Confidentia MAN # AMONT අපිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved) றை கிச்சுர்மை/புதிய பாடத்திட்டம்/New Syllabus ් ලී^ලල්කෝ විභාග ලඳපාරකමේක්තුව ^{යා}ද கூள்களாடுகள்காகப் படு நிறை இணைக்களாம் இனிக்கைப் படிடன்கத் திலை iions, Sri Lanka De**இலங்கைப் படிப்பக்கத**் S**தி கைம் கொணை**ப் රතුව මු ලංකා විභාග අදහස්තමේ නම්ව මු ලංකා විභාග අදහස්තමේ න් අපහස්තමේ ප්රතිකාශ කර විභාග අදහස්තමේ ක්රමා විභාග අදහස්තමේ න් අධ්‍යයන පොදු සහතික පතු (සාමානා පෙළ) විභාගය, 2016 දෙසැම්බර් கல்விப் பொதுத் தராதரப் பத்திர (சாதாரண தர)ப் பரீட்சை, 2016 டிசெம்பர் General Certificate of Education (Ord. Level) Examination, December 2016 විදහාව விஞ்ஞானம் П පැය තුනයි Science மூன்று மணித்தியாலம் П Three hours Index Number: Instructions: Write your answers in neat handwriting. Answer the four questions in Part A, in the space provided. Of the five questions in Part B answer three questions only. After answering, tie Part A and the answer script of Part B together and hand over. Lead to the control of the control o (i) What is meant by biomagnification? accumilation Collection of/Concentrate toxic chemical pollutants/substances/wastes along with food chains from one trophic level to the other: (ii) What is the function of the ozone layer? 01 collorPrevent/minimize the entry of (high energy) uv radiation (emitted by the sun) to the earth surface. / acts as a hind protective shield (iii) During the past century, the sea level has risen by about 10-20 cm. Which of the above effects was directly global warming 01 (iv) Consider the figures A and B. (These are rough diagrams.) (a) State which of the above two effects are shown by A and B. global warming (01) 02 South pole South pole acid rains (01) Coral (b) State two gases responsible for B and state one method for each that releases each of these Island. Island gases. (Write the relevant method in front of the name of the gas.) SO₂/ Sulphurdioxide, SO₃/ Sulphurtrioxide; - combustion of vulcanized rubber/ volcanic eruptions/combustion of coal/ burning of fossil fuels/ action of bacterias on dead bodies 0 7 NO/Nitric oxide NO₂/-Nitrogen dioxide/ N₂O/-Nitrusoxide- Eightning/Combustion inside xehicle engines.... (v) Some solid waste material responsible for environmental pollution are as follows. Florescent lamps, polythene, chemical fertilizers, detergents, animal excretory matters

01

01

(a) Of the above, state a material which causes eutrophication.

Chemical fertilizers/detergents/animal excretory matters

(b) From which of the above materials, mercury could mostly be released to the environment?

- (c) For which of the 4R waste handling techniques can each of the following activities be as an example?
 - 1. Use of organic fertilizer instead or chemical fertilizer:Replace (01)......
 - II. Production of biogas using animal excretory matter: Recycling/Recycle. (01).
- (vi) Write down two renewable energy resources which are eco-friendly.
 - ◆ Wind ◆ solar energy ◆ sunlight ◆ Ocean waves ◆ Tidal power (Tidal energy)
 - Geo thermal energy
 Water
- 2. (A) Invertebrates are separated into phyla based on their features.
 - (i) In the second column of the table given below, state the phylum which has each of the indicated as a, b, c and d in the first column.

Feature	Phylum
a - Multicellular body build up of two germinal layers	Coelenterata/Cnidaria
b - Presence of a muscular foot	Mollusca
c - Living only in marine habitats	Echinodermata
d - Presence of a chitinous cuticle	Arthropoda

(ii) Name an animal that possesses the feature (a) given in the above table. Hydra/sea.animony/Ge

(iii) Write down the kingdom and domain to which the phyla stated in (i) above belong.

Kingdom: Animalia (01)

Domain: Eukarya (01)

award 01 mark for domain whether the answer is correct

- (B) Respiration is a process of living organisms.
 - (i) (a) State the **two** types of respiration that can takes place in organisms.

 Aerobic(respiration)/(respiration) with O₂ (01)
 - (b) Which one of the two types of respiration) without O_2 (01) which one of the two types of respirations stated in (a) above produces more energy.

 Aerobic(respiration)/(respiration) with O_2
 - (ii) The apparatus needed to arrange a set-up to show experimentally, that carbon dioxide gas is during the respiration are given below without a sequential order.

- (a) What is the solution that should be put into the bottle A? .. lime water/ Ca (OH)2(solu
- (b) After putting the relevant solution into the bottle A, write down the correct sequence in the above bottles (A, B, C, D and E) should be connected. E, A, C, D, B, / E, D, C, A, S
 - State what should be done after connecting all the bottles correctly.

...Open the tap of bottle B and remove the water in it (slowly) / Open the tap

Award one mark is the answer is correct or wrong

After the step mentioned in (c) above, state the change that could be observed in the

lime water in 4 th bottle turns to milky

(e) State the change that should be done to the above set-up to arrange a control set-up to the above experiment.

