	ආතත්ද විදහාලය - කොං	en 5/C
©	තවන වාර පරීක්ෂණය - 20 13 ලෝණිය	12 ජූලී 10 8 1
සංයුක්ත ගණිතය [කාලය - පැය 03 යි
ාම / අංකාය		පත්තිය
4 කොටසෙහි පුශ්ත සියල්ලට	ම සහ B කොටසෙහි පුග්ත 5 කට පම	වණක් පිළිතුරු සපයන්දා)
•	A කොටස	
(1) $x^2 - (a - 2) x - a - 1 =$	= 0 වර්ගජ සම්කරණයේ මූල වල වර්ග	ගයන්ගේ එකතුව, අඩුනම අගය වන ද
ට ගත හැකි තාත්වික අ		•
		·····
· · · · · · · · · · · · · · · · · · ·	κ.	
	i	······································
· · · · · · · · · · · · · · · · · · ·		
······		
	•••••	
••••••	-1	G PL
· · · · · · · · · · · · · · · · · · ·	<u></u>	
•••••••	SOAP	· · · · · · · · · · · · · · · · · · ·
	ncer	2
(2) සියළු නිබිල n සඳහා 1 >	x 4 + 2 x 7 + 3 x 10 ++ n (3	n+1) = n(n+1)^ බව ගණිත අභායුහනා
ධර්මය මගින් සාධනය z	කරන්ත.	
n=+-si		
W		·
		-
		-
		······································

.

Scanned by CamScanner

ì

(3) ඉංගීසි ස්වර (Vowels) අනුපිළිවෙල සලකා 'RÁCHIT' යන වවනයේ අකුරු සියල්ල ගැනීමෙන් සංකරණ කීයක් සකස් කල හැකිද?

CC (4) $(3 + \frac{x}{2})^n$ පුසාරණයේ x⁷ හා x⁸ පදවල අංගුණක සමාත වේ තම් n හි අගය සොයන්න.

නම $\sin^{-1}t + \cos^{-1}t = \frac{\pi}{2}$ බව දී අනි විට $\frac{dy}{dx} =$ $(5) x = \sqrt{a^{\sin^{-1} t}}$, $y = \sqrt{a^{\cos^{-1} t}}$ <u>– y</u> බව පෙත්වත්ත. x (6) 3 + 4 i සංකීර්ණ සංඛාාවේ වර්ගමුලය සොයා එමගින් $\sqrt{-3 - 4 i}$ හි අගය අපෝහනය කරන්න. ·····

(9) (7) බව පෙන්වත්ත -..... (8) නිකෝණයක ශීර්ෂ පිළිවෙලින් A (-1,-7), B (5,1) හා C (-1,4) වේ. $A\hat{B}C$ කෝණ සම්දීකයෙහි සමීකරණය සොයන්න. ······

(9) P නම් ලක්ෂායක සිට x² + y² + 4x – 6y + 9 $\sin^2 \propto + 13 \cos^2 \propto = 0$ වෘත්තයට අඳින ලද ස්පර්ක 2 අතර කෝණය 2∝ වේ. P හි පථයේ සමීකරණය සොයන්න. (10) ABC නිකෝණයක AD උච්චය මතවූ P නම් ලක්ෂාය $C\hat{B}\dot{P}=rac{B}{3}$ වන සේ පිහිටා ඇත. ABC තිකෝණයේ සුපුරුදු අංකනය සලකා AP = 2c Sin B/3 බව පෙත්වන්න.

5

(A කොටපෙනි පුශ්න සියල්ලටම සහ B කොටසෙහි පුශ්න 5 කට පමණක් පිළිතුරු සපයන්න)

B කොටස

(11) a) ∝, β යනු x² - p (x +1) - c = 0 වර්ගජ සමීකරණයේ මූල වේ. (α +1) (β + 1) = 1 - c බව පෙත්වන්න.

ඒ නයින්
$$\left[\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c}\right] + \left[\frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + c}\right] = 1$$
 බව පෙන්වන්න

x² - p (x + 1) – c = 0 සමීකරණයේ මූලවලට 1 ක් වැඩි මූල සහිත සම්කරණය ලබා ගන්න.

b) ax⁴ – 6x³ + bx² – cx + 28 යන බහු පදය (x - 2)² න් හරියටම බෙදෙන අතර (x + **b**) න් බෙදූ විට ශේෂය 36 විය. a,b,c මෙම අගයන් ගන්නා විට බහු පදය (x – 1) මගින් බෙදූ විට ලැබෙන ශේෂය හා ලබ්ඨිය සොයන්න.

