සිං	යලු ම හිමිකම් ඇවිරිණි <mark>/ All</mark>	Rights Reserve	d									
	වයඹ පළාත් අධ්යාපන දෙපාර් වයඹ පළාත් අධ්යාපන දෙපාර්	තමෙන්තව Provincial D තවේ ඩියාමාංක කමේන්තුව Provincial D Provincial තමේන්තුව Provincial D	epartment of Education - NWP 20 20 20 20 20 20 20 20 20 20	a zerd အမ်ားအ ညေက်အခံရာ Pr ဥ ဗာပ်ဘဝေစ်ဘံဘုဉ် a zerd အမ်ားအ ညော်အခေရာဉ Pr Education → NW a zerd အမ်ားအ ညော်အခေရ်ရဉ Pr	ovincial Department of Education - NWP ovincial Department of Education - NWP ovincial Department of Education - NWP Pincial Department of Education - NWP ovincial Department of Education - NWP							
	තෙවන වාර පරීක්ෂණය - 12 ශේණිය - 2023 Third Term Test - Grade 12 - 2023											
Inc	dex No.:		HEMISTI	RY - I	Time 02 hours							
Ins • •	structions: Periodic Table is prov Answer all the questio Write your Index Num Follow the instruction In each of the question most appropriate and given on the back of t	ided. ons. nber in the spa as given on the ons 1 to 50. pice at mark your a t he answer sh	• Th • U ace provided in the an e back of the answer s ck one of the alternati response on the answ neet.	his paper consists of se of calculators is n aswer sheet. heet, carefully. ives from (1), (2), (3) ver sheet with a cro	09 pages. ot allowed.), (4), (5) which is correct or ss (x) with the instructions							
Universal gas constant $\mathbf{R} = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Planck's constant $\mathbf{N}_{\mathrm{A}} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$												
(01)	The emission of thr	ee types of r	adiation by the radio	bactive elements w	as first shown by,							
	(1) Henri Becque	erel	(2) Marie curie	(3) J	.J. Thomson							
	(4) Ernest Ruthe	rford	(5) Robert Millik	an								
(02)	The atom which is l	naving 2 half	fly filled sub energy	levels is,								
	(1) Cr	(2)Al	(3) K	(4) Mn	(5) P							
(03)	The total number of	fresonances	structures can be dra	wn for the molecu	le N ₂ O is,							
	(1) 1	(2)2	(3) 3	(4)4	(5) 5							
(04)	Consider the follow	ving compou	unds the highest boil	ing point is shown	by,							
	(1) CH ₃ Cl	(2) CCl_4	(3) CH ₄	(4) Xe	(5) CH ₃ F							
(05)	Select the species w molecule,	which doesn	ot have a similar co	nfiguration as the	titanium ion present in TiO ₂							
	(1) Sc^{3+}	$(2) Mn^{+7}$	(3) Fe^{+2}	$(4) \operatorname{Cr}^{+6}$	(5)Ar							
(06)	The density of the F solution is 21%. Th	HNO ₂ solution	on which is named a olume of A to prepar	s A is 1.2gcm ³ and re 250cm ³ of 0.8mc	the percentage purity of that oldm ⁻³ HNO _{3(aq)} solution is,							
	$(1) 0.50 \text{dm}^3$	(2) $5 dm^3$	$(3)40 \text{cm}^3$	$(4)500 \mathrm{cm}^3$	$(5) 50 \text{cm}^3$							

- (07) Which of the following statements is true regarding the s block elements?
 - (1) All of them react with water and liberate $H_{2(g)}$ at room temperature.
 - (2) All group 1 elements react with $N_{2(g)}$ present in air.
 - (3) All group 1 elements react with $H_{2(g)}$ and form solid ionic metal hydrides.
 - (4) When $Li_{(s)}$ is heating in air, a mixture of Li_2O , Li_3N and Li_2O_2 is formed.
 - (5) All s block elements give a colour to the flame of the flame test.
- (08) Which is false regarding the SO_4^{2-} and SO_3^{2-} ions?
 - (1) The hybridization of the central atom is equal.
 - (2) The bond angle of $SO_3^{2^2}$ is less than that of the bond angle of $SO_4^{2^2}$.
 - (3) Although the oxidation number of the central atom is different, the charge is the same.
 - (4) The shape of the both ions is the same.
 - (5) The electronegativity of the central atom of SO_4^{2-} ion is high.
- (09) Consider the nuclear reaction ${}^{9}_{4}\text{Be} + {}^{4}_{2}\alpha \rightarrow {}^{14}_{6}\text{C} + \text{X. X is,}$

$(1) a \gamma ray$	(2) a β particle	(3) a proton
(4) an electron	(5) a neutron	

(10) The correct increasing order of the first ionization energy of the following elements is,

(1) Na < Be < P < N	(2) Na < Mg < Al < S	(3) Li < Na < K < Rb
(4) Be < B < N < O	(5) B < C < N < P	

- (11) Under standard conditions when 18.56 g of $C_4H_{10(g)}$ is combusted, the amount of heat released is 960 KJ. The standard enthalpy of combustion of $C_4H_{10(g)}$ (in KJmol⁻¹) is,
 - (1) -3000 (2) 3000 (3) +2890 (4) -3072 (5) -3010
- (12) The true statement is,
 - (1) Only energy is exchanged through an isolated system.
 - (2) State functions depends only on the initial state and the final state.
 - (3) To define the state of a system the measurable macroscopic properties of the system and also the microscopic properties can be used.
 - (4) Many spontaneous reactions are reversible.
 - (5) Under constant temperature and pressure the amount of heat supplied to the system and liberated from the system is known as the enthalpy change (Δ H).
- (13) Which of the following processes is not exothermic?