Keep (the bottle) C empty/Remove green grams in (bottle) C /put some boiled to (bottle) C

givette X X (c)

*

As shown in the fo After that the subst	llowing figures. I	MgCl ₂ , sugar a es are stirred v	nd grease are	added to the	test tubes A,	B, C , D and E .
My	and the second of the second o			Sugar	Greese	
	1 111	1.		$\downarrow \prime$	141	
						D
 	i hoa	N E P				
Divilled water (25)	C) Distilled water (6)	O C Distilled was	er (25 °C) - Kan	2	1 (25 ac ac)	
	D	C		D	(erosene (25 °C)	
(1) (ii) In which to	ectively, the solu-				ine with suga	and kerosene
Šoĺ	ute - Sugar (01)	Solvent -	Kerosene	(01)		
(no	marks for the in	correct seque	nce)(no marl	ks for greese	and kerosene)
(ii) (n) Define 'so			icealuae in 16	\n		
	ximum mass of			og or a solve	ent at a certai	n temperature
TBI	COI Mark II IIIa	XIIIIUIII IS HOL II	nentioned)			
(b) What facto	or that affects the	solubility can	be shown by	v each of the	following nai	rs of test tubes?
	<i>B</i> :tem					
	D:nat			••••••		• • • • • • • • • • • • • • • • • • • •
III. D and		ure of solute		**************	•••••••••	•••••
	Co	omphis-on		***********	•••••••	
(III) In the above e	xperiment, 1.9 g	of MgCl ₂ was	added to the	tube A and th	ne total volume	of the solution
MATTICE WAS IT	umber of moles					
	wher of molor of	f Maal -	1.9 (g) $(0.1)^{1.9}$, CI = 333) N		
	mber of moles of				****************	
**********			(mol) (01)		***************************************	•••••
(b) Calculate t	he concentration	of MgCl ₂ in the	ne solution.			
renyiyayyri	0.02	19.50 Marian		ğ		
1171111111111111	$\frac{0.02}{10} \times 1000$	(01)=	2.mol.dm			
			(A) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		•••••••	
(Iv) Water is a good	sta as a liquid at	room tempera	ture • Hav	ing a higher of	ue to the inter- specific heat c	nolecular forces. apacity 0
	sts as a liquid at i ving high boiling	point ··· Havir	ng a higher d	ensity than th	nat-of-ice Doin	Ť
MAL LANGUAGE	a marks for any	two of above	No.			
Consider the follow	ng types of way	/ec				
 Ultraviolet 	: \$\$\$\tag{\$\psi_{\psi}\$}		Micro wave	. •		
• Gamma ray	ys • Visib	le light •	Sound wave	es 🌼 II	-rays Itrasound wav	P.S.
(i) Of the above	waves, mention a	wave that pro	pagates with	compressions	and rarefaction	en.
Sou	ind waves/Ultra	sound waves	*********	******	••••	
(ii) Write down a Having a frequen	special charactericy higher than 20	istic of ultrasou 000 Hz/Do not	nd waves. enter air after	travelling thro	ough a solid me	edium/
Frequency excee	ds the upper limit	of human audi	ble range·····	************	••••••	
(iii) In the field of	medicine, which	type of the a	bove waves	is generally u	sed to observe	the conditions
of the fetus in	side the womb o	of a pregnant m	other?	····Ultra sound	d waves······	
(iv) A part of the	electromagnetic s	pectrum is give	en below.			
A	В	Visible Light		rays (Gami	na rays
(a) Considering	the sequence of					
places A, I		ve (01)				
A:		aves / IR rays (011	•••••••••••••		
B:		***************	 Ω τ)		************	
C :	X rays (01)					

Answer three questions only, from questions No. 5, 6, 7, 8 and 9.

5. (4) Average masses of macronutrients present in a biscuit of a particular brand are given in the following

Macronutrient	Mass
Proteins	0.81 g
Carbohydrates	5.67 g
Pat	1.55 g

- (i) What are the elements present in proteins?
- (II) (a) When a person consumes a biscuit of the above brand, in which part of the digestive system
 - (b) Name the enzyme that is added to food in the part stated in (a) above, and state the nutrient
 - (0) State the two substances that are mainly added to this food in the stomach.
 - (d) In which part of the digestive system is the digestion of this food completed?
 - (e) State the end products of this digestive process.
 - (f) Write one adaptation of the human digestive system for efficient absorption of end products of
- (#) Reproduction is the process of production of a new generation from one generation.
 - (1) State respectively, the names given to male and female gametes that contribute to human reproductive
 - (ii) In a human somatic cell, how many pairs of sex chromosomes are present?
 - (III) Considering the sex chromosomes, show, using a diagram, how sex is determined in humans.
 - (|v) (a) What is the sex-linked disorder that occurs only in males?
 - (b) What is the genetic reason for this disorder?