(12) a) $\frac{1}{1.3.5} + \frac{1}{2.4.6} + \frac{1}{3.5.7} + \dots$ og de cires of U_r sor

 $f(r) = \frac{-1}{4(r+2)(r+4)}$ මගින් පුකාශ කර ඇති විට $f(r) - f(r-2) = U_r$ බව පෙන්වන්න. එනයින්

. හෝ අන් කුමයකින් $\sum_{r=1}^n \mathbf{u}_r$ පොයන්න.

ලෝණිය අහිසාරී බව පෙන්වා $\sum_{r=1}^{lpha} {f u}_r$ අපෝගනය කරන්න.

b) $|7-x|\geq 2|x^2-4|$ අසමානතාව තෘප්ත කරන x හි අගයන් සොයන්න.

 $(1 + ax)^n = C_o + C_1 X + C_2 X^2 + \dots + C_n X^n$ යන පුසාරණයේ විශාලනම C_r සංගුණකය ලැබෙනුයේ r යන්න $\frac{(n+1)a}{a+1}$ හි නිබිල කොටසට සමාන විට බව සාධනය කරන්න.

(13) a) $A = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$ eD and $A^2 = 7A - I$ all සහාභාපනය කරන්න; A^{-1} සොයන්න.

b) (i) $Z^2 + 4Z + 8 = 0$ හි එක් එක් මූලයේ මාපාංකයක් විස්තාරයක් සොයන්න. මෙම මූලයන් \propto , β මගින් දක්වා ඇත්නම් $\frac{\alpha + \beta + 4i}{\alpha\beta + 8i} = \frac{1}{2}i$ බව පෙන්වන්න.

(ii) O හා A ලක්ෂාන් (0 + 0i) හා (1 + 2i) සං. සංඛාා නිරූපණය වන සමවතුරසුයක ශීර්ෂ 2 කි. O මූලය වටා O A වාමාවර්තව හුමණය කිරීමෙන් ලැබෙන සමවතුරසු යේ ඉතිරි ශීර්ෂ සොයන්න.

- (14) (i) lim $(1-x) \tan\left(\frac{\pi}{2} x\right)$ පොයන්න. $X \rightarrow 1$
 - (ii) $x^2 y = a \cos n x$ නම
 - $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + (n^2 x^2 + 2) y = 0$ බව පෙන්වන්න.

Scanned by CamScanner

spot.co

(iii) දෙන ලද ගෝලයක් තුළ අන්තර්ගත කළ හැකි වැඩිතම පරිමාව සහිත කේතුවේ පරිමාව ගෝලයේ පරිමාවෙත් ⁸/27 බව සාධනය කරන්න.

(15) a)
$$\frac{\sin^2 x}{2 + \cos x} = A + B \cos x + \frac{C}{2 + \cos x}$$
 $\varepsilon \delta \xi$

A, B, C නියත නිර්ණය කරන්න.

එමගින් ගෝ අන් කුමයකින් $\int_0^{\pi/2} \frac{\sin^2 x}{2 + \cos x} \, \mathrm{d} x$ අගයන්න.

එතයින් $\int_0^{\pi/2} \cos x \, \ln(2 + \cos x) \, dx$ අගය අපෝහනය කරන්න.

b) සුදුසු ආදේශයක් යෙදීමෙන් අගයන්න

 $\int \frac{a^x}{\sqrt{1-a^{2x}}} \, dx$ c) භින්නා භාග යෙදීමෙන් $\int \frac{2x+3}{(x+1)(4x^2+1)} \, dx$ සොයන්නා.

(16)

ම

(a) $l_1 = a_1 \mathbf{x} + b_1 \mathbf{y} + c_1 = 0$ සහ $l_2 = a_2 \mathbf{x} + b_2 \mathbf{y} + c_2 = 0$ යන $(a_1 b_2 - a_2 b_1 \neq 0)$ සරල වේබා දෙශක් ජේදන ලක්ෂාය හරහා යන ඕනෑම සරල රෙබාවක සමීකරණය $\mathbf{\lambda}$ පරාමිතියක් විට $l_1 + \mathbf{\lambda} l_2 = 0$ බව පෙන්වන්න.

