c c c }\hline \text{Mid value} & \text{deviation} & \text{frequency} & \text{fd} \\\hline \hline 7.5 & -15 & 2 & -30 \\ 12.5 & -10 & 3 & -30 \\ 17.5 & -5 & 8 & -40 \\ 22.5 & 0 & 12 & 0 \\ 27.5 & 5 & 7 & 35 \\ 32.5 & 10 & 5 & 50 \\ 37.5 & 15 & 3 & 45 \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	06.	(i) 20 - 25	01	01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x d lifequency fd		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.5 -15 2 -30)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.5 0 12 0		
$\begin{array}{ c c c c c c c c }\hline 37.5 & 15 & 3 & 45 \\ \hline & \Sigma f = 40 & \Sigma f d = (+30) \\ \hline \\ mid value coloumn & 01 \\ deviation & 01 \\ fd & 01 \\ \hline \end{array}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
deviation 01 01 01				
deviation 01 01 01				
deviation 01 01 01		maid volvo ool	0.1	
fd 01				
$\Sigma \mathrm{fd} = +30 \qquad \qquad \boxed{01}$				
		$\Sigma fd = +30$	01	

mean = $22.5 + \frac{30}{40}$	01	
= 23.25	01	
amount = 23.25×1000	01	
Rs. 23 250	01	
		07
(iii) $\frac{15}{40} \times 100 \%$	01	
40	01	
37. 5 %	01	02
		10
Paper II - Part - B		
07 (a) (i) 4, 7, 10, 13	01	
arithmatic progression	01	02
(ii) $Tn = 4 + (15 - 1) 3$	01	
= 4 + 42		
= 46	01	02
cm q 15		
(iii) $Sn = \frac{15}{2} \{2 \times 4 + (15 - 1) 3\}$		
$=\frac{15}{2}(8+42)$	01	
$=\frac{1}{2}$		
$= \frac{15}{2} \times 50$		
$=\frac{2}{2}\times 50$		
= 375	01	
= 375 > 370	01	03
(b) $Sn = a (r^h - 1)$		
$=\frac{3(2^8-1)}{2-1}$	01	
2 - 1	0.1	
$=3\times255$	01	
= 765	01	03
		10
		10
08. (i) constructing AB = 7cm	01	
constructing $\hat{BAC} = 90^{\circ}$	01	
AC = 6cm and completing a		
triangle	01	03
(ii) constructing a perpendicular	01	
bisectorAC	Λ1	02
marking O and constructing a circle (iii) constructing a parallel line	01	
through C and marking D	02	02
		02
(iv) $A\hat{C}D = 90^{\circ} (AB//CD)$	01	
$\overrightarrow{BDC} = 90^{\circ}$ (angle in the semicircle)	01	
$\widehat{ACD} + \widehat{BDC} = 180^{\circ}$	0.1	
∴AC // BD	01	03
		10
		10

(5) WWW.PastRapers.WiKi (4)

Grade 11 Answer Sheet Mathematics (5 / 5)