 $(1) O_{(g)} + e \to O_{(g)}^{-} \qquad (2) Na_{(g)}^{+} + e \to Na_{(aq)}^{+} \qquad (3) Na_{(g)}^{+} + Cl_{(g)}^{-} \to NaCl_{(s)}$ $(4) MgCl_{2(s)} \to Mg^{2^{+}}_{(g)} + 2Cl_{(g)}^{-} (5) CH_{2(g)} + 2O_{2(g)} \to CO_{2(g)} + 2HO_{(l)}$

(14) Upon the themal decomposition NH₃ gas is liberated by,

 $(1)(NH_4)_2CrO_4$ (2) NH₄NO₃ (3) NH₄Cl (4) NH₄NO₂ (5) Mg(NO₃)₂

(15) Which of the following compounds shows the least water solubility?

(1) $Mg(OH)_2$ (2) $Ba(OH)_2$ (3) $NaNO_3$ (4) $(NH_4)_2CO_3$ (5) $CaCl_2$

(16) Consider the following reactions,

$$2Fe_{(s)} + \frac{3}{2} O_{2(g)} \rightarrow Fe_2O_{3(g)}, \Delta H^{\theta} = -822 \text{ KJmol}^{-1}$$
$$C_{(s,graphite)} + \frac{1}{2} O_{2(g)} \rightarrow CO_{(g)}, \Delta H^{\theta} = -111 \text{ KJmol}^{-1}$$

The standard enthalpy of the following reaction (KJmol⁻¹) is,

$$3C_{(s,graphite)} + Fe_2O_{3(s)} \rightarrow 2Fe_{(g)} + 3CO_{(g)}$$
(1)-711 (2)+489 (3)-489 (4)711 (5)1153

- (17) The composition of dry air is 75% of $N_{2 (g)}$ and 25% of O_2 by volume. Atmospheric pressure is 1×10^5 Pa,
 - (1) The partial pressure of $O_{2(g)}$ (P_{o_2}) is 2.5 x 10⁵ Pa.
 - (2) The mole fraction of $O_{2(g)}$ (X₀) is ¹/₄.
 - (3) The mass fraction of $N_{2(g)}$ is 0.75.
 - (4) The partial pressure of $N_{2(g)}$ (P_{N_2}) is 7.5 x 10⁵ Pa.

(5) The mean molar mass of the gas mixture is 30 gmol^{-1} .

• Use the following data for the question No. 18 and 19.

 $200 \text{cm}^3 \text{ of } 0.2 \text{ moldm}^3 \text{ BaCl}_2 \text{ Solution and } 300 \text{cm}^3 \text{ of } 0.1 \text{ moldm}^3 \text{ K}_2 \text{CrO}_4 \text{ Solution and mixed together. The formed precipitate here is washed and dried.}$

- (18) The mass obtained (in g) is,
 - (1) 7.6 (2) 7.89 (3) 10.12 (4) 76 (5) 101.2
- (19) The false statement regarding the above reaction is,
 - (1) The stoichiometry between $BaCl_{2(aq)}$ and $K_2CrO_{4(aq)}$ is 1 : 1
 - (2) The limiting reagent of the reaction is BaCl₂.
 - (3) The formed precipitate is yellow in colour.
 - (4) The composition of the remaining $Cl_{(aq)}$ ion in the solution is 120 ppm.
 - (5) The concentration of the remaining $K^{+}_{(aq)}$ ion is 0.16 moldm⁻³.
- (20) Which of the following elements form a Peroxide when it is heated with excess O_2 ? (1) Mg (2) Na (3) Li (4) Ca (5) C

(21) At 500K and 1 x 10^5 Pa pressure gas A exists in a vessel of vdm³ volume. At the same temperature and 4 x 10^4 Pa pressure gas B exists in a vessels of 2vdm³ volume. Both A and B gases are passed in to a vessel of 4vdm³ volume at 500K. The pressure inside the vessel (in Pa) is, (The temperature is constant)

 $(1)4.5 \times 10^{5}$ (2) 2.25 x 10⁵ (3) 1.66 x 10⁵ (4) 4.5 x 10⁴ (5) 1.66 x 10⁴

- (22) According to the kinetic molecular theory of gases,
 - (1) At a given temperature the gases with a high mass, move slowly.
 - (2) The kinetic energy of a gas depends only on temperature.
 - (3) A pressure exerts inside the vessel, when gas molecules collide each other.
 - (4) All particles of inside the vessel have the same speed.
 - (5) The mass and the volume of a gas particle is negligible relative to the total mass of the particles and the volume of the vessel.
- (23) Which is group is incorrect for an ideal gas,

(24) If any reaction is spontaneous only at the high temperature, which of the following states is correct?

	ΔG	ΔH	ΔS
(1)	(+)	(+)	(+)
(2)	(-)	(-)	(-)
(3)	(+)	(-)	(+)
(4)	(+)	(-)	(+)
(5)	(-)	(+)	(+)

- (25) The false statement regarding Ozone (O_3) is,
 - (1) O₃ is an allotropic form of Oxygen.
 - (2) O₃ molecule is nonpolar.
 - (3) O_3 is a strong Oxidizing agent than O_2 .
 - (4) The number of resonance structures can be drawn for O_3 molecule is 2.
 - (5) O_3 is very good antiseptic substance than Cl_2 .
- (26) Consider the following reaction,

$$CH_2 = CH_{2(g)} + H_{2(g)} \rightarrow CH_3CH_{3(g)}$$

Calculate the standard enthalpy of the above reaction using the following standard bond dissociation enthalpy values in KJ mol⁻¹.

