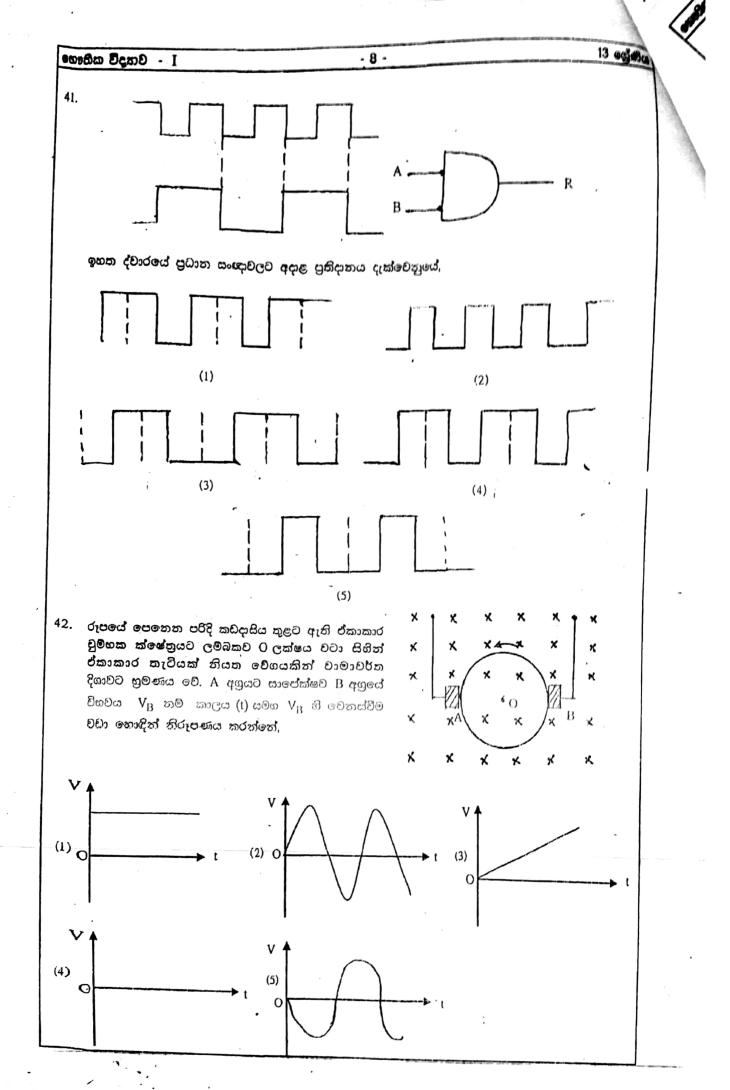

ු ආනන්ද <u>විද</u>පාලය - කොළඹ 10 Colombo 16 Juanda College Colombo II: Asaula College, Categora 19 Arreda Celege, Colordo 10 Annels Colege, Colombo 10 Arrada College, Celen අවසාන වාර පරික්ෂණය - 2013 ජූලි අධ්ෂයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2013 අගෝස්තු භෞතික විදහාව Ĩ 87.CS 2 13 ශෝණිය Physics I g = 10 N kg⁻¹ ලෙස ගන්න. 1. කාර්යය ශුිතයෙහි ඒකක වන්නේ, · A eV (5) (4) С (3) (1) v (2) W. 2. ලෝහයක තාප සත්තායකතාවය සොයන ස'ල් උපකරණ පරීක්ෂණයේදී, තඹ නළයේ විෂ්කම්භය මැනීමට වඩාත්ම පුදුසූ මිනුම් උපකරණය වන්නේ, (3) වනියර් කැලිපරය (2) චල අන්වීක්ෂය මීටර් කෝදුව (1)(5) හෝ ලමානය. මයිකෝ මීටර ඉස්කුරුප්පු ආමානය (4) 3. දීර්ඝ කළ ච'නියරයක පුධාන පරිමාණය ිl mm චලින් පවතින අතර, ච'නියර් පරිමාණයේ කොටස් 20 ක් මිලිමීටර් 39 ක් සමග සම්පාත වේ. මෙහි බාහිර හනු ස්පර්ශව ඇතිවිට පරිමාණ පිහිටීම් රූපයේ දැක්වේ. මෙහි මූලාංක දෝෂය