ABCD සමාන්තරාසයේ AB, BC, CD, DA පාදවල සම්කරණ පිළිමවලින් 2x + y + 15 = 0, 3x + 2y – 25 = 0, 2x + y – 15 = 0 සහ 3x + 2y + 25 = 0 වෙයි. සමාන්තරාසයේ ශීර්ෂ වල බණ්ඩාංක පුකාශිත අයුරින් නොසොයා AC හා BD චිකර්ණ වල සම්කරණ සොයන්න. සමාන්තරාසයේ වර්ගඵලය ලබාගන්න.

(b) $(x - a)^2 + (y - b)^2 = r^2 Danimus lx + my + n = 0 ගේබාව මගින් ස්පර්ශ වෙ නම් <math>(al + bm + n)^2 = r^2 (l^2 + m^2)$ බව පෙන්වන්න.

A (4,4) සහ B (6,2) නම් A ලක්ෂාාය කේත්දුය වන OB රේඛාව සපර්ශ කරන වෘත්තයේ සමීකරණය පොයන්න. මෙහි O යනු මූල ලක්ෂාාය වේ. තවද B ලක්ෂාය කේත්දුය හා OA ප්පර්ශ කරන වෘත්තයේ සම්කරණයද සොයන්න. එම වෘත්ත දෙකේ පොදු ජාාය OA ට සමාන්තර බව පෙත්වන්න.

$$(17)$$
 (i) $x + y + z = xyz$ (b)

(ii) විසඳන්න.

 $\cos 2\theta = \left(\sqrt{2} + 1\right) \left[\cos \theta - \frac{1}{\sqrt{2}}\right]$

(iii) සම්මත අංකනයෙන් ABC නිකෝණයක් සඳහා සයින් නීතිය පුකාශකර සාධනය කරන්න.

ABC නිකෝණයක $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B+C)}$ වේ නම් a^2, b^2, c^2 යන්න සමාන්තර ශෝණයක පිහිටන

බව සාධනය කරන්න.

 Approximate Contract Contract Approximate Contract Contract 	දානන්ද විදහාලය - ලකාළ 	na se
	තුන්වන වාර පරීක්ෂණය 2012 – 1	3 ලේණිය
ංයුක්ත ගණිතය II	. 10 S II	කාලය - පැය තුනයි
නම / අංකය		පංතිය –
A කොටසෙහි පුශ්න සිං	යල්ලටම සහ B කොටසෙහි පුශ්න පහකර) පමණක් පිළිතුරු සපයන්න.
	A කොටස	
වලිතයට අදාල ත්වර ෙ	ව. ඉන්පසු නියත පුවෙගයෙන් චලනය වී 3 ණ කාල හා පුවේග කාල පුස්තාර අදින්න. පු වු කාලයත් දුරක් සොයන්න.	ms ⁻⁴ නියත මන්දනයෙන් නිශ්චල අද් ස්ථාර භාවිතයෙන් උපරිම පුවේගයන්
、	N	
		·····
•		
	- 	
	······	- undeput
		Ploà
	nert	2 ***
· · · · · · · · · · · · · · · · · · ·	epar	
	ienvy.	
alsu	<u>, </u>	
(2) O හිදී එක්නෙකට ලම්ද	බව ඡේදනය වන මාර්ග දෙකක් ඔය්සේ වාහ	ාන දෙකක් ගමන් කරයි. 30 kmh ^{. 1}
	ත වැන් රථයක් () සන්ධියේ වන විට අනෙස දෙදාය සත්වයට 500 හ. පාණිත් ගම් රථා	
	ත රථය සන්ධියට 500 m ඇතින් ශව්. රථ ල ය පැය <u>1</u> ක් බවත් පෙන්වන්න.	දක අතර කෙටිතම දුරත් එසේ
	125	
		·····
		· · · · · · · · · · · · · · · · · · ·

	-
	ා 10.00 ලෙස 1 5 h ~ 0.000 ලංකා සමාස ද මාද්ශයක 108 kmh $^{-1}$ තියන වෙගයෙන් ගමන් කරයි. මාර්ග
)	එත්ජීමෙහි ජවය 1.5 kw වූ රථයක් සමතල මාර්ගයක 108 kmh ⁻¹ නියත වෙගයෙන් ගමන් කරයි. මාර්ග පුතිරෝධය සොයන්න. ස්කන්ධ 500 kg වන එම රථය 200 ට 1 ආතති මාර්ගයක එම ජවයෙන් ඉහලට
	පුතිරෝධය සොයන්න, ස්කන්ධ 500 kg වන ඊම ඊටය 200 ට T අපාස පොටස්
	යන විට උපරිම වේගය සොයන්න. (වලිත පුතිරෝධය නියන යැයි සලකන්න)
•	
	-
	10034
)	අවල කුහර සුමට ගෝලයක පහලම ලක්ෂායෙන් යටි සිරස් රේඛාවට 60° ක් ආනතව ඇතුලත පෘෂ්ඨය මත
	U වේගයෙන් ස්කන්ධය m වූ අංශුවක් පුක්ෂේප කරයි. ගෝලයේ දරය $rac{3}{2}m$ නම් අංශුව සම්පූර්ණ වෘත්තය
	ගෙවා යෑමට අවශාතාව $U^2 > 6g$ බව පෙන්වන්න.
	1000
	. 2152
•	
	-
	-
	-
· · ·	