Γ	Bond	Standard bond diss	sociation enthalpy /]	KJ mol ⁻¹ .					
Γ	$\mathbf{C} = \mathbf{C}$		+ 612						
	C - C	+ 348							
	С - Н	+ 412							
	Н - Н		+ 486						
(1)+124	4 (2)-12	4 (3)+288	(4) -288	(5)+127					

(27) Select the chemical equation, which does not explain the given process correctly,

(1) Standard enthalpy of formation of $Na_2O_{(s)}$	$2\mathrm{Na}_{(s)} + \frac{1}{2}\mathrm{O}_{2(g)} \rightarrow \mathrm{Na}_{2}\mathrm{O}_{(s)}$
(2) The bond dissociation enthalpy of $Cl_{2(g)}$	$Cl_{2(g)} \rightarrow 2Cl_{(g)}$
(3) The atomization enthalpy of $I_{2(s)}$	$I_{2(s)} \rightarrow I_{2(g)}$
(4) The standard enthalpy of combustion of $CO_{(g)}$	$\mathrm{CO}_{(g)} + \frac{1}{2}\mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
(5) The standard lattice dissociation enthalpy of $MgCl_{2(s)}$	$MgCl_{2(s)} \rightarrow Mg^{2+}_{(g)} + 2Cl_{(g)}$

(28) When 4g of a solid mixture which contains only Na₂CO₃ and CaCO₃ is heated to obtain a constant mass. 450cm³ of CO₂ gas is obtained at 27^oC and 1 atm. The mass percentage of Na₂CO₃ in the sample is, (Consider that the volume of 1 mol of CO₂ gas at this temperature and pressure is 25 dm³.)

(Na = 23, Ca = 40, C = 12, O - 16)
(1) 55% (2) 45% (3)
$$60\%$$
 (4) 50% (5) 63%

(29)

 $O_{(g)} + e \rightarrow O_{(g)}^{-}, \ \Delta H^{\theta} = -142 \text{ KJmol}^{-1}$ $O_{(g)} + 2e \rightarrow O^{2-}_{(g)}, \ \Delta H^{\theta} = +702 \text{ KJmol}^{-1}$

The second electron gain enthalpy of Oxygen gas (KJmol⁻¹) is,

(1)+844 (2)-844 (3) 560 (4)-560 (5)+986

(30) The compound A which is formed by a s block element gives red colour to the flame in the flame test. When A is subjected to the thermal decomposition a colour ful gas is liberated. A would be,

(1) Li_2CO_3 (2) NaNO₃ (3) SrCO₃ (4) Ca(HCO₃)₂ (5) LiNO₃

• For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses in accordance with the instructions given on your answer sheet, mark.

(1) If only (a) and (b) are correct.

(2) If only (b) and (c) are correct.

(3) If only (c) and (d) are correct.

(4) If only (d) and (a) are correct.

(5) If any other number of combination of responses is correct.

Summary of above Instructions,

(1)	(2)	(3)	(4)	(5)
Only (a) and	Only (b) and	Only (c) and	d Only (a) and	Any other number
(b) are	(c) are	(d) are	(d) are	or combination of
correct	correct	correct	correct	responses is correct

(b) Na, CO, and MgSO₄

(31) The common properties for both allotropic forms of C, graphite and diamond are,

(a) The existance of demoralized electron.

(b) The existance of convalent bonds among carbon-carbon atoms.

- (c) Exist as homo atomic lattices.
- (d) Carbon carbon bond lengths are equal.

(32) Which of the following pairs of solutions form precipitates by mixing,

(a) MgCl, and NaOH

(c) Ba(OH), and KCl	(d) Mg(NO ₃), and Na ₂ SO ₄

(33) Extensive properties are,

(a) Temperature (b) mass

(b) mass (c) volume es with a positive entropy? (d) molar mass

(34) Which is / are the process / es with a positive entropy?

(a) $N_{2(g)} + H_{2(g)} \rightarrow 2NH_{3(g)}$ (b) $Br_{2(l)} \rightarrow Br_{2(g)}$ (c) $NaCl_{(s)} + aq \rightarrow NaCl_{(aq)}$ (d) $Cl_{(g)}^{-} + aq \rightarrow Cl_{(aq)}^{-}$

(35) Select the true statement / statements regarding the following molecules,

(a) All molecules obey the Octet rule.

- (b) Both NH_3 and CH_4 molecules are iso electronic.
- (c) All molecules are non polar.
- (d) Except 2 molecules, the central atom of the rest of the molecules, does not more lone pair of electrons.

(36) All s-block elements are,

- (a) metals.
- (b) when going down the group, melting point is decreasing.
- (c) When heated in air, oxides are formed.
- (d) All those oxides are basic.

