තියලු ම හිමිකම් ඇව්රිණි / ω ලාරු ් පුනිට්පුලිණාගපුණා ω න් අධනයන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016 සංයුක්ත ගණිතය l இணைந்த கணிதம் l Combined Mathematics l | 10 | E | T) | |----|---|-----| | | | الك | පැය තුනයි மூன்று மணித்தியாலம் Three hours Index Number ## **Instructions:** - * This question paper consists of two parts; - Part A (Questions 1 10) and Part B (Questions 11 17). - * Part A: Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed. - * Part B: - Answer five questions only. Write your answers on the sheets provided. - * At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor. - * You are permitted to remove only Part B of the question paper from the Examination Hall. ### For Examiners' Use only | Part | Question No. | Marks | |------|--------------|-------| | | 1 | | | | 2 | | | | 3 | | | | 4 | | | A | 5 | | | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | 10 | | | | 11 | | | | 12 | | | | 13 | | | В | 14 | | | | 15 | | | | 16 | | | | 17 | | | | Total | | | | Percentage | | | Paper I | | |-------------|--| | Paper II | | | Total | | | Final Marks | | #### Final Marks | In Numbers | | |------------|--| | In Words | | **Code Numbers** | Marking Examin | er | | |----------------|----|---| | Checked by: | 1 | · | | | 2 | | | Supervised by: | | | | | ratt A | |----|---| | 1. | Using the Principle of Mathematical Induction , prove that $\sum_{r=1}^{n} r(r+1) = \frac{n}{3}(n+1)(n+2)$ for all $n \in \mathbb{Z}^+$. | 2. | Sketch the graphs of $y = x + 1$ and $y = 2 x - 1 $ in the same diagram. Hence or otherwise, find all real values of x satisfying the inequality $ x + 1 > 2 x - 1 $. | ······ | | | ······································ | | | | | | | | | | | | | | 3. | Sketch on the same Argand diagram, the loci of points representing complex numbers z satisfying (i) $ z-i =1$, (ii) $Arg(z-i)=\frac{\pi}{6}$ and find the complex number represented by the point of intersection of these loci in the form $r(\cos\theta+i\sin\theta)$, where $r>0$ and $0<\theta<\frac{\pi}{2}$. | |----|--| | | | | | ····· | | | | | | | | | ······································ | | | • | 1. | How many different numbers with five digits can be made from the digits 1, 2, 3, 4 and 5, if each digit is used only once? | | | How many of these numbers | | | (i) are even numbers? | | | (ii) have the digits 3 and 4 next to each other? | 5. | Let $\alpha > 0$. Find the value of α such that $\lim_{x \to 0} \frac{1 - \cos(\alpha x)}{\sqrt{4 + x^2} - \sqrt{4 - x^2}} = 16$. | |-----------|--| | | , | | | | | | • | Í. | Show that the area of the region enclosed by the curves $y = x^2$ and $y = 2x - x^2$ is $\frac{1}{3}$ square units. | | Ś, | Show that the area of the region enclosed by the curves $y = x^2$ and $y = 2x - x^2$ is $\frac{1}{3}$ square units. | | Ś. | | | ó. | | | ś. | | | í. | | | í. | | | ó. | | | ó. | | | 5. | | | 5. | | | í. | | | í. | | | í. | | | Ó. | | | 5. | | | 5. | | | 7. | A curve C is given by the parametric equations $x = 3\sin^2\frac{\theta}{2}$, $y = \sin^3\theta$ for $0 < \theta < \frac{\pi}{4}$. Show that $\frac{dy}{dt} = \sin^2\theta$ | |-----|--| | | that $\frac{dy}{dx} = \sin 2\theta$.