හර අන්ත් කෙළවරට m ස්කන්ධයක් අ	මුණා අවල ලක්ෂායට '/ ₂ දුරක් පහලින් වූ	ලක්ෂායක් සට
	2 දුරක් ගුරුන්වය යටතේ පහලට වැටී තවදුර	
වේ නම් තන්තුවේ ඇතිවන උපරිම විතජ		
		-
-		
		•••••
	-	
		••••••
		••••••
		• • • • • • • • • • • • • • • • • • • •
ාමාන අ රයන් සහිත A, B සුමට ගෝල	2ක් සරල ලෙස ගැටෙන පරිදි. සුමට තිරස් ම	ම්සයක් ම න
පමාන අරයන් ස හිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ	2ක් සරල ලෙස ගැටෙන පරිදි. සුමට තිරස් ෝ ල්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
පමාන අරයන් ස හිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්
ෂමාන අරයන් සහිත A, B සුමට ගෝල පුතිවිරුද්ධ දිශාවලට වලනය වෙයි. ගෝ වලින් වලනය වේ. ගෝල අතර පුතාාගෑ	2ක් සරල ලෙස ගැටෙන පරිදි, සුමට තිරස් ග ්ල දෙකෙහි ස්කන්ධ 2m හා 3m වන අතර ඒව ති සංගුණකය e නාම ද ගැටුමෙන් පසු A ගෙ	ම්සයක් මත වා 7u හා ිu වේග්

කේත්දයේ පිහිටුම් යෛගිකය x	$j \neq \mathbf{X} \neq \mathbf{zoe} \mathbf{X}$ if give representation
energen engle enflammen	The second se
	and the head to the structure of the str
	ware a second start as the first even of the second line.
	and the second
•	and and adding a subapply approx (15) (15) (15) (15)
	and a second definition of the second s
	and the second se
•••••••••••••••••••••••••••••••••••••••	n de la companya de l
ගෝලයේ කේන්දුය එකම හිරස් ම	මටටමේ පිහිටත පරිදිය. දණ්ඩ හා ගෝලය අතර හර්ෂණ ශක/ණය / අ
ගෝලයේ කේන්දය එකම හිරස් දණ්ඩ තිරසට θ ආතත ද වේ. λ හ	
ගෝලයේ කේන්දුය එකම හිරස් ම	මටටමේ පිහිටත පරිදිය. දණ්ඩ හා ගෝලය අතර හර්ෂණ ශක/ණය / අ
ගෝලයේ කේන්දය එකම හිරස් දණ්ඩ තිරසට θ ආතත ද වේ. λ හ	මටටමේ පිහිටත පරිදිය. දණ්ඩ හා ගෝලය අතර හර්ෂණ ශක/ණය / අ
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටත පරිදිය. දණ්ඩ හා ගෝලය අතර හර්ෂණ ශක/ණය / අ
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දණ්ඩ හා ගෝලය අතර හර්ෂණ ශක්ෂාය λ අ $\infty \lambda$ අතර සම්බන්ධතාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ ඔබ්ත්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දස්ව හා ගෝලය අතර හර්ෂණ ශක්ෂාය λ අතර සම්බන්ධනාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දසාබී හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සම්බන්ධතාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දසාබී හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සම්බන්ධතාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දස්ව හා ගෝලය අතර හර්ෂණ කොර්ණය λ අතර සම්බන්ධනාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගික්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දසාබී හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සම්බන්ධතාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දසාබී හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සම්බන්ධතාවයි $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දස්ව හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සමබන්ධතාවය $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දස්ව හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සමබන්ධතාවය $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගින්
ගෝලයේ කේන්දය එකම හිරස් ද දණ්ඩ තිරසට θ ආතත ද වේ. λ හ දෙනු ලබන බව පෙන්වන්න.	මටටමේ පිහිටන පරිදිය. දස්ව හා ගෝලය අතර හර්ෂණ කොර්ණය λ ද ත λ අතර සම්බන්ධනාවය $\tan(2\theta - \lambda) = 2\tan\theta + \tan\lambda$ මගික්