(Total marks 20)

)	(Four elements should be mentioned) one ab. no marks	
	Mauth/Buccal cayity	01
11/1/15	Ptyalln/Amylase (01)	01
	Carbonydrate (01) (No marks for starch)	
(0)	(Dilute) HCI/Hydrochloric acid (01)	02
w. Sandtone	Pepsin (enzyme)	. 02
(d)	In small intestine	01
(*)	 Monosaccharides (glucose/fructose/galactose) (01) Amino Acids (01) Fatty acids (01) and Glycerol (01) (Give marks for any kind of monosaccharide) order is not required 	
(0)	Small Intestine is being a long tube Presence of circular folds in the inner wall of small intestine Presence of finger like projections / villi in the circular folds Presence of microvilli in the (epithelial cell of) villi Thin epithelial lining on villi	04
	• Highly vascularised villi - presence of more cappillames to (Give 01 mark for any one of above) Supply bland	

	(B)	(i)	Sperm, (01) Ovum / egg (01)	
			Sperm, (01) Ovum / egg (01) ovu les / Ova.	
7			(Order is essential)	
		(ii)	one (pair)	
				_
		(22.5)	(mother cell) (C11)	
		(iii)	(gametes) ovum (sperm) (O1)	
		.		
1			(01)	
			or X X X X Y male	
	1		XXXXY	
			Female - male	
			Female male Female male for gametes	
			represent female and male	
			(φ) (mother cell) xx xy	
			(mother cell) XX XY (mother cell)	
		. .	(gametes) ovum 🛞 💢 💢 (sperm)	
		1		
-	1:-	1	XX XY XX XY Female male Female male male	
	(iv) (a	Haemophilia male Female male	-
	1	(b	Due to V linked	
			Due to X linked recessive gene	+
	L			
	<u> </u>	<u></u>	Total	t

03

01

01

20

6 Consider the following industrial production processes.

- (I) Name A. L., M and X respectively.
- (ii) Witte a physical property of X.
- (III) Write down the two separating techniques (1) and (2) relevant to production of salt from sea water.
- (117) About 40% CaCl, is added to NaCl when obtaining fused NaCl from solid NaCl. What is the reason
- (v) What is the strategy used in the cell to prevent the reaction between L and M produced by the electrolysis process?
- (VI) (a) Is the chemical reaction occur in A in the process of iron extraction, exothermic?
 - (b) Draw the energy level diagram for this reaction and state reactants and products.
- (vii) (n) Write the balanced chemical equation relevant to the production of iron from Fe₂O₃.
 - (b) In this process 1680 kg of pure molten iron was obtained from a 2520 kg of mixture of Fe₂O₃ with impurities. (In this case, assume that all Fe₂O₃ reacted completely.)
 - I. Find the number of moles of molten iron obtained and calculate the mass of Fe₂O₃ reacted. (Fe = 56, O = 16)
 - 11. What is the mass of impurities presented in the mixture?

(Total marks 20)

(D (I)	A - Lime stones /CaCO ₃ /Calcium carbonate (01)	
	L - Sodium / Na (01)	
	M - Chlorine / Cl ₂ (01)	
	X - Hydrogen / H ₂ (01)	04
(11)	exists as a gas at room temperature	
	density is lesser than that of air	
	• colour less	
	• odourless	
	Slightly soluble in water	
	• combstible gas	
	(give one mark for any one of above)	01
(((1))	①Vapourisation (01) (give marks for evaporation also)	
	②Crystallization (01) (sequential order is not essential)	02
(IV)	to decrease/reduce the melting point of (soild) NaCl	
		01
(0)	Using a steel mesh diaphregm / separating anode and cathode	
	by a steel mesh	01
(vi) (a)	endothermic	
	M	01

		(b	energy (01)	
				$CaO(s) + CO_2(g)$ (01)	
		-		(01)	
				CaCO ₁ (S)	•
				를 보통해 이 가장 맛을 되었다면서 가셨다면서 이 이 이 그는 것	03
				Give 01 mark for reactant or products If one is there with (in that case, consider the physical/state) the state give masks	
-	(::		\downarrow		•
	(vii	l)(å	4	$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$	
		1		not balanced no marks	01
		(1) 1	number of moles of (molten) iron = $\frac{1680 \times 1000}{56}$ (01)	
				= <u>30 000 (</u> moles) (01)	
				Number of moles of Fe ₂ O ₃ (required to obtain 7	
	•			30,000 moles of molten iron) = 15,000 (01)	
				∴ Mass of Fe ₂ O ₃ = 15,000 × 160 (01)	05
				= 2400000(g)/2400(kg) (01)	
				(Give 01 mark if 30,000 × 160 is given)	
			I	Mass of impurities (in the mixture) = $2520 \text{ (kg)} - 2400 \text{ (kg)}$	
				= 120 (kg) or 120 000(g) (01)	C1
				Total	20

(A) Consider the following figure pertaining to a hydro-power plant. As shown in the figure, the water is brought from a place in the reservoir to the power plant located below the reservoir through a tunnel. Islantic power is generated by rotating a turbine with that water.

- (I) According to the above information, write down the energy transformation that takes place in
- (II) The following diagram shows the way in which the alternating current electricity is generated in the power station and supplied to homes after transmission. (P, Q and R are transformers.)

- (a) What is the type of transformer shown as P?
- (b) If the number of turns in the primary coil of R is 8800, find the number of turns in its
- (11) Two similar arrangements, X and Y which have been used in himses he heat water using the voltage of 230 V are given below.
 - Interests in F in a immersion call is immersed to a greater depth.