වන්නේ, (4) + 0.65 mm (5) - 1.65 mm (3) + 0.30 mm (2) - 0.04 inm +0.06 mm (1)4. දිග L_{a} හා L_{b} වූ අවලම්භ දෙකක දෝලන සංඛාාව මිනිත්තුවට n_{a} සහ n_{b} වේ. n_{a}/n_{b} අනුපාතය වත්ලත්, $(L_a/L_b)^{1/2}$ (3) $(L_b/L_a)^{1/2}$ (4) $(L_a/L_b)^2$ (5) L_b/L_a L_a/L_b (2) (1) 256 Hz වූ සරසුලක් මගින් අනුනාද නළයක් මූලික අවස්ථා තමපනය වීමේදී සංවෘත නළයේ දිග 30 cm 5. විය. වාතයේ ධවනි පුවේගය ms^{–1} වලින්, (256×30×2)/100 $(256 \times 3)/100$ (3) (2) (256×30×4)/100 (!)256/4 (5) (4) 256×30×4 6. භිරසට ආතතිය () වන තළයක h සිරස් උසකදී A පිහිටුමේ සිට ස්කන්ධය M සහ අරය R වන සිලින්ඩරයක් නිශ්චලතාවයේ සිට මුදාහරින අවස්ථාවක් රූපයේ දැක්වේ. සිලින්ඩරය ලිස්සීමකින් තොරව පෙරළෙයි. තලයේ පහළ B පිහිටුමට ලඟාවන අවස්ථාවේදී එහි වේගය වන්නේ, в₹ $\left(I = \frac{1}{2}MR^2\right)$ (2) $V = \sqrt{4gh/3}$ (3) $V = \sqrt{2gh}$ (1) $V = \sqrt{2gh/3}$ (5) $V = \sqrt{5gh/3}$ (4) $V = \sqrt{gh/3}$