മൽ മാഠനലാന് ഭവതുന്നത്തിന് മാബ്ഗാനം നെയ്യുന്ന് മേയങ്ങ് മാമാണ് മാമോഗന് പ്രിന്നാനം പ്രിന്നാനം പ്രിന്നാനം പ്രിന്നാന പ്രത്യാനം പ്രാത്യാന് മുത്തിന്റെ പ്രത്യാനം നിന്നും മോയങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്ങ്
කණ්ඩායමේ නිමල් දිනිමෙ සමභාවිතාව $rac{1}{2}$ කි. ඔහුගේ මල්ලී කමල් 15 ත් පහළ දිනීමේ සමභාවිතාව $^2/3$
கி.
 (i) සහෝදරයන් දෙදෙනායේ එක් අයෙකු පමණක් දිනිමේ.
 (ii) ඔවුන්ගේ අඩුම වශයෙන් එක් අයොතුවත් දිනිමේ සම්භාවිතාව සොයන්න.
·
ඓකාසය හා වර්ගවල ඓකාසය 320 සහ 5840 වේ. (i) එම කාලවල වාහස්තියේ මධාසයනය හා සමමත අපගමනය සොහෝන. ↓ 005000000000000000000000000000000000
(ii) වෙනත් සිසුවකුගේ කාලය මෙම වසාජතියට එකතු කලවිට මධානය වෙනස් නොවේ නම් සම්මත
අපගමනය අඩුවන බව පෙන්වන්න.
<u>a</u>
iany
1 COV
1 212-
•

5

B කොටහ

(11) a) t = o වීට x තගරයෙන් පිටත් වන A මෝටර් රථයක් $a_1 ms^{-2}$ ත්වරණයක් සහිතව වලිත ් උපරිම වේගයක් ලබා ගනී. A පිටත් වන මොහේතේම X පසුකර එම දිශාවට U ms⁻¹ වේගයෙන් ගමන් කරන B රථයකට $a_2 ms^{-2}$ වූ නියන මන්දනයක් ඇති අතර A උපරිම වේගය ලබාගන්නා මොහෙතෙහිම B නිශ්චල වේ. ඉන්පසු Y තගරයේදී A නිශ්චල වනතෙක් $a_1 ms^{-2}$ නියන මන්දනයකින් ගමන් කරයි. B රථය t_0 කාලයක් පිරවුම්හලක නවතා නිබී පසුව $a_2 ms^{-2}$ නියත ත්වරණයක් ලබා ගනිමින් වලනය වේ. Y තගරයේදී A නිශ්චල වන මොහොතේදීම B රථය Y තගරය පසුකර යයි නම A හා B සඳහා එකම සටහනේ පුවේග කාල වනු ඇඳ $\left(1 - \frac{a_{210}}{u}\right)^2 = \frac{2a_1}{a_2} - 1$ බව පෙන්වන්න. මෙම වලිනය පැවතීමට $2a_1 \ge a_2$ බව අපෝගනය කරන්න.

4

b) රූපයේ දැක්වෙන පරිදි සුමට කප්පියක් මතින් යවා ඇති සිරස්ව එල්ලෙන

M ස්කන්ධයක් රැගත් තන්තුවක් මගින් සුමට තිරස් මෙසයක් දිගේ M ස්කන්ධයක් සහිත සුමට කුඤ්ඤයක් ඇදීමට සලස්වනු ලබයි. ⁴ ද m කුඤ්ඤයෝ ආනත මුහුණත මත m ස්කන්ධය සහිත P අංශුවක්

- තබනු ලැබේ. චලනය වන සියල්ලම
- . වැඩිතම බැවුම් රේඛාව හරහා යන සිරස් තලයක වෙයි.
- කුඤ්ඤලග් ත්වරණය සොයා කුඤ්ඤයට සාලේක්ෂව

P අංශුවේ ත්වරණය $rac{(2M+m)\sinlpha+M\coslpha}{2M+m\sin^2lpha}~g$ බව පෙන්වන්න.

මෙහි lpha යනු මුහුණේ ආතතියයි. කුඤ්ඤය මත m හි තෙරපුමද සොයක්ත.