 (i) Which the immersion besters are connected to the voltage supply, in Which arrangement is the water heated upto the required to parameter in a local limit.
 - (ii) therein and the reason why the water in one vessel is heated

- (iii) 1.5 kg of water in 27 °C is put into the vessel in the arrangement, which heats up water in a quicker time and the immersion heater is connected to the voltage supply.
 - (a) If the water was heated upto 97 °C, find the amount of heat absorbed by water. (Take the specific heat capacity of water as 4200 [kg 1 K-1)
 - (b) The power of the heater is 1 kW. If the time taken to heat the water upto 97 °C was I minutes, calculate the energy consumed by the immersion heater during that time.
 - (6) In that house, water is heated 4 times per day as above. Find the number of units of electricity they have consumed in a month of 30 days.
- ((') There is a greater attention at present to generate electricity using solar cells.
 - (i) What is the basic electronic component which is used to construct a solar cell?
 - (ii) What will happen when the sun light is incident on that component?
 - (iii) What type of an arrangement is known as a solar panel?
 - (iv) Write down an advantage of using solar cells to generate electricity.

(Total marks 20)

	1	T		T	
	V)(A) (i)		
	*.				Potential (01) Kinetic energy (01) Electrical energy
					or
					Potential energy (01) Kinetic energy Kinetic energy of water of turbine
					(01)
	,				
					Potential energy transforms to kinetic energy (01) Kinetic energy transforms to electric at energy (01) (Give marks for the energy transforms)
					(Give marks for the energy transformations only)
Ī			(ii)	(a)	Step up (transformer)
-					
1					
				(b)	$\frac{V_{P}}{V_{S}} = \frac{N_{P}}{N_{S}} \qquad \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}$
					V _S N _s V _P N _P
		4			or
					22 000 (10) 0000 00 (11)
					$\frac{22\ 000(V)}{230(V)} = \frac{8800}{N_S}$ or $\frac{22\ (kV)}{0.230\ (kV)} = \frac{8800}{N_S}$ or
					$N_{\rm S} = 0.250 (\rm kV) N_{\rm S}$
					$N_{S} = \frac{8800 \times 230}{22,000} \tag{01}$
					Number of turns = 92 (turns) (01)
		B)	(i)		
· -	\dashv				
-			4		Water in the V warms out fact to
			(ii)		• Water in the Y warms up fast due to movements of convectional current from the bottom to the top (01)
					In X it doesn't take place in the same way. (01)
					or
					Water molecules in the bottom of the container heats by gaining heat from the
					neater in the vessel Y. Heated water particles become lighter (decreasing
					density) and move upwards then the water particles in top level comes down
					fill that gap and heated. (01)
					But the water particles at the bottom of container are not heated in this way (
					Amount of heat loss to the environment from the heater in the vessel X is
1	.				greater than that of the heater Y (01)
	.				경기 등 경기 기계
					보이면 그들을 하는 것이 하는 것으로 하는 것으로 가장하는 것이 되었다. 그런 그는 것은 것을 가장하는 것을 받는 것을 보니 다른 것으로 되었다.
-	+				

1	1 19	Illustings Cor	ifiden
10	ii(a)	(Heat absorbed by water) Q = mc0 or	
		** 1.5 (kg) × 4200 (Jkg ⁻¹ K ⁻¹) × (97 – 27)(K) (01) ** 1.5 (kg) × 4200 (Jkg ⁻¹ K ⁻¹) × 70(K) (01) ** 441 000 (J)/ 441 (kJ) (01)	
	п понкужую	Even though $mc\theta$ is not mentioned give 02 marks for correct substitution	
	(b)	or power = $\frac{E_{\text{nergy}}}{\text{time}}$ or $1 \times 1000 \text{ (W)} = \frac{E}{80 \times 60 \text{ (s)}}$ or	
		K ≈ 1000 × 8 × 60 (01)	
		P ≈ 480 000(J)/ 480 (kJ) (01)/	
1		or and the second s	
		$E = 1(kW) \times \frac{8}{60}(h)$ (01)	
	H	奏論하다 하는 사람이가 가는 시민이 아이를 하는 사람들이 되었다면 하는데 가게 하는 하면 모양을 되었다.	
		$=\frac{2}{15}$ (kWh)/ 0.133 (kWh) (01)	
1000 ta	by a lis	unit is not necessary	
			_
	(e)	number of units of electricity = $1(kW) \times \frac{8}{60}(h) \times 4 \times 30$ (01) = $16(kWh)/16$ (units) (01) or	
		$= \frac{2}{15} \times 4 \times 30 \text{ (O1)}$ = 16(kWh)/ 16 (units) (O1)	
		or	
		= 15.9 (kWh)(01) or	
		$=\frac{480000\times4\times30}{3600000}$ (O1)	
(1)	ings es	= 16 (kWh)(01) Then function (diagram with the state of the state o	
		p-n Junction /diode/ Photo diode	C
u ippesa	244466		
(11)		Ismall electro motive force/voltage is generated across the p-n junction	+
		Ight energy is converted to electrical energy / electricity (give 01 mark for one of above) The marks for solar energy	
		(give 01 mark for one of above) Ano marks for all	
	Fait les	A collection of color cells -	0
		A Collection of solar cells connected in series and parallel methods	0
(IV)	1531 3430	No environment pollution	
		functioning with solar energy /no cost for maintenance other than initial cost	ľ
ŀ		making joing life time	
		No wastage substances	
		(Give one mark for any one of above)	04
Para de la constante de la con	CONT. CONFERENCE	Total	01
	eap you	I Otal	20

(A) Some main endocrine glands in the human body are given below.