- (37) H_2O_2 reacts as an reducing agent with,
 - (a) $Na_2Cr_2O_7$ (b) SO_2 (c) $FeSO_4$ (d) KI
- (38) Which of the following statement / statements is/are true regarding Cl_2 ?
 - (a) Cl_2 gas is strong reducing agent.
 - (b) H undergoes a disproportionation reaction with bases.
 - (c) The acidity of the Oxoacids of Cl varies as $HOCl < HClO_2 < HClO_3 < HClO_4$.
 - (d) Bond dissociation enthalpy of Cl Cl is less than that of F F.
- (39) The element A belongs to s block when A is heated in air a white precipitate is obtained when water is added to it a gas is liberated. That gas turns the fitter paper dipped in Nestler reagent to brown colour. A would be,
 - (a) Mg (b) Na (c) Li (d) K
- (40) The root mean square speed ($\sqrt{C^2}$) of He and Ne,
 - (a) Depends only on the temperature (T).
 - (b) It is increasing when the temperature is increasing.
 - (c) when the temperature is constant, the root mean square speed of He is greater than that of Ne.
 - (d) When temperature is constant, $\sqrt{\overline{C}^2}$) of He and Ne are equal.
- In question numbers 41 to 50, two statements are given in respect of each question. From the table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriately on your answer sheet.

1st statement	2nd statement	Response
True	True and 1st is explained correctly	1
True	True and 1st is not explained correctly	2
True	False	3
False	True	4

	1st statement	2nd statement
(41)	H_2O_2 molecule is non polar.	H_2O_2 molecule is linear.
(42)	Mn and Cr are transition elements, belong to d - block.	The valence electrons of those atoms fill to d orbitals.

(43)	The enthalpy change of an endothermic reaction is always a (+)ve value.	for a system, which take place such a reaction the energy of the final state is always greater than the energy of its initial state.
(44)	All p block elements are non metals.	p block consists of the elements, belong to all states, solid, liquid and gas.
(45)	Most of the compounds formed by Al, are identified as electron deficient compounds.	The electron octet is not completed in the compounds formed by Al.
(46)	When going down the group 2, the thermal decomposition temperature of the carbonates in increasing.	Down the group, the radius of the cation is increasing.
(47)	Van der waals equation can be applied for a gas which behaves ideally.	The amendments for the deviations shown by the real gases, are includes in van der waals equation.
(48)	One N-H bond of the NH_4^+ ion is longer than the other N-H bonds.	All N-H bonds present in NH_4^+ ion are not covalent.
(49)	Standard enthalpy of formation of any element is equal to the standard enthalpy of combustion of that compound.	The standard enthalpy of formation of a pure element, exists in the naturally occurring form is zero.
(50)	In aqueous solutions, HF is a weak acid than HCl.	H-F bond length is greater than that of H-Cl bond length.

(9) WWW.PastPapers.WiKi (8) Download Term Test Papers, Short Notes From One Place!

	1							•					÷					2
1	H		_															He
	3	4]										5	6	7	8	9	10
2	Li	Be											B	С	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											AI	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
														_			_	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Į
			89	90	9 1	92	93	94	95	96	97	98	99	100	101	102	103	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

The Periodic Table / ආවර්තිතා වගුව

12 ශූේණිය GRADE 12

රසායන විදහාව CH

CHEMISTRY

The Periodic Table / ආවර්තිතා වගුව

1	1							·					÷					2
	H		_													_		He
	3	4											5	6	7	8	9	10
-	Li	Be											B	С	N	0	F	Ne
	11	12											13	14	15	16	17	18
	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	Cđ	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
					E			P			$\mathbf{P}\Lambda$	ΡF	-K	5			_	
		1	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	9 1	92	93	94	95	96	97	98	99	100	101	102	103	1
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
(9) WWW.PastPapers.WiKi (9)																		
۸	vnl	oad	J T	erm	ι Τέ	est	Pa	per	s. S	Shc	ort N	Vot	es	Fro	m (One	P ڊ	lac

Checked by :

Supervised by :

С

9

10 Total

Structure Essay

Part - A

Answer the following questions.

(01) (A) Arrange the following species to the ascending order of the mentioned properties within brackets. S, Cr, Mn, Fe (number of unpaired electrons) (i) (ii) Mg, Al, P, Si (Second ionization energy) (iii) H_3O^+ , H_2O , NH_2 , N^+H_4 (bond angles) (iv) $Ca^{2+}, K^+, Al^{3+}, Mg^{2+}$ (cationic radius) (v) CO, HCO_2, HCO_3, CO (C-O bond length) (B) (i) The skeletal structure of $(HNO_2CN)^{\dagger}$ is given below. Draw the most acceptable lewis structure. H - O - N - C - N $\stackrel{|}{0}$ (ii) Sketch the shape of the lewis structure drawn in part (i) above. Mention the bond angles. (iii) A Lewis slot - clash structure for the azyl azide CH₂CON₂ is given below. Draw 4 more Lewis structures for the compound. Mention the stability of the drawn 4 structure as stable, less stable and unstable. $\begin{array}{c} H : \bigcup: \\ H - \stackrel{I}{\overset{I}{\overset{}}_{C}} - \stackrel{I}{\overset{C}{\overset{}}_{C}} - \stackrel{...}{\overset{N}{\overset{}}_{N}} = \stackrel{...}{\overset{O}{\overset{N}{\overset{}}_{N}}} \\ H \end{array}$

02

(iv) Fill in the following table considering the lewis structure and the labeled structure given below.

		C ₁	C ₂	N ₃	C_4	N_5
I)	VSEPR pairs around the atom.					
II)	Electron pair geometry aroun the atom.					
III)	Shape around the atom.					
IV)	Hybridization of the atom.					