(12) දිග l වූ සැහැල්ලු අවතනාහතන්තුවක එක් කෙලවරක් O ලක්ෂායකට ගැට ගසා ඇති අතර අනෙක් කෙළවරට ඇදා ඇති ස්කන්ධය m වූ අංශුවක් U ඒකාකාර වෙගයෙන් තිරස් වෘත්තයක් ගෙවා යයි. OP

තන්තුව සිරස සමග α කෝණයක් සැදුයි නම් $U^2 = \frac{gl\sin^2 \sigma}{\cos \alpha}$ බව පෙන්වන්න.

අංශුව නිශ්චලව ඇති අපුතාසේථ වස්තුවක ගැටී ක්ෂණික නිශ්චලතාවයට පැමිණෙන නමුත් එම වස්තුව P අංශුවේ ඊලභට සිදුවන වලිතයට බාධා නොකරයි. OP සිරස සමහ O කෝණයක් සාදන විට අංශුවේ වේගය හා තන්තුවේ ආතනිය සොයන්න.

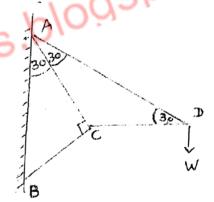
අංශුව ලබා ගන්නා වැඩිතම වෙගය ${}^{U\!/}_{2}$ නම $\cos lpha$ හි අගය සොයා ගැටීම නිසා තත්තුවේ ආතතිය ක්ෂණිකව 49 : 1 අනුපාතයකින් අඩුවන බව පෙන්වන්න.

(13) ස්වභාවික දිග a සහ මාපාංකය λ වූ පතාස්ථ තත්තුවක දිගට x විතතියක් දෙනු ලැබේ. තත්තුවේ ආතතිය ලියා දක්වා එහි තැන්පත් වූ විහව ශක්තිය $\frac{1}{2} \frac{\lambda x^2}{a}$ බව පෙත්වත්ත. ස්කත්ධය m වූ අංශුවක් ස්වභාවික දිග aවූ සැහැල්ලු පතාස්ථ තත්තුවකින් අවල 0 ලක්ෂායකට සම්බන්ධ කර එම ලක්ෂා යෙහි නිශ්චලව තබා ගුරුත්වය යටතේ නිදහහේ වැටීමට සලස්වනු ලැබේ. අංශුව එහි පහත්ම පිහිටීමට ලහා වන විට තත්තුවේ දිග 2a වෙයි. තත්තුවේ පුතාස්ථ මාපාංකය 4 mg බව පෙත්වීමට ශක්ති සම්කරණය යොදත්ත. තත්තුව ඇදී ඇති විට එහි x විතතිය $\ddot{x} + \frac{4g}{a} \left(x - \frac{a}{4}\right) = 0$ සම්කරණය සපුරාලන බව පෙත්වත්ත. මෙම සරල අනුවරීතී චලිතයෙහි කේන්දය හා විස්තාරය හදුත්වා දෙන්න.

අංශුව O ලක්ෂාය වෙත ආපසු ලගාවක් තේ ටලිනය ආරමාශයේ සිට $\sqrt{\frac{a}{g}} \left[2\sqrt{2} + h + \partial s^{-1} \frac{1}{2} \right]$ කාලයකි පසුහි බව පෙන්වන්න.

(14) i) (a) lpha හා eta අදිශ ද \underline{a} හා \underline{b} නිශ්ශුනාා අසාමාන්තර දෛශිකද විට

 $\alpha a + \beta \underline{b} = 0$ වන්නේ $\alpha = 0$ හා $\beta = 0$ නම් බව සාධනය කරන්න.


PQRS සමාන්තරාපෙය් QR පාදය මත T පිහිා ඇත්තේ QT:TR අනුපානය 1:2 වන පරිදිය. PT මගින් SQ ජේදනය වන අනුපානය ඉහත පුමේය භාවිතයෙන් යොයන්ත.