If the gradient of the tangent at a point P on C is $\frac{\sqrt{3}}{2}$, find the value of the parameter θ | | | corresponding to P . | - | | | | | | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | | | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 3. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 3. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 3. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 8. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | 88. | Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k . | | y . | Let $A \equiv (1, 2)$, $B \equiv (-5, 4)$ and S be the circle with AB as a diameter. Find the equations of (i) the circle S, and | | | |-------------|---|--|--| | | (ii) the circle with centre (1, 1) which intersects S orthogonally. | | | | | | | | | | *************************************** | 10 . | Solve the equation $\cos x + \cos 2x + \cos 3x = \sin x + \sin 2x + \sin 3x$ for $0 \le x \le \frac{\pi}{2}$. | | | | . • | 2 | | | | | | | | | | | | | | | *************************************** | | | | | *************************************** | *************************************** |
 | | | | | | | ជិចទួ ២ សិଡିකම් අජව්රිණ්/முழுப் பதிப்புரிமையுடையது/All Rights Reserved] ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව දියා තර්කය පුළුරුවර්ට පුළුදු විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இහැසිකෙස් පුරිදිකයන් නිතාගත්සයාගේ ඉහැසිකෙස් පුරිදුක් ප්රචාග අධානයන පොදු සහතික පසු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016 සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I #### PART B * Answer five questions only. 11. (a) Let a, b, $c \in \mathbb{R}$ such that $a \neq 0$ and $a + b + c \neq 0$, and let $f(x) = ax^2 + bx + c$. Show that 1 is **not** a root of the equation f(x) = 0. Let α and β be the roots of f(x) = 0. Show that $(\alpha - 1)(\beta - 1) = \frac{1}{a}(a + b + c)$ and that the quadratic equation with $\frac{1}{\alpha - 1}$ and $\frac{1}{\beta - 1}$ as the roots is given by g(x) = 0, where $g(x) = (a + b + c)x^2 + (2a + b)x + a$. Now, let a > 0 and a + b + c > 0. Show that the minimum value m_1 of f(x) is given by $m_1 = -\frac{\Delta}{4a}$, where $\Delta = b^2 - 4ac$. Let m_2 be the minimum value of g(x). Deduce that $(a + b + c) m_2 = am_1$. **Hence**, show that $f(x) \ge 0$ for all $x \in \mathbb{R}$ if and only if $g(x) \ge 0$ for all $x \in \mathbb{R}$. (b) Let $p(x) = x^3 + 2x^2 + 3x - 1$ and $q(x) = x^2 + 3x + 6$. Using the remainder theorem, find the remainder when p(x) is divided by (x - 1) and the remainder when q(x) is divided by (x - 2). Verify that p(x) = (x - 1) q(x) + 5, and find the remainder when p(x) is divided by (x - 1) (x - 2). 12.(a) Let $n \in \mathbb{Z}^+$. State, in the usual notation, the binomial expansion for $(1+x)^n$. Show, in the usual notation, that $\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1}$ for r = 0, 1, 2, ..., n-1. The coefficients of x^r , x^{r+1} and x^{r+2} taken in that order, in the binomial expansion of $(1+x)^n$ are in the ratios 1:2:3. In this case, show that n=14 and r=4. (b) Let $U_r = \frac{10r+9}{(2r-3)(2r-1)(2r+1)}$ and f(r) = r(Ar+B) for $r \in \mathbb{Z}^+$, where A and B are real constants. Find the values of constants A and B such that $$U_r = \frac{f(r)}{(2r-3)(2r-1)} - \frac{f(r+1)}{(2r-1)(2r+1)}$$ for $r \in \mathbb{Z}^+$. Show that $\sum_{r=1}^{n} U_r = -3 - \frac{(n+1)(2n+3)}{(4n^2-1)}$ for $n \in \mathbb{Z}^+$. Show further that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum. **13.