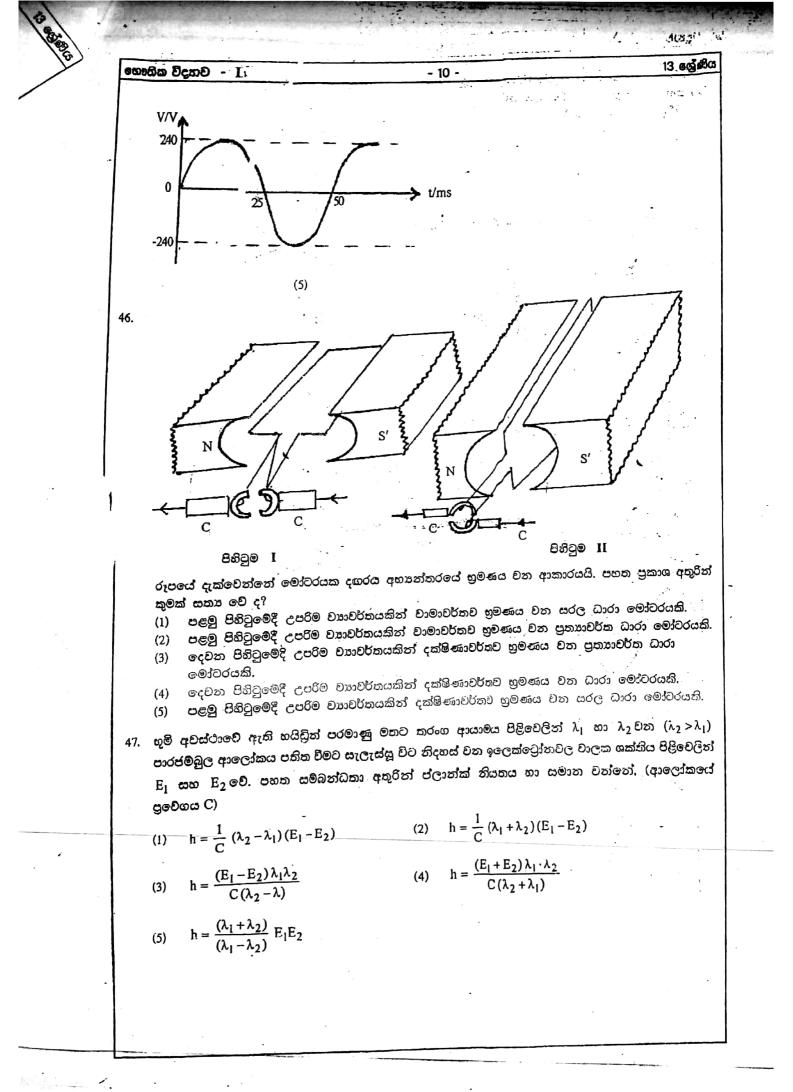
- 2 -භෞතික විදහාව - I ස්කන්ධය M සහ අරය R වන ඒකාකාර ගෝලයක කේන්දුයේ සිට r_l හා r₂ දුරවල්වලදී ගුරුත්වාකුරු ක්ෂේතු විශාලන්වයන් පිළිවෙලින් F₁ හා F₂ වේ. නිවැරදි සම්බන්ධනාවය වන්නේ, 7. $r_1 < R$ සහ $r_2 < R$ නම් $\frac{F_1}{F_2} = \frac{r_1}{r_2}$ වේ (1) $r_1 > R$ සහ $r_2 > R$ නම් $\frac{F_1}{F_2} = \frac{r_1^2}{r_2^2}$. (2) (3) $r_1 > R$ යහ $r_2 > R$ හම් $\frac{F_1}{F_2} = \frac{r_2}{r_1}$ ලෝ (4) $r_1 < R$ case $r_2 < R$ solve $F_1 / F_2 = r_1^2 / r_2^2$ (5) $r_1 < R$ සහ $r_2 < R$ නම් $F_1 = r_1^{1/2}$ වේ. (5) 8. අරයන් R_1 හා R_2 $\left(R_1 > R_2\right)$ වන ඒක කේන්දීය තුනී ලෝහ කබොල දෙකකට Q_1 හා Q_2 ආරෝපණයන් පිළිවෙලින් ලබාදෙයි. එහි ${
m R}_1$ හා ${
m R}_2$ අතර අරය r හි විභවය විය හැක්කේ, $\left(K = \frac{1}{4}\pi\epsilon_0\right)$ (1) $K(R_1 + R_2)/r$ (2) $K\begin{pmatrix} Q_1/r + Q_2/R_2 \end{pmatrix}$ (3) $K\begin{pmatrix} Q_2/r + Q_1/R_1 \end{pmatrix}$ (4) $K\left(\frac{Q_1}{R_1} + \frac{Q_2}{R_2}\right)$ (5) $K(Q_1 + Q_2)/(R_1 + R_2)$ 9. P හා Q යන ගෝල දෙසාම වානේවලින් සාදා ඇත. Q ගෝලයේ අරයට වඩා විශාල අරයක් P ගෝලයට ඇත. Τp _T_P_ උෂ්ණත්වයේ P ගෝලයද T_Q_ උෂ්ණත්වයේ Q ගෝලයද ඇතිවිට ($\mathrm{T}_\mathrm{P} > \mathrm{T}_\mathrm{Q}$) ගෝල එකිනෙක ස්පර්ශ කරනු ලබන්නේ පරිසරයට තාපය හානි නොවන පරිදියි. අවසාහ සමතුලිත උෂ්ණත්වය T නම් $\mathrm{T}_{\mathrm{P}},\mathrm{T}_{\mathrm{O}}$ හා T අතර සම්බන්ධය දෙනු ලබන්නේ, (2) $(T_P - T) > (T - T_Q)$ GO. (3) $(T_P - T) < (T - T_Q)$ GO. $(T_P - T) = (T - T_O)$ $\odot \mathfrak{O}.$ (1) $(T_P - T) = (T + T_O)$ _@0. (5) නිශ්චිතව කිව් තොහැක. (4) මාන– සමාන– AB- සහ– CD එකම ලෝහලයන් තතා ඇති 10. ඒකාකාර දඬු දෙකක් AB හි මධා ලක්ෂායෙන් CD දණ්ඩට 100 °C හොඳින් C ලක්ෂායෙන් සන්ධි කර ඇත. AB හි නිදහස් දෙකෙළවර |00 ℃ ද, D නිදහස් කෙළවර 0 ℃ උෂ්ණත්වයේද පවත්වාගනු ලැබේ. දඬු හොඳින් පරිවරණය කර ඇත. අනවරත අවස්ථාවේදී AB දණ්ඩෙ මධාප ලක්ෂයෙහි ද උෂ්ණත්වය වන්නේ, 60 °C (1) 33.3°C (2) 50°C (3) D (4) 66.7 °C (5) 80 °C

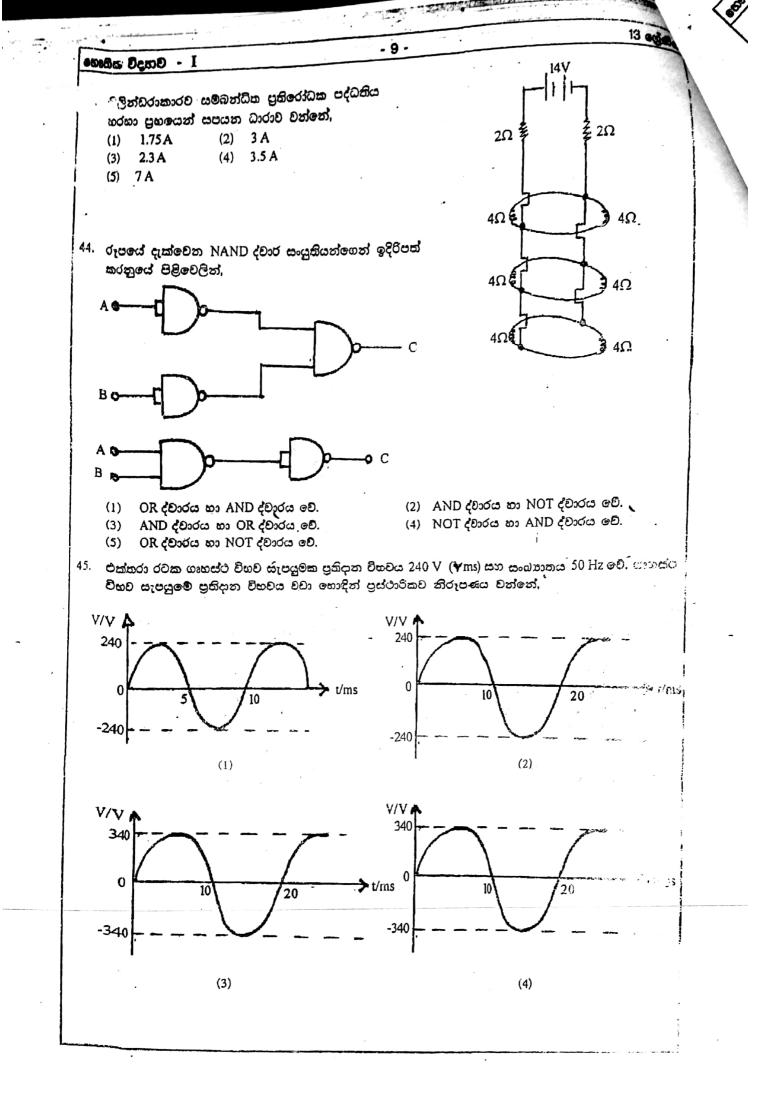
Scanned by CamScanner

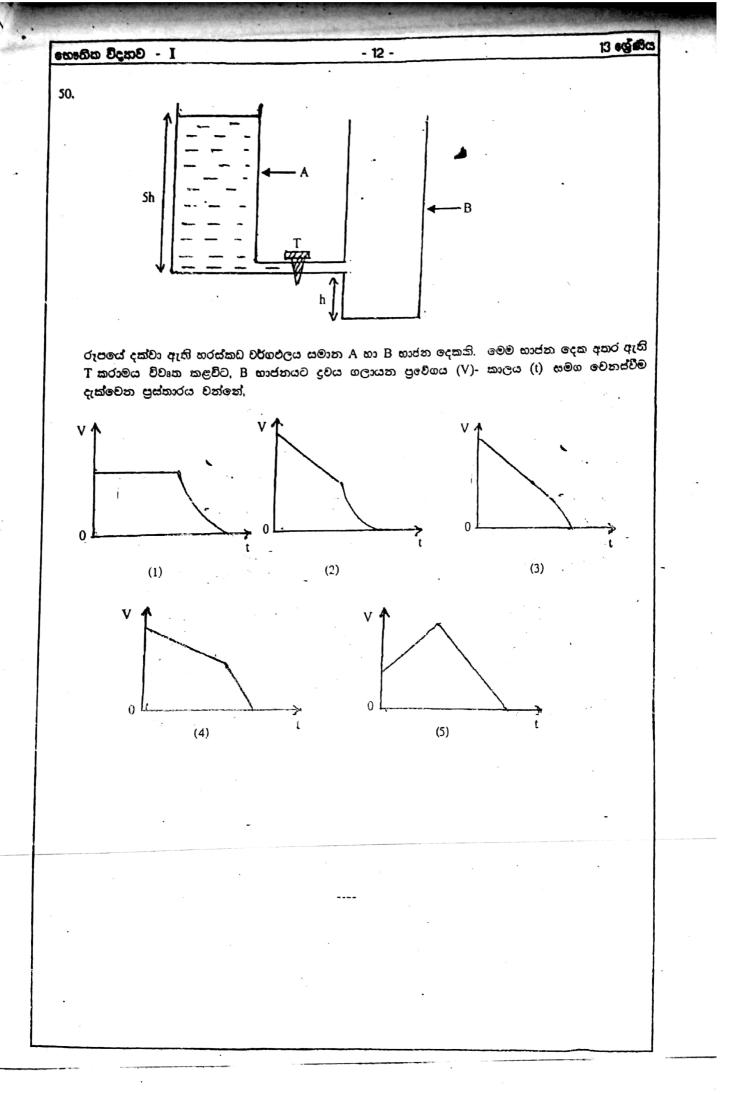
13

	- 5 - 13 G gi				
50006	∂ක විදනව - I 5 -				
22.	රුපයේ දක්වා ඇති හරිදි ස්කන්ධය m ₁ හා m ₂ (m ₂ < m ₁) වන ලී කුවටි දෙකක් තිරසට θ කෝණයකින් ආනත වූ තලයක තන්තුවකින් එකිනෙක සම්බන්ධ කර තබා ඇත. ලී කුවටි සහ ආනත තලය අතර සර්ෂණ සංගුණකය μ නම් ලී කුවටි නිදහස් කළවිට				
	(A)ලී කුට්ටිවල ත්වරණය g (sin θ - μ cos θ) වේ.(B)ලී කුට්ටිවල ත්වරණය ශූතා වේ.(C)තත්තුවේ ආතතිය ශූතා වේ.(D)කත්තුවේ ආතතිය (m, + ma) g (sin θ - μ cos θ)				
	 (A) とののが満 にわりま のわ. (A) かい (C) とののが満 にわれま のた. (A) かい (C) とののが満 にわれま のた. (A) (C) とののが満 にわれま のた. (A) (C) とののが満 にわれま のた. (A) (C) とののが満 にわれま のた. (B) いい (C) とののが満 にわれま のた. 				