Pituitary, Thyroid, Pancreas, Adrenal glands, Gonads

- (i) Which of the above glands is located below the hypothalamus?
- (ii) Write down, in correct sequence, the glands that secrete calcitonin and oestrogen and state function of each hormone in correct sequence.
- (iii) (a) What is the gland that secretes the hormone which converts glucose to glycogen?
 - (b) In which organ of body, glycogen is mainly stored?
 - (c) What is the disease condition that occurs due to non-secretion of the hormone stated above?
- (iv) Write two features of the hormones secreted by the glands stated above.
- (B) Following diagrams show some play items in a children park.

Figure (1) a

Figure (1) b

Figure (3)

- (i) As shown in the figure (1) a, a child is sitting in equilibrium and stationary in a swing. Figure shows the corresponding force diagram for this situation. Write a relationship among F_1 , FHere, F_1 and F_2 are the forces exerted by ropes, and W is the weight of the child and the seat.
- (ii) In figure (2), the mass of each child who is sitting on the two sides of the see-saw is 25
 - (a) What can be said about the resultant of the system of forces acting on the see-saw.
 - (b) The distance from the rotating point O to the place where each child is sitting is 1.5 the moment of the couple of forces acting there.
- (iii) Figure (3) shows a play train in the park that moves in a straight line path. The velocity (V-t) graph for its motion from the starting point to the ending point is given below.

- (a) Briefly explain the nature of the motion of the play-train.
- (b) The total mass of the train with the children is 1500 kg. Find the momentum of the the time duration from 5 seconds to 35 seconds.
- (c) If the length of the play-train is 18 m, calculate the length of the railway.