				Γ		1		
09.	volume of the cylinder = $\pi r^2 h$					$\therefore OT = \frac{1}{2} SU (convers of the)$	01	
	$= \pi r^2 \times 2r$					$SU = \frac{1}{2} QT$ mid point theorem		
	$=2\pi r^3$	01				$OT = \frac{1}{2} \times \frac{1}{2} QT$	01	
	2 1					$\therefore OT = \frac{1}{4} QT$		10
	$\frac{2}{3} \pi a^3 = 2 \pi r^3 \times \frac{1}{2}$			ŀ	11	(i) OE L AB (the line joining the centre and the		
	$a^3 = \frac{3r^3}{2}$	01			11.	$\therefore A \stackrel{\triangle}{E} F = 90^{\circ} \text{mid point of a chord is} \\ \text{perpendicular to the chord.}$,	01
	$a^3 = 3 \frac{3}{2} r$	01				(ii) to be proved = $\stackrel{\wedge}{AFE} = \stackrel{\wedge}{BCD}$		
	$a = \sqrt[3]{\frac{3}{2}} \times 3.25$	01	04			proof = BAC = BDC (angles in the same se	gment)	01
	$= \left(\frac{1}{3} \lg 3 - \frac{1}{3} \lg 2\right) + \lg 3.25$	01				$\overrightarrow{AEF} = 90^{\circ} \text{ proved in (i)}$		
						$\therefore \hat{AFE} = 90 - \hat{ABC} \hat{I}$ $\hat{DBC} = 90^{\circ} \text{ (angles in the semi circle)}$		01
	$= \left(\frac{1}{3} \times 0.4771 \frac{1}{3} \ 0.3010\right) + 0.5119$	03				$ \begin{array}{c} B\hat{C}D = 90^{\circ} - B\hat{D}C \text{ (2)} \end{array} $		01
	= 0.5706	01						01
	= antilog 0.5706							
	= 3.721 =3.7 cm	01	06			(iii) to be proved AB : CD = BD : AF proof BCD Δ and AEF Δ		
	-5.7 cm	0.1	10			$\overrightarrow{DBC} = \overrightarrow{AEF} (90^{\circ})$		
10.	P					$\hat{\mathbf{BDC}} = \hat{\mathbf{EAF}}$ (angles in the same segment		03
10.	g ≠ ∑U					$\stackrel{\wedge}{\mathrm{BCD}} = \stackrel{\wedge}{\mathrm{AFE}}$ (proved in (ii)	
	T T					-		
	$Q \longrightarrow Q$ R					∴ Δ BCD and Δ AEF are equiangular Δ s		
	to correct figure	02				$\frac{AE}{BD} = \frac{AF}{DC}$		01
	1	-				1		
	to be proved - OT = $\frac{1}{4}$ OT					$AE = \frac{1}{2}AB$ (mid point of AB is E)		01
	proof - PS = SQ (S is the mid point)					CD = 2CO (DC is the diameter)		01
	SU // QT (data)					$\frac{\frac{1}{2} AB}{\frac{1}{2} AB} = \frac{AF}{ABB}$		
	:. PU = UT (convers of the mid	02				$\frac{\text{BD}}{\text{BD}} = \frac{\text{2CO}}{\text{2CO}}$ $AB : CO = BD : AF$		10
	$∴ SU = \frac{1}{2} QT$			-	1.0			
	$RT = \frac{1}{3} PR (data) - 1$				12.	(i) 30		
	$\therefore PT = \frac{2}{3} PR$	01				translated B novels	04	
	$PT = \frac{1}{3}PR$ $PT = PU + UT$	01				translated books		
	PT = PU + UT PT = 2UT (U is the mid point)	01				(ii) $15 + 13 = 28$		
	$\therefore 2UT = \frac{2}{3} PR$					30 - 7 = 23 $28 - 23 = 05$	03	
	$UT = \frac{3}{3} PR$	-	$\mathbf{D}\mathbf{A}$	4	T	(iii) 13 - 5 = 8	01	
			ĽĄ	Ĵ		(iv) for shading	01	
	1 = 2 : UT = RT	· /	M	1		$(v) \frac{23}{30}$	01	
	SU // OT SO = OR	01						10
	, 30 010			_				

(5) WWW.PastRapers.WiKi (5)

කෙට් සටහන් | පසුගිය පුශ්න පතු | වැඩ පොත් | සඟරා | O/L පුශ්න පතු | A/L පුශ්න පතු | අනුමාන පුශ්න පතු | අතිරේක කියවීම් පොත් | School Book | ගුරු අත්පොත්

පෙර පාසලේ සිට උසස් පෙළ දක්වා සියළුම පුශ්න පතු, කෙටි සටහන්, වැඩ පොත්, අතිරේක කියවීම් පොත්, සඟරා සිංහල සහ ඉංගීසි මාධපයෙන් ගෙදරටම ගෙන්වා ගැනීමට

www.LOL.lk වෙබ් අඩවිය වෙත යන්න