The part (v) to (vii) is based on the Lewis dot-dash structure given in part (iv) above. The labelling of atoms is the same as in part (iv).

(v) Identify the atomic / hybridized orbitals participated for the formation of σ bonds between the given atoms below.

I)	$H - C^{1}$	Η	 C^1	
II)	$C^1 - C^2$	C^1	 C^2	
III)	$C^2 - O$	C^{2}	 0	
IV)	$C^2 - N^3$	C^{2}	 N^3	
V)	$N^3 - C^4$	N^3	 C^4	
VI)	$C^4 - N^5$	C^4	 N^{5}	

03

	(vi)	Iden folle	ntify the atomoving atoms.	nic ort	oitals,	, participat	ted for the	formation	n of t	he bond	ls between th	e
		I)	$C^2 - O$		C ²				0			
		II)	$C^4 - N^5$		C ⁴				N ⁵			
		III)	$C^4 - N^5$		C ⁴				N ⁵			
	(vii)	Arr	ange the N ³ , C	C ⁴ and N	J ⁵ ator	ms to the in	creasing or	der of thei	ir elec	tro nega 	itivity.	
(02) (a)	The grou	elen 1p X	nent X belon does not reac	gs to th ts with	ne s b cold v	lock. The water. X rea	fist ionizat acts with ste	ion energy eam by libe	y of th eratin	is is the ga	e highest in th sA.	e
	Also colo reac	o X li our to ets wi	berates the ga the flame. X ith water to fo	as A by forms orm the	reacti coval precij	ing with H lent compo pitate D and	Cl. The rest ound C by r d evolve the	ultant solu eacting w e gas A.	tion E ith A a	here do at high t	emperatures.	y C
	(i)	Ide	ntify the speci	ies A to	Dby	giving the	chemical sy	ymbols / fo	ormul	ae.		
		Α		E	3		C		•••••	D		•
	(ii)	Wri	te the balance	e chemi	cal ec	quations fo	r the above	mentione	d reac	tion.		•••
	(iii)	Wri con	te a general r sists the elem	eaction ent X.	for t	he thermal	decompos	ition of ca	rbona	ites of tl	he group which	h
	(iv)	Arra stab	ange the carb vility. Explain	onates your a	of the nswei	group of the strength of the s	he element polarization	X to the in n of ions.	creas	ing orde	r of the therma	ıl
			••••••	•••••			••••••					
			••••••	•••••			•••••		•••••			
			•••••	•••••					•••••			••
		•••••		•••••					•••••			•••
		•••••	•••••	•••••	•••••				•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••
		•••••	••••••	•••••			••••••		•••••	•••••	•••••	••
(b)	P, Q less The Q li	and than com berat	R are 3 conse 20. P reacts s apound forme $\cos CO_2$ upon b at if y the P O	ecutive trongly ed by re heating R elem	elem with acting and (ents belon water to pr g P with wa Q liberates and write th	g to the sar roduce H ₂ g ater, reacts H ₂ gas by re peir chemic	ne group a as and its o with R to 2 eacting wi al symbols	and th carboi libera th hot	eir atom nate is th te H ₂ ga water.	ic numbers ar termally stable s. Carbonate o	e e. of
	(1)	P		С.)		R					
				~								

(ii)	Compare	the follow	ving prope	rties of Pa	nd O elemen	nts.
(11)	Compare	101101	, mg prope	100011 0		

Atomic radius	<
Metallic bond strength	<
Reactivity	<
Polarizing power	

(iii) Write the balanced chemical equation for the reaction of the element R with the hydroxide of P in aqueous medium.

(iv) What is the gas liberated in the thermal decomposition of the nitrate of P?

••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	

(v) Write the balanced chemical equations for all the reactions taken place when Q is combusted in atmosphere.

- -----
- (vi) Write balanced, chemical equations for all reactions occurred when the product obtained in above (v) with water.

.....

.....

(vii) How to identify the gas liberated there?

.....

- (03) (a) At 300k and 3.0 x 10⁵ Nm⁻² a vessel of 2.0m³ contains gas X. At 300 K and 5.0 x 10⁵ Nm⁻² a vessel of 3.0m³ contains gas Y. Both vessels are connected through a thin tube allow both gases to mix each other completely. When both gases mixing, they do not react each other. Assume that the volume of the thin tube is negligible.
 - $(i) \quad Calculate the total pressure of the connected vessels.$

(ii) Calculate the mole fraction of gas X in the mixture.

..... (iii) Calculate the partial pressure of gas Y, present in the mixture. (iv) By keeping the total volume of the two vessels constants, calculate the partial pressure of the gas X, inside the connected vessels, when the temperature of the gas mixture is increased up to 350K. (v) Write two important assumptions you made here?

(b) Consider the following equation at 300k, and the data given in the table.