(Total marks

(ii) Obabetes or increasing the glucose level/concentration in blood. Organic compounds Transport through blood Produce at one site and act on another site Stimulate target organs (only) small concentration is sufficient/required (Give two mark for any two of above) W = F ₁ + F ₂ /sum of F ₁ and F ₂ is—W (ii) Was represented to the strain of the two forces or left of the two forces or left of the strain starting from rest traveled at a uniform acceleration for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a uniform velocity of 3 m s ⁻¹ from 5 s to 35 s and then uniformly decelerated from 35 s to 40 s to become rest. Words in bold letters are essential (iii) Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) w 4500 (kg m s ⁻¹) (01) (iv) distance travely area of the rapeulum/area of the graph = (0.0+40)/2 × 3 or (1/2 × 5 × 3)/2 + (1/2 × 5 × 3)/2 × 3 or (1/2 × 5 × 3)/2 + (1/2 × 5 × 3)/2 = (1.05 (m))/2 + (1.05 (m))/2 = (1.05 (m))/2				Mination Confider Confider	
reduce calcium level/concentration in blood (01) award one mark for any answer including calcium level in blood Oestrogen- gonads (01) development (and maintance) of secondary Sexual characters in females/ To rebuild wall of uterus (during proliferation phase in menstrual cycle) (01) OVATILA (iii) (ii) Pancreas (iii) Liver (i) Diabetes or Plancreas (iii) Liver (ii) Diabetes or Plancreas (iii) Liver (iii) Pancreas (iii) Liver (iv) Diabetes or Plancreas (iv) Diabetes or P				Calcitonin - Thyroid (01)	
International content with the properties of t	Property Company			reduce calcium level/concentration in blood (01) award one mark for any answer including calcium level in blood	
(ii) Liver (iii) Diabetes or increasing the glucose level/concentration in blood. Organic compounds Transport through blood Produce at one site and act on another site Stimulate target organs (only) small concentration is sufficient/required (Give two mark for any two of above) (ii) (ii) W = F ₁ + F ₂ /sum of F ₁ and F ₂ is the first of action of the two forces or action of the two forces or 25 (kg) × 10 (m s ⁻²) × 3 (m) (01) and 375 (km) (01) and 375 (km) (01) by award these 2 marks for obtaining 750 by substituting 3 inserted of 1.5 The play train starting from rest traveled at a uniform acceleration for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a uniform velocity of 3 m s ⁻¹ from 5 s to 35 s and then uniformly decelerated from 35 s to 40 s to become rest. Words in bold letters are essential Momentum = Mass × Velocity or a 1500 (kg) × 3 (m s ⁻¹) (01) a 4500 (kg m s ⁻¹) (01) by distince traved/area of the graph and 18 m (01) a 123 m (01) If the calculated distance (105) is wrong give one mark for adding 18				lemales/ to rebuild wall of uterus (during proliferation phase in	
(ii) Obabetes or increasing the glucose level/concentration in blood. Organic compounds Transport through blood Produce at one site and act on another site Stimulate target organs (only) small concentration is sufficient/required (Give two mark for any two of above) W = F ₁ + F ₂ /sum of F ₁ and F ₂ is—W (ii) Was represented to the strain of the two forces or left of the two forces or left of the strain starting from rest traveled at a uniform acceleration for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a uniform velocity of 3 m s ⁻¹ from 5 s to 35 s and then uniformly decelerated from 35 s to 40 s to become rest. Words in bold letters are essential (iii) Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) w 4500 (kg m s ⁻¹) (01) (iv) distance travely area of the rapeulum/area of the graph = (0.0+40)/2 × 3 or (1/2 × 5 × 3)/2 + (1/2 × 5 × 3)/2 × 3 or (1/2 × 5 × 3)/2 + (1/2 × 5 × 3)/2 = (1.05 (m))/2 + (1.05 (m))/2 = (1.05 (m))/2		kiii) (a)	Pancreas .	+
Increasing this glucose level/concentration in blood. Organic compounds			(li)	Liver	+
Organic compounds Transport through blood Produce at one site and act on another site Stimulate target organs (only) small concentration is sufficient/required (Give two mark for any two of above) (ii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/		e de Sapo	(e)	Diabetes or	1
Organic compounds Transport through blood Produce at one site and act on another site Stimulate target organs (only) small concentration is sufficient/required (Give two mark for any two of above) (ii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is—W (iii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is—W (iii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is—W (iii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is—W (iii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is—W (iii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ is—W (iv) Moment of a couple of forces = Force × perpendicular distance between the lines of action of the two forces or 25 (kg) × 10 (m s ⁻²) × 3 (m) (01) 375 (Nm) (01) 375 (Nm) (01) 375 (Nm) (01) 375 (Nm) (01) 376 (Nm) (01) 377 (Nm) (01) 378 (Nm) (01) 379 (Nm)		1.1	diserry	• Increasing the glucose level/concentration in blood.	١,
Stimulate target organs (only) small concentration is sufficient/required (Give two mark for any two of above) W = F ₁ + F ₂ /sum of F ₁ and F ₂ Is—W (ii) (A) Zero / magnitude is 0 (b) Moment of a couple of forces = Force × perpendicular distance between the lines of action of the two forces or 25 (kg) × 10 (m s ⁻²) × 3 (m) (01) 375 (Nm)		, , , , , , , , , , , , , , , , , , ,		· Transport through blood tanget specified	
small concentration is sufficient/required (Give two mark for any two of above) $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (ii)}$ (ii) $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ (iii) $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ and } F_2 \text{ is} \text{W} \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = W = F_1 + F_2 / \text{sum of } F_1 \text{ (iii)}$ $W = W = W = W = W = W = W = W = W = W =$				Stimulate target organs (only)	
(ii) (ii) W = F ₁ + F ₂ / sum of F ₁ and F ₂ Is—W (iii) (iii) Zero / magnitude is 0 (iv) Moment of a couple of forces = Force × perpendicular distance between the lines of action of the two forces or = 25 (kg) × 10 (m s ⁻²) × $\frac{3}{3}$ (m) (01) = 375 (Nm) (01) A award these 2 marks for obtaining 750 by substituting 3 inserted of 1.5 The play train starting from rest traveled at a <u>uniform acceleration</u> for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a <u>uniform velocity</u> of 3 m s ⁻¹ from 5 s to 35 s and then <u>uniformly decelerated</u> from 35 s to 40 s to become rest. Words in bold letters are essential (b) Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) = 4500 (kg m s ⁻¹) (01) (c) distance traved/ area of the rape = $\frac{(30+40)}{2}$ × 3 or $\frac{1}{2}$ × 5 × 3 + (30 × 3) + $\frac{1}{2}$ × 5 × 3 + (10 × 10) I length of the railway = 105 m + 18 m (01) = 123 m (01) If the calculated distance (105) is wrong give one mark for adding 18				small concentration is sufficient/required	
(ii) (ii) Moment of a couple of forces = Force \times perpendicular distance between the lines of action of the two forces or					
(b) Moment of a couple of forces = Force × perpendicular distance between the lines of action of the two forces or 25 (kg) × 10 (m s ⁻²) × $\frac{1}{3}$ (m) (01) 375 (Nm) (01) 375 (Nm) (01) The play train starting from rest traveled at a <u>uniform acceleration</u> for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a <u>uniform velocity</u> of 3 m s ⁻¹ from 5 s to 35 s and then <u>uniformly decelerated</u> from 35 s to 40 s to become rest. words in bold letters are essential (b) Momentum = Mass × Velocity or 1500 (kg) × 3 (m s ⁻¹) (01) 4500 (kg m s ⁻¹) (01) (c) distance traved/ area of the trapellum/area of the graph $= \frac{70}{2} \times 3$ $= \frac{70}{2} \times 3$ $= 105 (m)$ in length of the railway = 105 m + 18 m (01) $= 123 \text{ m (01)}$ If the calculated distance (105) is wrong give one mark for adding 18	(1)	(1)	1000	$W = F_1 + F_2$ / sum of F_1 and F_2 is W	+