**(a) Let $$\mathbf{A} = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}$$, $\mathbf{X} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\mathbf{Y} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. Find real constants λ and μ such that $AX = \lambda X$ and $AY = \mu Y$. Let $$\mathbf{P} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$. Find \mathbf{P}^{-1} and \mathbf{AP} , and show that $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$, where $\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$. (b) In an Argand diagram, the point A represents the complex number 2+i. The point B is such that OB = 2(OA) and $A\hat{O}B = \frac{\pi}{4}$, where O is the origin and $A\hat{O}B$ is measured counter-clockwise from OA. Find the complex number represented by the point B. Also, find the complex number represented by the point C such that OACB is a parallelogram. (c) Let $z \in \mathbb{C}$ and $w = \frac{2}{1+i} + \frac{5z}{2+i}$. It is given that Im w = -1 and $\left| w - 1 + i \right| = 5$. Show that $z = \pm (2+i)$. **14.** (a) Let $$f(x) = \frac{(x-3)^2}{x^2-1}$$ for $x \neq \pm 1$. Show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{2(x-3)(3x-1)}{(x^2-1)^2}$. Write down the equations of the asymptotes of y = f(x). Find the coordinates of the point at which the horizontal asymptote intersects the curve y = f(x). Sketch the graph of y = f(x) indicating the asymptotes and the turning points. (b) A thin metal container, in the shape of a right circular cylinder of radius 5r cm and height h cm has a circular lid of radius 5r cm with a circular hole of radius r cm. (See the figure.) The volume of the container is given to be 245π cm³. Show that the surface area S cm² of the container with the lid containing the hole is given by $S = 49\pi \left(r^2 + \frac{2}{r}\right)$ for r > 0. Find the value of r such that S is minimum. 15.(a) (i) Find $$\int \frac{dx}{\sqrt{3+2x-x^2}}$$. (ii) Find $\frac{d}{dx} \left(\sqrt{3 + 2x - x^2} \right)$ and hence, find $\int \frac{x - 1}{\sqrt{3 + 2x - x^2}} dx$. Using the above integrals, find $\int \frac{x + 1}{\sqrt{3 + 2x - x^2}} dx$. (b) Express $\frac{2x-1}{(x+1)(x^2+1)}$ in partial fractions and hence, find $\int \frac{(2x-1)}{(x+1)(x^2+1)} dx$. - (c) (i) Let $n \neq -1$. Using integration by parts, find $\int x^n (\ln x) dx$. - (ii) Evaluate $\int_{1}^{3} \frac{\ln x}{x} dx$. - 16.(a) The equation of the diagonal AC of a rhombus ABCD is 3x y = 3 and $B \equiv (3, 1)$. Also, the equation of CD is x + ky = 4, where k is a real constant. Find the value of k and the equation of BC. - (b) Sketch the circles, C_1 and C_2 given by the equations $x^2 + y^2 = 4$ and $(x-1)^2 + y^2 = 1$ respectively, indicating clearly their point of contact. A circle C_3 touches C_1 internally and C_2 externally. Show that the centre of C_3 lies on the curve $8x^2 + 9y^2 - 8x - 16 = 0$. 17.(a) Write down the trigonometric identity for $\tan (\alpha + \beta)$ in terms of $\tan \alpha$ and $\tan \beta$. Hence, obtain $\tan 2\theta$ in terms of $\tan \theta$, and show that $\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$ By substituting $\theta = \frac{5\pi}{12}$ in the last equation, verify that $\tan \frac{5\pi}{12}$ is a solution of $x^3 - 3x^2 - 3x + 1 = 0$. Given further that $x^3 - 3x^2 - 3x + 1 = (x + 1)(x^2 - 4x + 1)$, deduce that $\tan \frac{5\pi}{12} = 2 + \sqrt{3}$. - (b) Show that $\tan^2 \frac{A}{2} = \frac{1 \cos A}{1 + \cos A}$ for $0 < A < \pi$. In the usual notation, using the Cosine Rule for a triangle ABC, show that $(a+b+c)(b+c-a)\tan^2 \frac{A}{2} = (a+b-c)(a+c-b)$. - (c) Show that $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$. | AL/2010/10/E-M | | | | | |---|---|--|--|--| | $ ag{Gag}$ ම හිමිකම් ඇවිටිනි / முழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$] | ·• | | | | | ලී ලංකා විතාශ දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්තමේ කුල්ලියිය අතුර් පිරිදුව සුදුව විතාශ දෙපාර්තමේ ලියුවා විතාශ දෙපාර්තමේ ලියුවා විතාශ දෙපාර්තමේ ලියුවා විතාශ දෙපාර්තමේ වී ලංකා විතාශ දෙපාර්තමේ විතාශ දෙපාර්තමේ විතාශ දෙපාර්තමේ විතාශ විතාශ දෙපාර්තමේ විතාශ දෙපාර්තමේ විතාශ දෙපාර්තමේ විතාශ | odම්ත්තුව ලි. ලංකා විහාග දෙපාර්තමේන්තුව