- (b) වෘත්තයක විශ්කම්භය මගින් පරිධියේ ආපානනය කරන කෝණය සෘජුකෝණයක් බව අදිශ ගුණිතය භාවිතයෙන් සාධනය කරන්න.
- ii) සවිධි ෂඩාසුයක AB, BC, CD, DE, FE, හා FA රේඛා ඔස්සේ පිළිවෙලින් 3F, 7F, F, 2F, aF, හා bF බල කියා කරයි.
 - (a) බල හයේ සම්පුයුක්තය බලයුග්මයකට ඌනතය වූ විට
 - (b) සම්පුයුක්ත බලය තනි බලයක් ලෙස AD ඔස්සේ කියා කරන විට a හා b නියතයන්හි අගය සොයන්න.
- (15) (a) AB, BC සමාන දිගැනි සිහින් ඒකාකාර දඬු දෙකක බර පිළිවෙලින් W හා 2W වේ. B හිදී සුමට ලෙස සන්ධි කරන ලද දඬු 2, A හා C දෙකෙලවර සුමට නිරස් තලයක් මතද B ඉහලින් ද වන පරිදි සිරස් තලයක
 - සමතුලිතව තබා ඇත්තේ දඬුවල මධාා ල්ක්ෂාා යා කරතු තිරස් තන්තුවක ආධාරයෙනි. A $\hat{B}C=\pi/2$ ්වේ.

තන්තුවේ ආතතිය $rac{3W}{2}$ බව පෙන්වා B සන්ධියේ පුතිනියාවද සොයන්න.

(b) රූපයේ දැක්වෙන රාමු සැකිල්ල BC, AC, CD හා AD සැහැල්ලු දඩු හතරක් සුමට ලෙස සන්ධි කිරීමෙන් සාදා ඇත. එය A හා B හිදී සිරස් බිත්තියක් මත වූ අවල ලක්ෂාය 2 කට සම්බන්ධ කර ඇති අතර D හිදී W භාරයක් එල්ලා ඇත. පුතාහබල සොයා ඒවා ආතතිද තෙරපුමද යන්න නිර්ණය කරන්න.

A භීදීත් B භිදීන් පුතිකියා පුස්තාරික ලෙස සොයන්න.

t.CO

o) ශීර්ෂය 0 සහ අඩ සිරස් කෝණය lpha සහ උස h වූ ආධාරකය රහිත කුහර කේතුවක් ඒකක වර්ගඵලයකා ස්කන්ධය ho වූ තුනී ඒකාකාර ලෝහ තහඩුවකින් සාදා ඇත. එහි ස්කන්ධය $\pi ph^2 \sec lpha an lpha$ බව පෙන්වා එහි ස්කන්ධය කේත්දුයෙහි පිහිටීම සොයන්ත.

එම වර්ගයේම ලෝහ තහඩුවකින් සැදු කේන්දය B වූ සහ අරය $h \tan lpha$ වූ ඒකාකාර වෘත්තාහාර තැටියක් ඉහත කේතුවේ ආධාරකය වන පරිදි සවිකරනු ලැබේ. සංයුක්ත වස්තුවේ ජ්කන්ධකේන්දයට () සිට දුර

 $h \frac{\left(\frac{2}{3}\sec\alpha + \tan\alpha\right)}{\csc\alpha + \tan\alpha}$ බව පෙන්වන්න.

සංයුක්ත වස්තුව ආධාරකයේ දාරයේ පිහිටි A නම් ලක්ෂයකින් එල්ලනු ලැබේ. AO හා AB යටි සිරස සමඟ සමාන කෝණ සාදයි නම $lpha=\sin^{-1}~1/_3$ බව පෙන්වන්න.

(17) (a) එක්තෙකින් ස්වායන්ත වූ සිද්ධින් A හා B දෙකම සිදුවීමේ සම්භාවිතාවය $1/_{eta}$ කි. A හා B දෙකෙන්

එකක්වත් සිදු තොවීමේ සමහාවිතාවය $^{3}/_{8}$ කි. A ලැබීමේ සමහාවිතාවය සොයන්න.

බේයස් පුමේය පුකාශ කරන්න.

 $A, {
m B}$ හා ${
m C}$ යන පෙට්ටි තුනෙහි දෝෂ සහිත ඇණ තිබීමේ සම්භාවිතාව පිළිවෙලින් $^{1}/_{
m S},\, ^{1}/_{
m A},\, ^{1}/_{
m 7}$ ක් වේ. පෙට්ටියක් සසමහාවී ලෙස තෝරා ගෙන ඉන් සසමහාවී ලෙස තෝරාගත් ඇණියක් දේෂ සහිත වී නම් එය A පෙටටියෙන් ගත් එකක් වීමේ සම්භාවිතාව සොයන්න.