action of the two forces or 25 (kg) × 10 (m s ⁻²) × 3 (m) (01) 375 (Nm) (01) award these 2 marks for obtaining 750 by substituting 3 inserted of 1.5 The play train starting from rest traveled at a <u>uniform acceleration</u> for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a <u>uniform velocity</u> of 3 m s ⁻¹ from 5 s to 35 s and then <u>uniformly decelerated</u> from 35 s to 40 s to become rest. words in bold letters are essential (h) Momentum = Mass × Velocity or 1500 (kg) × 3 (m s ⁻¹) (01) 4500 (kg m s ⁻¹) (01) 4500 (kg m s ⁻¹) (01) (i) distance traved/area of the trapezium/area of the graph $= \frac{(30+40)}{2} \times 3 \qquad \text{or} \qquad (\frac{1}{2} \times 5 \times 3) + (30 \times 3) + (\frac{1}{2} \times 5 \times 3)$ $= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5) \qquad (01)$ $= 105 \text{ (m)}$ I length of the railway = 105 m + 18 m (01) $= 123 \text{ m (01)}$ If the calculated distance (105) is wrong give one mark for adding 18	. Litter	(li)	(#)	Zero / magnitude is 0	-
			(b)	Moment of a couple of forces = Force × perpendicular distance between the lines of	+
award these 2 marks for obtaining 750 by substituting 3 inserted of 1.5 The play train starting from rest traveled at a <u>uniform acceleration</u> for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a <u>uniform velocity</u> of 3 m s ⁻¹ from 5 s to 35 s and then <u>uniformly decelerated</u> from 35 s to 40 s to become rest. Words in bold letters are essential (a) Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) = 4500 (kg m s ⁻¹) (01) (b) Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) = 1500 (kg) × 3 (m s ⁻¹) (01) (c) Mistance traved/ area of the trapezium/area of the graph = $\frac{(30+40)}{2}$ × 3 or $(\frac{1}{2} \times 5 \times 3) + (30 \times 3) + (\frac{1}{2} \times 5 \times 3)$ = $\frac{70}{2} \times 3$ (7.5 + 90 + 7.5) (01) = 105 (m) If the calculated distance (105) is wrong give one mark for adding 18					
award these 2 marks for obtaining 750 by substituting 3 inserted of 1.5 The play train starting from rest traveled at a <u>uniform acceleration</u> for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a <u>uniform velocity</u> of 3 m s ⁻¹ from 5 s to 35 s and then <u>uniformly decelerated</u> from 35 s to 40 s to become rest. words in bold letters are essential (b) Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) = 4500 (kg m s ⁻¹) (01) = 4500 (kg m s ⁻¹) (01) = $\frac{(30+40)}{2}$ × 3 or $\frac{(1}{2} \times 5 \times 3) + (30 \times 3) + \frac{(1}{2} \times 5 \times 3)$ = $\frac{70}{2} \times 3$ (7.5 + 90 + 7.5) (01) = 105 (m) ∴ length of the railway = 105 m + 18 m (01) = 123 m (01) If the calculated distance (105) is wrong give one mark for adding 18				$≈ 25 \text{ (kg)} \times 10 \text{ (m s}^{-2}) \times \frac{3 \text{ (m)}}{3 \text{ (n)}}$ (01)	
The play train starting from rest traveled at a <u>uniform acceleration</u> for 5 s and acquired a velocity of 3 m s ⁻¹ . Next it moved at a <u>uniform velocity</u> of 3 m s ⁻¹ from 5 s to 35 s and then <u>uniformly decelerated</u> from 35 s to 40 s to become rest. Words in bold letters are essential Womentum = Mass × Velocity or 1500 (kg) × 3 (m s ⁻¹) (01) 4500 (kg m s ⁻¹) (01) 4500 (kg m s ⁻¹) (01) (e) distance traved/area of the trapezium/area of the graph $= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5) \qquad (01)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} (01)$ $= 123 \text{ m} (01)$ If the calculated distance (105) is wrong give one mark for adding 18				275 (Nm) (Ot)	0
Comparison of the graph Comparison of the trapezium/area of the railway = $105 \text{ m} + 18 \text{ m}$ (01) Comparison of the calculated distance (105) is wrong give one mark for adding 18		· Augus		award these 2 marks for obtaining 750 by substituting 3 inserted of 1.5	
If the calculated distance (105) is wrong give one mark for adding 18		ui)	(a)	The play train starting from rest traveled at a uniform acceleration for 5 s and	1
words in bold letters are essential Momentum = Mass × Velocity or = 1500 (kg) × 3 (m s ⁻¹) (01) = 4500 (kg m s ⁻¹) (01) distance traved/area of the trapezlum/area of the graph $= \frac{30+40}{2} \times 3 \text{or} \left(\frac{1}{2} \times 5 \times 3\right) + (30 \times 3) + \left(\frac{1}{2} \times 5 \times 3\right)$ $= \frac{70}{2} \times 3 (7.5 + 90 + 7.5) (01)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} \text{ (01)}$ $= 123 \text{ m} \text{ (01)}$ If the calculated distance (105) is wrong give one mark for adding 18				acquired a velocity of 3 m s^{-1} . Next it moved at a uniform velocity of 3 m s^{-1}	
Momentum = Mass × Velocity or is 1500 (kg) × 3 (m s ⁻¹) (01) is 4500 (kg m s ⁻¹) (01) or 4500 (kg m s ⁻¹) (01) or distance traved/area of the trapezlum/area of the graph $= \frac{(30+40)}{2} \times 3 \text{or} (\frac{1}{2} \times 5 \times 3) + (30 \times 3) + (\frac{1}{2} \times 5 \times 3)$ $= \frac{70}{2} \times 3 (7.5 + 90 + 7.5)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} \text{ (01)}$ $= 123 \text{ m} \text{ (01)}$ If the calculated distance (105) is wrong give one mark for adding 18					
or $1500 \text{ (kg)} \times 3 \text{ (m s}^{-1}) \text{ (01)}$ $\approx 4500 \text{ (kg m s}^{-1}) \text{ (01)}$ $= 4500 \text{ (kg m s}^{-1}) \text{ (01)}$ $= \frac{30.440}{2} \times 3 \text{ or } (\frac{1}{2} \times 5 \times 3) + (30 \times 3) + (\frac{1}{2} \times 5 \times 3) = \frac{70}{2} \times 3 \text{ (7.5 + 90 + 7.5)} = 105 \text{ (m)}$ $\approx 105 \text{ (m)}$ $\approx 123 \text{ m (01)}$ $\approx 123 \text{ m (01)}$	4	44			0
4500 (kg m s ⁻¹) (01) (4) distance traved/ area of the frapezium/area of the graph $= \left(\frac{30+40}{2}\right) \times 3 \text{or} \left(\frac{1}{2} \times 5 \times 3\right) + (30 \times 3) + \left(\frac{1}{2} \times 5 \times 3\right)$ $= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5) \qquad (01)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} \text{ (01)}$ $= 123 \text{ m} \text{ (01)}$ If the calculated distance (105) is wrong give one mark for adding 18			Y"/	or	
4500 (kg m s ⁻¹) (01) (4) distance traved/ area of the frapezium/area of the graph $= \left(\frac{30+40}{2}\right) \times 3 \text{or} \left(\frac{1}{2} \times 5 \times 3\right) + (30 \times 3) + \left(\frac{1}{2} \times 5 \times 3\right)$ $= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5) \qquad (01)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} \text{ (01)}$ $= 123 \text{ m} \text{ (01)}$ If the calculated distance (105) is wrong give one mark for adding 18				$= 1500 \text{ (kg)} \times 3 \text{ (m s}^{-1}) \text{ (01)}$	
distance traved/ area of the trapezium/area of the graph $ = \left(\frac{30+40}{2}\right) \times 3 \text{or} \left(\frac{1}{2} \times 5 \times 3\right) + (30 \times 3) + \left(\frac{1}{2} \times 5 \times 3\right) $ $= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5) \qquad (01)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} \text{ (01)}$ $= 123 \text{ m} \text{ (01)}$ If the calculated distance (105) is wrong give one mark for adding 18				$\approx 4500 \text{ (kg m s}^{-1}\text{)}$ (01)	
$= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5)$ $= 105 \text{ (m)}$ $\therefore \text{ length of the railway} = 105 \text{ m} + 18 \text{ m} \text{ (01)}$ $= 123 \text{ m} \text{ (01)}$ If the calculated distance (105) is wrong give one mark for adding 18		// (19 27)	(ē)	trapezium/area of the graph $-(\frac{1}{2})\times 3$ or $(\frac{1}{2}\times 5\times 3)+(30\times 3)+(\frac{1}{2}\times 5\times 3)$	02
length of the railway = 105 m + 18 m (01) = 123 m (01) If the calculated distance (105) is wrong give one mark for adding 18				$= \frac{70}{2} \times 3 \qquad (7.5 + 90 + 7.5) \tag{01}$	
If the calculated distance (105) is wrong give one mark for adding 18				length of the railway = $105 \text{ m} + 18 \text{ m}$ (01)	
				, , see one mark for auding 18	03