இலங்கைப் பழீட்சைத் திணைக்களம
Department of Examinations, Sri Lanki
ගමේත්තුව ලි. ලංකා විහාග දෙපාර්තමේන්තුව
இல்ங்கைப் பழீட்சைத் திணைக்களம | | | | | ருவுக்க ஊடி கூகிக் சது (උසස් சைது) பிரைக், 2016
கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரிக்கை, 20
General Certificate of Education (Adv. Level) Examination, A | 16 ஓகஸ்ந் | | | | | සංයුක්ත ගණිතය II
இணைந்த கணிதம் II
Combined Mathematics II | | | | | | | | | | | # **Instructions:** * This question paper consists of two parts; Part A (Questions 1-10) and Part B (Questions 11-17) **Index Number** - * Part A: Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed. - * Part B: Answer five questions only. Write your answers on the sheets provided. - * At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor. - * You are permitted to remove only Part B
of the question paper from the Examination Hall. - * In this question paper, g denotes the acceleration due to gravity. #### For Examiners' Use only | (10) Combined Mathematics II | | | |------------------------------|--------------|-------| | Part | Question No. | Marks | | | 1 | 4.144 | | | 2 | | | | 3 | - | | | 4 | | | A | 5 | | | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | 10 | | | | 11 | _ | | | 12 | | | | 13 | | | В | 14 | | | | 15 | | | | 16 | | | | 17 | | | | Total | | | | Percentage | | | Paper I | | |-------------|--| | Paper II | | | Total | | | Final Marks | | ## Final Marks | In Numbers | | |------------|--| | In Words | | **Code Numbers** | Marking Examiner | | | |------------------|---|---| | Checked by: | 1 | | | onconda by: | 2 | ı | | Supervised by: | | | | _ | | | |------|-----|---| | 2- | | | | - 25 | CI. | - | | 1. | of length <i>l</i> whose other end is collides horizontally with velocithe velocity with which the co | tied to a fixed
city u with the pomposite particle | point O. Another particle and coal e begins to move. | article of mass 2m esces with it. Find | | |----|--|---|--|---|---| | | Show that if $u = \sqrt{gl}$, then t | the composite | particle reaches a m | aximum height of | 2 m | | | $\frac{2l}{9}$ above its initial level. | | | _ | ${u}$ $\bigcirc \bigcirc m$ | | | | ************* | *************************************** | | ********** | | | *************************************** | *************** | | | ••••• | | | *************************************** | | | ••••• | | | | *************************************** | *************************************** | ····· | | ••••• | | | | ••••• | | *************************************** | • | | | | | ••••• | ••••• | | | | | | | | | | | | • | | *************************************** | | | | *************************************** | ••••••• | | ••••• | | | | *************************************** | | | • | | | | *************************************** | ••••• | | •••• | ******* | | | | ************* | | •••••• | | | | *************************************** | ********** | *************************************** | ••••••• | | | | • | | | | | | 2. | A particle P of mass m and a the same straight line towards figure. After their impact, P and | each other wit | th speeds $5u$ and u | respectively, as sho | wn in the | | 2. | the same straight line towards | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other will Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 2. | the same straight line towards figure. After their impact, P and Find ν in terms of u , and show | each other wind Q move away | th speeds $5u$ and u from each other wi | respectively, as shooth speeds u and v re | wn in the spectively. | | 3. | A particle P , projected horizontally with velocity u given by $u = \frac{3}{2}\sqrt{ga}$ from a point A at the edge of a step of a fixed stairway perpendicular to that edge, moves under gravity. Each step is of height a and length $2a$ (see the figure). Show that the particle P will not hit the first step below A , and it will hit the second step below A at a horizontal distance $3a$ from A . | |----|---| | | | | | | | | ······································ | 1. | | | 4. | | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R +
Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 4. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 4. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 4. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | 1. | A car of mass M kg moves along a straight level road against a resistance of constant magnitude R N. At an instant when the car is moving at speed v m s ⁻¹ , its acceleration is a m s ⁻² . Show that the power of its engine at this instant is $(R + Ma)v$ W. The car then moves with a constant speed v_1 m s ⁻¹ against a resistance of the same constant magnitude R N up a straight road inclined at an angle α to the horizontal, working at the same power. Show that $v_1 = \frac{(R + Ma)v}{R + Mg \sin \alpha}$. | | | In the usual notation, let $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j}$ and $\mathbf{c} = \alpha\mathbf{i} + (1 - \alpha)\mathbf{j}$, where $\alpha \in \mathbb{R}$.
Find (i) $ \mathbf{a} $ and $ \mathbf{b} $, (ii) $\mathbf{a} \cdot \mathbf{c}$ and $\mathbf{b} \cdot \mathbf{c}$ in terms of α . | |---|---| | | If the angle between a and c is equal to the angle between b and c , show that $\alpha = \frac{1}{2}$. | | | 4 | | | | | | ······································ | | ٠ | ······ | | | ······································ | | | | | | ······································ | smooth rigid circular wire of radius $a > \sqrt{2} l$ which is fixed in a vertical plane. A small smooth | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | - | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | - | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is
attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | | bead of weight w, which is free to move along the wire, is attached to the other end of the string. The bead is in equilibrium with the string taut, as in the figure. Mark the forces acting | | 7. | Let A and B be two events of a sample space Ω . In the usual notation, $P(A) = p$, $P(B) = \frac{p}{2}$ and | |----|--| | | $P(A \cup B) - P(A \cap B) = \frac{2p}{3}$, where $p > 0$. Find $P(A \cap B)$ in terms of p . | | | Deduce that if A and B are independent events, then $p = \frac{5}{6}$. | | | | | | | | | *************************************** | | | •••••• | , | | | | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. | | 8. | *************************************** | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 8. | A bag contains 6 white balls and n black balls which are equal in all respects, except for colour. Two balls are taken out at random from the bag, one after the other, without replacement. The probability that the first ball is white and the second ball is black is $\frac{4}{15}$. Find the value of n . | | 9. | The mean of thr
mean of all five
integers. | integers is 5 | i. Also, | the only | mode of | these fiv | ve intege | ers is 3. | Find the | five | |----|---|---------------------------|---|-----------|---|------------|---|-----------------------|--|---------------| | | | | | | | | • | | | • • | | | | | | | | | • | | | • • | | | | | | | | | | | | • • | | | *************************************** | | | | · · · · · · · · · · · · · · · · · · · | | | | | ٠. | | | | ••••• | | | · • • • • • • • • • • • • • • • • • • • | | | | | · • | | | | | | | · • • • • • • • • • • • • • • • • • • • | • • | | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | | · , · · · · · · · · · · · · · | | | ••••• | ••••• | • • | | | | ········· | | | · • • • • • • • • • • • • • • • • • • • | | • | | | •• | | | | | | | , , | | | | | • • | | | | | | | | | | | | | | | | | | | , | | | | | | | 0. | An arrow is should 1, 2, 3, 4 and 5. frequency table, | The number of where p and | of times | the arrow | board con hits each | nsisting c | ectors is | qual sect