(b) වැඩිහිටියන්ගේ සුභසාධනය සඳහා වෙන්වූ සමිතියක් අවුරුදු 60 ට වැඩි වැඩිහිටියන් සඳහා විශාලීක

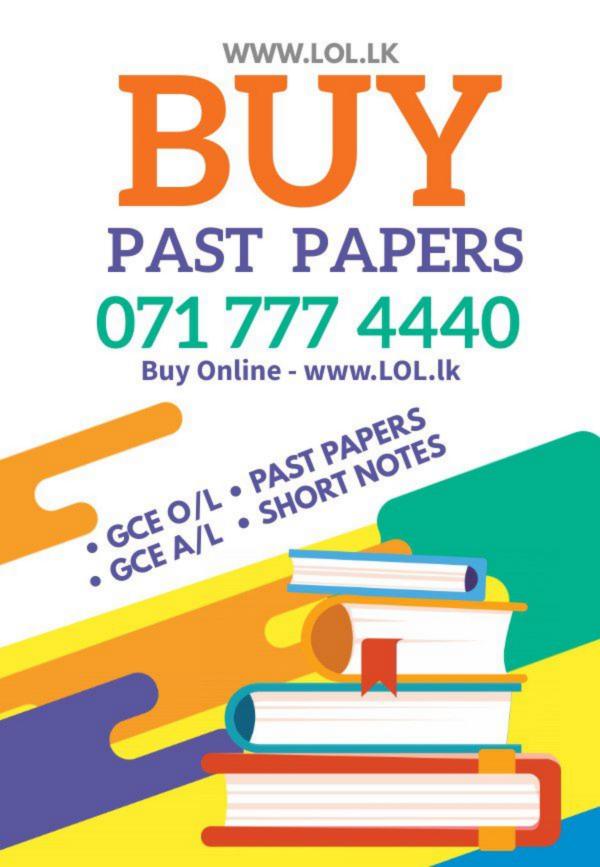
පාරිලතා්ෂිකයක් හඳුන්වාදීමට යයි. එය වර්ගකර ඇත්තේ පහත සඳහන් ආකාරයටය.

ු ((v . .) මසකට රු 20 බැගින් මසකට රු 25 බැගින් වයස් කාණ්ඩය 60 - 65 65 - 70 මසකට රු 30 බැගින් 70 - 75 rien / මසකට රු 35 බැගින් 75 - 80 මසකට රු 40 බගින් 80 - 85

විශුාම පරිතෝෂික දීමතා සඳහා තෝරාගත් චැඩිහිටියන් 25 දෙනාගේ වයස් අහත දැක්වේ.

74	62	84	72	61	83	72	81	64	71	63
67	74 .	64	79	73	75	76	69	68	.78	66

60 51 67


ප්‍රාණත් ලක්ණු භාවිතා කරමින් සමූහිත සංඛාහත් ව්යාප්තිය ගොඩන්ගන්න.

(ii) පරිතෝෂිකය හිමි වැඩිහිටියෙකුගේ සාමානා වයස ගණනය කරන්න.

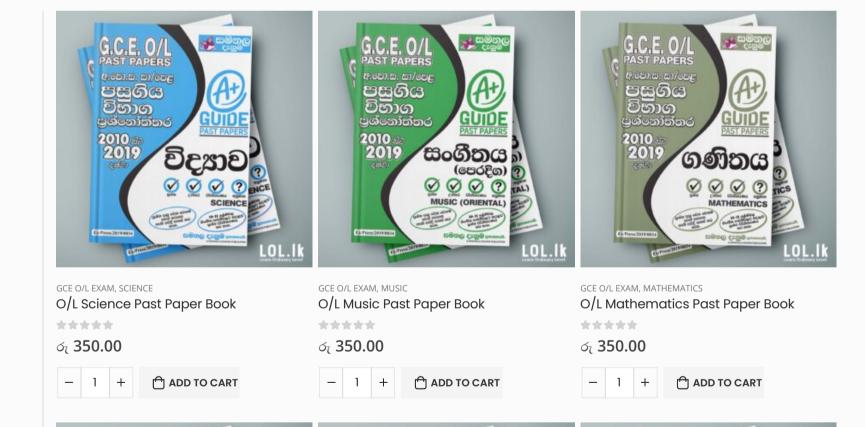
(iii) වාහාප්තියේ සම්මත අපගමනය ගණනය කරන්න.

(iv) ජාල රේඛය භාවිතා කරමින් පරිතෝෂිකය හිමි වැඩිහිටියෙකුගේ මාත වයස ගණනය කරන්න.

(V) මසකට එක් වැඩිහිටියෙකුට ලැබිය හැකි පාරිතෝෂිකයේ සාමානාය ගණනය කරන්න.

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500

More than 1000+ Papers For all major Subjects and mediums



ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

GCE O/L Exam

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P... ★★★★★

*σ*₁ 350.00