 $\mathrm{Cr_2O_3}_{(\mathrm{s})} + 3\mathrm{H_2}_{(\mathrm{g})} \rightarrow 3\mathrm{H_2O}_{(\mathrm{g})} + 2\mathrm{Cr}_{(\mathrm{s})}$

	standard enthalpy of formation / KJmol ⁻¹	standard entropy / JK ⁻¹ mol ⁻¹
Н _{2 (g)}	0	131
H ₂ O _(g)	-242	189
$Cr_2O_{2(s)}$	822	90
Cr _(s)	0	27

	(i)	Calculate the enthalpy change of the reaction.
	< ••	
	(11)	Calculate the standard entropy change of the reaction.
	(;;;)	Dradiat the grant analytic of the reaction
	(111)	Fredict the spontaneity of the reaction.
	(iv)	Write an important assumption, you made here.
(c)	(i)	Z is a metallic element in acidic medium $C_2O_4^{2-}$ ions are converted to CO_2 by ZO_4^{-} ion.
		During this reaction ZO_4^- ions convert to ZO^+ ions. Write the balanced half ionic reactions.
	(::)	Montion the statishing structure for $C \cap C^2 = 170^{-2}$
	(11)	Wention the stolchlometry between C_2O_4 and $2O_4$.
		C_2O_4 : ZO_4 =

(04) (a) Following experiments and observations are relevent to the identification of A, B, C, D and E compounds given below. The compounds given below are not in order.

	Experiments	Observations
А.	Adding dil HCl to solid compound.	A brown colour gas is liberated.
В.	Lead acetate is added to the solid compound and the resultant solution is heated.	White precipitate is obtained and it turns black upon heating. A colourless gas is liberated.
C.	Heating the solid compound.	A white colour powder is obtained. A brown colour gas and a colourless gas are liberated.
D.	Heating the solid compound.	A gas which turns red litmus blue and another gas which turns lime water milky and water vapors are obtained.
E.	Adding dil H_2SO_4 to the solid compound.	A white precipitate is obtained which is insoluble in dil HCl. A gas with a pungent odour is obtained.

BaS, $Na_2S_2O_3$, NH_4NO_2 , $(NH_4)_2CO_3$, $Mg(NO_3)_2$

(i) Write the chemical formulae of the compound A to E.

(ii)

A
В
C
D
E
Name the gases evolved in identification of the compounds in part (i) above.
A
B
C
D
Е

e 12	09	Chemistry - II
2.0 to 2 titra	g of a an alloy consists of Cu and Zn is dissolved completely in conc 50 cm ³ . 25cm ³ of that solution is mixed with an excess $KI_{(aq)}$ solution ated with 0.1 moldm ⁻³ Na ₂ S ₂ O ₃ solution, the consumed volume is 30c	e. HNO ₃ and diluted up a. When that solution is cm^3 .
	(Cu = 63.5, Zn = 65.3)	
(i)	Write balanced chemical equations for all reaction taken place in the	e above process.
(ii)	Calculate the mass percentage of Cu in the alloy.	
Wat pres	ter of a tube well contains Fe^{2+} ions as the only species, can be Oxidize sent in 20cm ³ of the tube well water to Fe^{3+} of 8cm ³ 0.001 mol dm ⁻³ K	ed. To oxidize Fe^{2+} ions $CMnO_4$ is consumed.
(i)	Build the balanced ionic equation for the reaction between Fe ²⁺ medium.	⁺ and MnO_4^- in acidic
(ii)	Calculate the composition (ppm) of Fe^{2+} ions in water of the tube we	-11.
	e 12 2.0 to 2 titra (i) (ii) Wat pres (i)	e 12 09 2.0 g of a an alloy consists of Cu and Zn is dissolved completely in conc to 250 cm ³ . 25cm ³ of that solution is mixed with an excess KI _(au) solution titrated with 0.1 moldm ³ Na ₂ S ₂ O ₃ solution, the consumed volume is 300 (Cu = 63.5, Zn = 65.3) (i) Write balanced chemical equations for all reaction taken place in the solution of the tube well contains for all reaction taken place in the solution of the tube well contains Fe ²⁺ ions as the only species, can be Oxidizz present in 20cm ³ of the tube well water to Fe ³⁺ of 8cm ³ 0.001 mol dm ³ K (i) Build the balanced ionic equation for the reaction between Fe ² medium. (ii) Calculate the composition (ppm) of Fe ²⁺ ions in water of the tube well concernent in 20cm ³ of the tube well well in the equation for the reaction between Fe ² medium.

Part B - Essay

• Answer two questions only.

- (05) (a) Define the following enthalpies.
 - (i) Standard enthalpy of bond dissociation. (ΔH_{D}^{θ})
 - (ii) Standard enthalpy of hydration. $(\Delta H^{\theta}_{hvd})$
 - (iii) Standard enthalpy of sublimation. (ΔH^{θ}_{s})
 - (iv) Standard enthalpy of atomization. $(\Delta H^{\theta}_{atm})$
 - (v) Standard enthalpy of lattice dissociation. (ΔH_{L}^{θ})
 - (b) (i) Draw a Born-Haber cycle to calculate the standard enthalpy of lattice dissociation of $BaBr_2$ using the following data.

Standard enthalpy of sublimation of $Ba_{(s)}$	-174.4 KJ mol ⁻¹
Standard first ionization enthalpy of $Ba_{(g)}$	+502 KJ mol ⁻¹
Standard second ionization enthalpy of $Ba_{(g)}$	$+966 \mathrm{KJ}\mathrm{mol}^{-1}$
Standard enthalpy of atoroization of $Br_{2(l)}$	+244.2 KJ mol ⁻¹
Standard first electron gain enthalpy of $\mathrm{Br}_{(g)}$	- 344 KJ mol ⁻¹
Standard enthalpy of formation of $BaBr_{2(s)}$	$-755 \mathrm{KJ}\mathrm{mol}^{-1}$

- (ii) Hence calculate the standard enthalpy of lattice dissociation of $BaBr_{2(s)}$.
- (c) Methanol and gasoline (C_8H_{18}) are used as fuels.
 - (i) Write the balanced chemical equations for the combustion of liquid methanol and gasoline.
 - (ii) Calculate the energy change occurred in the combustion per 1g of methanol and gasoline.