given in | ors numb
the follo | oered
wing | | | | Number | 1 | 2 | 3 | 4 | 5 | - | | | | | | Frequency | 1 | p | q | 5 | 2 | | | | | | If the mean and values of p and | the variance q . | of the a | bove data | a are give | en to be | 3 and $\frac{6}{5}$ | respecti | vely, finc | 1 the | | | | | | | | | J | , | | | | | | | .,,,,,,,,,, | ********* | | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | •• | | | | | •••••• | | | | | | | | | | | | | | ••••••• | கீம் இ விறிவர் අசிற்கி (முழுப் பதிப்புரிமையுடையது |All Rights Reserved] ලි ලංකා විශාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේනුවල්දියා පවස්ති සුළුජාවයිම්ම සියලුපා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பழீடன் திணைக்களும் இலங்கைப் பரீடன் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lauka Department of Bahhalakast Sri IIII (කාර්යක් සියල්) දින දෙපාර්තමේන්තුව ලී ලංකා විභාග ලේකාන්ත් සියල් දින්තීම් සියල් සි අධානයන පොදු සහතික පතු (උසස් පෙළ) විශාගය, 2016 අගෝස්ද <u>கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரிட்சை, 2016 தகஸ்ந்</u> General Certificate of Education (Adv. Level) Examination, August 2016 සංයුක්ත ගණිතය இணைந்த கணிதம் II Combined Mathematics II PART B * Answer five questions only. (In this question paper, g denotes the acceleration due to gravity.) 11. (a) A particle P of mass m is connected to a particle Q of mass 3m by a light inextensible string passing over a small smooth pulley fixed at a height 3h above an inelastic horizontal floor. Initially the two particles are
held at a height h above the floor with the string taut, and released from rest. (See the adjoining figure.) Applying Newton's second law separately to the motions of P and Q, show that the magnitude of acceleration of each particle is $\frac{8}{3}$ After a time t_0 the particle Q strikes the floor, comes to rest instantly, remains at rest for a further time t_1 and begins to move up. Sketch the velocity-time graphs separately for the motions of the two particles P and Q until the particle $\frac{1}{2}$ Q begins to move up. Using these graphs, show that $t_0 = 2\sqrt{\frac{h}{g}}$ and find t_1 in terms of g and h. Show further that the particle P reaches a maximum height $\frac{5h}{2}$ above the floor. (b) A straight river of breadth a flows with uniform speed u. The points A and C are situated on opposite banks of the river such that the line AC is perpendicular to the direction of flow of the river. Also, a stationary buoy B is fixed in the middle of the river, on the upstream side of ACsuch that ABC is an equilateral triangle. (See the adjoining figure.) A boat moving with speed v > u relative to water starts off from A and moves until it reaches B. Then it moves from B to C. Sketch the velocity triangles for the motions of the boat from A to B and from B to C. Show that the speed of the boat in its motion from A to B is $\frac{1}{2} \left(\sqrt{4v^2 - u^2} - \sqrt{3}u \right)$ and find its speed in the motion from B to C. Hence, show that the total time taken by the boat for the paths AB and BC is $\frac{a\sqrt{4v^2-u^2}}{v^2-u^2}$ 12.