- 9. (A) A, E, G, J, L, M, Q and R are 8 consecutive elements in the periodic table. The atomic not all these elements are less than 20. E naturally occurs in allotropic forms and one of the conducts electricity. (Here, the given symbols are not the standard symbols of the elements.)
 - (i) What is the element E?
 - (ii) Of the above elements,
 - (a) which element occurs as a noble gas at room temperature?
 - (b) which element has the highest electro negativity?
 - (c) which element is at the top most level of the activity series?
 - (iii) Draw the Lewis dot diagram of a molecule formed by the element G with Hydrogen.
 - (iv) Of the above elements, which element is most suitable to produce a sample of H₂ gas in laboratory?
 - (v) Write the balanced chemical equation for the reaction of R with steam.
 - (vi) Copy the diagram given below into your answer script and draw a sketch of the variation of ionization energy of the above elements. (It is not necessary to show the atomic number and values of ionization energy. It is sufficient to mention only the elements.)

- (B) In the following occasions ①, ②, ③ and ④, optical items/instruments were used.
 - ① A dentist examining teeth in a mouth of a patient
 - 2 A surgeon observing the internal organs in the body of a patient
 - 3 A student observing cells in a blood sample in the laboratory
 - ⊕ A cricket lover watching a cricket match from a far end of a pavilion
 - (i) (a) In which occasion a concave mirror was used?
 - (b) Represent with a ray diagram, the way in which an image is formed in such a situation (at take the object as 1).
 - (ii) (a) What was the occasion where an instrument with optical fibres was used?
 - (b) What is the name used for the phenomenon that the light rays undergo when light parthrough an optical fibre?
 - (c) State the conditions that should be fulfilled to occur the phenomenon that is mentioned in
 - (d) Another instrument where the phenomenon mentioned in (b) above occurs, was also used another occasion given above. Mention that occasion and write down the name of the instrument that was being used in that occasion.

 (Total marks

	ii)	(a)	②/A surgen observing the internal organs in the body of a patient
		(b)	total internal reflection
		(c)	 light rays should travel from a denser medium to a rare medium (01) angle of incidence should be greater than the critical angle / angle of incidence should be greater than
	1	d)	incidence should be greater than c/i > c (01) • ④/A cricket lover watching a cricket match from a far end of a pavilion (01) • Prism binocular / binocular (01) • Prism binocular / binocular (01)
			total