	CO _{2(g)}	H ₂ O _(l)	CH ₃ OH ₍₁₎	C ₈ H _{18(<i>l</i>)}
$\Delta H_{f}^{\theta}/ \text{KJmol}^{-1}$	- 394	-286	-239	-269

- (iii) Considering the answer of part (ii) above, suggest the most suitable compound as a fuel. Give reasons.
- (06) (a) (i) Write the kinetic molecular equation for ideal gases. Introduce the terms of it.
 - (ii) Derive the following expression to find the root mean square speed of an ideal gas using molecular kinetic equation and ideal gas equation.

$$\sqrt{C^2} = \sqrt{\frac{3RT}{M}}$$

(iii) Prove that the root mean square speed of a gas depends on the molar mass of the gas using the root mean square speed of H₂ and O₂ at 25° C. (Assume that H₂ and O₂ gases behave ideally at that temperature)

- (iv) At a constant temperature, plot the variation occurred in the Maxwell Baltzmann distribution curve of gas particles of group 18 elements with the molar mass of the gas.
- (b) At 400K A_2 and B_2 gases exists in the molar ratio of 1.4 in a rigid vessel. A_2 and B_2 do not react each other. The total pressure of the vessel is 8 x 10⁴ Pa.
 - (i) Calculate the partial pressure of A_2 and B_2 gases.
 - (ii) To the some vessel 0.4 mol of He gas is inserted and the temperature is decreased up to 300 K. Then the total pressure inside the vessel is 1×10^5 Pa. Calculate the partial pressures of A₂ and B₂ gases at this second state.
 - (iii) Calculate the partial pressure of He gas.
 - (iv) Calculate the number of moles of A_2 and B_2 gases inside in vessel at the beginning.
- (c) (i) What is known as "molar volume" at standard temperature and pressure.
 - (ii) Derive an expression for the compressibility factor (Z) by using the molar volume of a real gas (V_m) and the molar volume of an ideal gas. (V_m^0)
 - (iii) The readings are given below of a practical experiment carried out to determine the molar volume of Oxygen gas using $KMnO_4$ in the laboratory. Calculate the molar volume of O_2 gas in dm³ mol⁻¹ using those.

Readings	:	laboratory pressure	=	750 mmHg
		laboratory temperature	=	27 [°] C
		mass of O_2 gas evolved	=	0.7 g
		volume of the collected O_2 gas	=	$546\mathrm{cm}^3$
		vapour pressure of water at 27 [°] C	=	26.7 mmHg

- (07) (a) A, B, C and D are four coordinate complexes of Fe. There are 3 Cl atoms bonded through ionic bonds or covalent bonds. The number of water molecules are varied inside the coordinate sphere. The charge of the coordinate sphere is +3, +2, +1 and 0 respectively. The oxidation state of Fe is the same in A, B, C and D.
 - (i) Write the Oxidation number in the coordinate complexes.
 - (ii) Write the complex structures as A, B, C and D.
 - (iii) Write an experiment to distinguish between A and D. Write the observations.
 - (iv) Write the IUPAC name of A.
 - (v) By the negatively charged Oxygen atoms in the Oxalate ion cordinate bonds. Can be formed by with the metal cations. Draw the structure of the Octahedral complex formed by M^{2+} ions with Oxalate ions.

(b) $3d \text{ metal ion } M \text{ forms the aqueous complex } [M(H_2O)_n]^{m^+}$ Which is named as A. A Undergoes the following reactions.

$$A_{(aq)} \xrightarrow{\text{gradual addition}} B_{(s)} \xrightarrow{\text{addition}} C_{(aq)} \xrightarrow{\text{can}} yellowish brown$$

$$A_{(aq)} \xrightarrow{\text{conc. HCl}} D_{(aq)} \xrightarrow{\text{conc. HCl}} D_{(aq)} \xrightarrow{\text{conc. HCl}} F_{(aq)} \xrightarrow{\text{conc. HCl}} F_{(aq)}$$

- (i) Determine the values of n and m.
- (ii) Write the electron configuration of M cation.
- (iii) Mention A, B and C complexes.
- (iv) Mention D, E and F complexes and their colours.
- (v) Write the IUPAC names of A, C and D.
- (vi) What are the observations when H_2O_2 is added to the solution? Mention the chemical species.

Part C - Essay

• Answer two questions only.

- (08) (a) Standardizing $Na_2S_2O_3$ solution which is used for titration using the primary standard solution KIO₃ and KI.
 - Na₂S₂O₃. 5H₂O solid substance is dissolved in water and prepared 500cm³ of the solution. A small amount of Na₂CO₃ and CHCl₃ is added to the solution.
 - 2.14 g of pure dry KIO₃ is measured and dissolved in a 250cm³ volumetric flask and distilled water is added up to the volume mark.
 - 25cm^3 of the above solution is measured to a titration flask and excess KI (about 1g) is added and acidified with 1 moldm⁻³ H₂SO₄.
 - Carrying out the titration using $Na_2S_2O_3$ solution inside the burette.
 - At the beginning of the titration the solution of the flask is dull brown and when it turns to light yellow (hay colour) 2cm³ of starch is added as the indicator.
 - Burette readings of 3 titration are given below.