(a) The triangle ABC in the figure is a vertical cross-section through the centre of gravity of a uniform wedge of mass 2m. The line AB is a line of greatest slope of the face containing it and $A\hat{B}C = \frac{\pi}{4}$. The wedge is placed with the face containing BC on a rough horizontal floor. The face containing AB is smooth. A particle of mass m is held on AB as in the figure and the system is released from rest. It is given that the wedge moves in the direction of \overrightarrow{BC} and that the magnitude of the frictional force exerted on the wedge by the floor is $\frac{R}{6}$, where R is the magnitude of the normal reaction exerted on the wedge by the floor. Obtain equations which are sufficient to determine R, in terms of m and g. (b) OAB in the figure is a circular sector of radius a subtending an angle $\frac{\pi}{6}$ at the centre O with OA vertical. It is a cross-section perpendicular to the axis of a smooth cylindrical sector fixed with its axis horizontal. One end of a light inextensible string passing over a small smooth pulley fixed at B is attached to a particle P of mass P and the other end is attached to a particle P of mass P and the particle P hangs freely at the horizontal level of P. The system is released from rest in this position, with the string taut. When P makes an angle P and P with the upward vertical, show that $2a\dot{\theta}^2 = 3g(1-\cos\theta) + g\theta$ and that the tension in the string is $\frac{3}{4}mg(1-\sin\theta)$, and find the normal reaction on the particle P. 13. One end of a light elastic string of natural length a and modulus of elasticity 4mg is tied to a fixed point O and the other end to a particle P of mass m. The particle P is released from rest at O. Find the velocity of the particle P when it passes through the point A, where OA = a. Show that the length of the string $x \ge a$ satisfies the equation $\ddot{x} + \frac{4g}{a} \left(x - \frac{5a}{4} \right) = 0$. Taking $X = x - \frac{5a}{4}$, express the above equation in the form $\ddot{X} + \omega^2 X = 0$, where $\omega (> 0)$ is a constant to be determined. Assuming that $\dot{X}^2 = \omega^2 (c^2 - X^2)$, find the amplitude c of this simple harmonic motion. Let L be the lowest point reached by the particle P. Show that the time taken by P to move from A to L is $\frac{1}{2}\sqrt{\frac{a}{g}}\left\{\pi-\cos^{-1}\left(\frac{1}{3}\right)\right\}$. At the instant when the particle P is at L, another particle of mass λm $(1 \le \lambda < 3)$ is gently attached to P. Show that the equation of motion of the composite particle of mass $(1+\lambda)m$ is $\ddot{x} + \frac{4g}{(1+\lambda)a} \left\{ x - (5+\lambda)\frac{a}{4} \right\} = 0$. Show further that the composite particle performs complete simple harmonic motion with amplitude $(3 - \lambda) \frac{a}{4}$. 14.(a) The position vectors of two points A and B with respect to an origin O are **a** and **b** respectively, where O, A and B are **not collinear**. Let C be the point such that $\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OB}$ and let D be the point such that $\overrightarrow{OD} = \frac{1}{2} \overrightarrow{AB}$. By expressing \overrightarrow{AC} and \overrightarrow{AD} in terms of **a** and **b**, show that $\overrightarrow{AD} = \frac{3}{2} \overrightarrow{AC}$. Let P and Q be the points on \overrightarrow{AB} and \overrightarrow{QD} respectively, such that $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ and $\overrightarrow{OQ} = (1 - \lambda) \overrightarrow{OD}$, where $0 < \lambda < 1$. Show that $\overrightarrow{PC} = 2 \overrightarrow{CQ}$. (b) In a parallelogram ABCD, let AB = 2 m and AD = 1 m, and let $B\widehat{A}D = \frac{\pi}{3}$. Also, let E be the mid-point of CD. Forces of magnitudes 5, 5, 2, 4 and 3 newtons act along AB, BC, DC, DA and BE respectively, in the directions indicated by order of the letters. Show that their resultant force is parallel to \overrightarrow{AE} , and find its magnitude. Also, show that the line of action of the resultant force meets AB produced at a distance $\frac{3}{2}$ m from B. An additional force acting through C is now added to the above system of forces so that the resultant force of the new system is along \overrightarrow{AE} . Find the magnitude and direction of the additional force. - 15.(a) Four equal uniform rods, each of weight w_1 , are smoothly jointed at their ends to form a rhombus ABCD. The mid-points of BC and CD are connected by a light rod such that $B\hat{A}D = 2\theta$. Each of the joints B and D carries equal loads of weight w_2 . The system, hanging symmetrically from the joint A, is in equilibrium in a vertical plane with the light rod horizontal. Show that the thrust in the light rod is $2(2w_1 + w_2) \tan \theta$. - (b) The adjoining figure represents a framework of five light rods AB, BC, CD, AC and AD, smoothly jointed at the ends. It is given that AC = CB and $B\hat{A}C = 30^{\circ} = A\hat{D}C$. The framework is smoothly hinged at D. A weight W is suspended at the joint B and the framework is kept in equilibrium in a vertical plane with AB horizontal and AD vertical, by a horizontal force of magnitude X acting at A. Using Bow's notation, draw stress diagrams for the joints B, C and A in the same figure. Hence, find the value of X and the stresses in all rods, distinguishing between tensions and thrusts. 16. Show that the centre of mass of a uniform semi-circular lamina of radius r and centre O is at a distance $\frac{4r}{3\pi}$ from O. As shown in the adjoining figure, a uniform plane lamina L is made by rigidly attaching a rectangle ABCD to a square PQRS such that DC and PQ lie on the same line with their mid-points coinciding, and removing a semi-circular region XYZ of radius $\frac{a}{2}$ centred at the mid-point T of RS. It is given that AB = a and AD = PQ = 2a. Show that the centre of mass of the lamina L lies on the axis of symmetry at a distance ka from RS, where $k = \frac{238}{3(48 - \pi)}$. As shown in the adjoining figure, the lamina L is in equilibrium on a rough plane inclined at an angle α to the horizontal with its plane vertical and the edge PS on a line of greatest slope such that the point P lies below S. Show that $\tan \alpha < (2-k)$ and $\mu \ge \tan \alpha$, where μ is the coefficient of friction between the lamina and the inclined plane. 17.(a) An unbiased cubical die A shows 1, 2, 3, 3, 4, 5 on its six separate faces. The die A is tossed twice. Find the probability that the sum of the two numbers obtained is 6. Another die B, identical to A in all respects except for the numbers on the faces, shows 2, 2, 3, 4, 4, 5 on its six separate faces. The die B is tossed twice. Find the probability that the sum of the two numbers obtained is 6. Now, the two dice A and B are put in a box. One die is taken out of the box at random and tossed twice. Given that the sum of the two numbers obtained is 6, find the probability that the die taken out of the box is the die A. (b) The mean and the standard deviation of n numbers x_1, x_2, \ldots, x_n are μ_1 and σ_1 respectively, and the mean and the standard deviation of m numbers y_1, y_2, \ldots, y_m are μ_2 and σ_2 respectively. Let the mean and the standard deviation of all of these n + m numbers be μ_3 and σ_3 respectively. Show that $$\mu_3 = \frac{n\mu_1 + m\mu_2}{n + m}$$ Let $$d_1 = \mu_3 - \mu_1$$. Show that $\sum_{i=1}^n (x_i - \mu_3)^2 = n(\sigma_1^2 + d_1^2)$. By taking $d_2 = \mu_3 - \mu_2$, write down a similar expression for $\sum_{j=1}^{m} (y_j - \mu_3)^2$. Deduce that $$\sigma_3^2 = \frac{\left(n\sigma_1^2 + m\sigma_2^2\right) + \left(nd_1^2 + md_2^2\right)}{n+m}$$. The number of copies sold per day, during the first 100 days after publishing a new book, had mean 2.3 and variance 0.8. During the next 100 days, the number of copies sold per day had mean 1.7 and variance 0.5. Find the mean and the variance of the number of copies sold per day during the first 200 days.