First titration	$26.8\mathrm{cm}^3$
Second titration	$25.5 \mathrm{cm}^3$
Third titration	$24.5 \mathrm{cm}^3$

- (i) Write three properties of primary standard substance.
- (ii) What are the reasons for the addition of Na₂CO₃ and CHCl₃?
- (iii) Mention the chemical species which causes to turn the solution dull brown.
- (iv) What is the reason for the addition of the indicator during the titration, without adding initially. Mention the colour change at the end point.
- (v) Write the reason to carry out the titration 3 times.

- $(vi) \quad Write \ balanced \ ionic \ equations \ for \ all \ reactions \ in \ the \ titration.$
- (vii) Calculate $Na_2S_2O_3$ concentration.
- (b) 10 cm^3 of a H₂O₂ solution is allowed to react with excess dil H₂SO₄ acidified by KI solution. To react with the liberated I₂ here, 40 cm³ of 0.1 mol dm⁻³ Na₂S₂O₃ solution is consumed. Express the strength of the H₂O₂ solution by volume. (If the complete decomposition of 1 dm³ of H₂O₂ produces 10 dm³ O₂ at standard temperature and pressure strength is called "volume 10")
- (09) (a) The following diagram is relevant to the reactions of he inorganic salt A.

- D turns anhydrous $CuSO_4$ to blue colour.
- Gas E tuns red litmus blue.
- J is a green colour coordinate complex, containing a 3d metal cation.

Answer there following questions using the above diagrams and the data given.

- (i) Write chemical formulae of A, B, C, D, E, F, G, H, I and K.
- (ii) Mention the chemical formulae and colour of J, F and G.
- (iii) Write the balanced chemical equations relevant to the following changes.
 - $J \rightarrow K$ $J \rightarrow F$ $F \rightarrow G$ $H \rightarrow I + E$
- (b) The iron bullets contains metal Fe and other impurities. To determine the percentage of iron inside the bullets, the following procedure was carried out.
 - (i) 2g of iron bullets were powdered and allowed to oxdize completely by O_2 . After obtaining constant mass it is was weighed as 3g. This oxide mixture consists of Fe_2O_3 and Fe_3O_4 . Those oxides ware dissolved completely in dil H_2SO_4 and excess KI was added. This solution was diluted up to 100 cm^3 by adding distilled water. (solution S)

(14) WWW.PastPapers.WiKi (13)

Download Term Test Papers, Short Notes From One Place!

- (ii) 20 cm^3 of the above solution S is measured to a titration flask and titrated with 0.5 mol dm⁻³ Na₂S₂O₃. The consumed volume was 11 cm³.
- (iii) 50 cm^3 of the above solution S was measured, and titrated with 0.25 mol dm⁻³ KMnO₄. The consumed volume was 12.80 cm³.
 - 1) Write the balance chemical equations for the reactions taken place in above I, II and III states.
 - 2) Calculate the percentage of Fe in bullets.
- (10) (a) When 0.025 mol of $Na_2CO_{3(s)}$ is added to 25 cm³ of HCl solution at room temperature, it is observed that the temperature of the solution is increased by 7^oC. The specific heat capacity of the final solution is 5000 J kg⁻¹K⁻¹ and its density is 1000 kgm⁻³.
 - $(i) \quad Calculate the heat emitted during the above reaction.$
 - (ii) Calculate the enthalpy of naturalization when a mole of HCl is reacted.
 - (iii) Mention an important assumption used for this calculation.
 - (iv) Under the same conditions of above reaction, when the following reaction is carried out the enthalpy change occurred is -25.5 kjmol⁻¹.

 $\mathrm{NaHCO}_{3(s)} + \mathrm{HCl}_{(aq)} \rightarrow \mathrm{NaCl}_{(aq)} + \mathrm{CO}_{2(g)} + \mathrm{H}_2\mathrm{O}_{(l)}$

Calculate the enthalpy change of the following reaction under the same conditions.

 $2\text{NaHCO}_{3(s)} \rightarrow \text{Na}_2\text{CO}_{3(s)} + \text{H}_2\text{O}_{(l)} + \text{CO}_{2(g)}$

(b) The amount of Cu^{2+} ions in a solution can be determined by adding excess I. The liberated I_2 there, is titrated by a standard sodium thiosulfate solution.

$$\begin{split} & \mathrm{Cu}^{^{2+}}{}_{(\mathrm{aq})} + \bar{\mathrm{I}_{(\mathrm{aq})}} \rightarrow \mathrm{CuI}_{(\mathrm{s})} \ \mathrm{I}_{^{2}(\mathrm{aq})} \\ & \mathrm{I}_{^{2}(\mathrm{aq})} + \mathrm{Na}_{^{2}}\mathrm{S}_{^{2}}\mathrm{O}_{^{3}(\mathrm{aq})} \rightarrow \mathrm{Na}_{^{2}}\mathrm{S}_{^{4}}\mathrm{O}_{^{6}} + \mathrm{NaI}_{(\mathrm{aq})} \end{split}$$

In a certain experiment, 2.5 g of hydrated copper sulfate ($CuSO_4 . 5H_2O$) is dissolved in 100cm³ of water.

 20cm^3 of that solution is measured to a titration flask and excess KI solid is added. To react completely with the liberated I₂ 18.2 cm³ Na₂S₄O₃ solution is required. Calculate the percentage purity of the hydrated CuSO₄.

$$(H = 1, O = 16, S = 32, Cu = 64)$$

(14) WWW.PastPapers.WiKi (14) Download Term Test Papers, Short Notes From One Place!