23.	ඒකාකාර AB දණ්ඩ ජල බීකරයක ගිල්වා එහි A කෙළවර හාජනයේ				
	පතුලට සම්බන්ධ කර ඇත්තේ රූපයේ පරිදි දණ්ඩේ දිගින් $\frac{3}{4} ක් ජලයේ$				
	ගිලී පවතින ලෙසයි. දණ්ඩ සාස ඇති දුවායේ සාපේක්ෂ සතත්වය වන්නේ,				
	(1) $\frac{3}{4}$ (2) $\frac{4}{3}$ (3) $\frac{9}{8}$				
	(4) $\frac{9}{16}$ (5) $\frac{16}{9}$				
24.	එක්තරා ඇදි තන්තුවක් දිගේ සංඛානතය 100 Hz වන තරංගයක් 10 ms ⁻¹ වේගයෙන් ගමන් කරයි. මේ තන්තුවේ 2.5 cm දුරින් පිහිටි ලක්ෂ දෙකක් අතර කලා වෙනස ජේඩයන් වලින් වන්නේ. (1) $\frac{\pi}{8}$ (2) $\frac{\pi}{4}$ (3) $\frac{3\pi}{8}$ (4) $\frac{\pi}{2}$ (5) $\frac{-3\pi}{2}$				
	(1) $\frac{\pi}{8}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{8}$ (4) $\frac{\pi}{2}$				
25.	වාතයෙහි ස්ථාවර ධවති තරංගයක නිශ්පත්දයකදී හෝ පුස්පත්දයකදී හෝ ඇලසන ශබ්දය සම්බන්ධයො වහත පුකාශවලින් කුමක් නිවැරදි ද? (1) නිශ්පත්දවලදී හඬේ සැර වැඩිවනුයේ පීඩන අඩු වැඩි වීම උපරිමයක් නිසාය. (2) නිශ්පත්දවලදී හඬේ සැර වඩා වැඩි වනුයේ කම්පනයේ විස්තාරය උපරිමයක් නිසාය. (3) පුස්පත්දවලදී හඬේ සැර වඩා වැඩි වනුයේ කම්පනයේ විස්තාරය උපරිමයක් නිසාය. (4) පුස්පත්දවලදී හඬේ සැර වඩා වැඩි වනුයේ, පීඩන අඩුවැඩි වීම උපරිමයක් නිසාය. (5) නිශ්පත්දවලදී හා පුස්පත්ද එකම හඬක් ඇතේ.				
26.	වර්තන අංකය එකිනෙකට වෙනස් දුව ස්ථර කිහිපයක් රූපයේ $n=3$ දැක්වේ. ආලෝක පුභවයන් (S) පතුලේ තබා ඇති අතර එම $n=2$ ස්ථරයේ වර්තන අංකය n_0 වේ. ඉහළට යනවිට දුව $n=1$				
	ස්ථරවල වර්තන අංකය වෙනස් වන්නේ,				
	$n_x = n_0 - \frac{n_0}{(4x - 18)}$ $x = 1, 2, 3, \dots$ සම්කරණයට අනුවයි.				
	A ° (4x−18) වස්තුවෙන් නිකුත් වන ආලෝක කිරණයක් පූර්ණ අභාපන්තර පරාවර්තනයට භාජනය වන දුව ස්ථරය				
	වන්නේ. (1) 3 (2) 5 (3) 4 (4) 6 (5) 10				
27.	මිනිසෙකුට සිය ඇසෙහි සිට 60 cm හා 500 cm පරාසය තුළ පිහිටි වස්තූන් පැහැදිලිව දැකිය හැකිය මහලෝ විදුර ලක්ෂය අනන්තය වන සේ සකස් කිරීමට භාවිතා කළයුතු උපැස් යුවල විය ුත්තෝ.				
	(1) තාභිය දුර 60 cm වන උතතල කාටයක.				
	(3) 60 cm තාභිය දර ඇති අපසාර කාචයක.				
	(4) 500 cm නාභිය දුර ඇති අපසාර කාවයක.				
	(5) නාභිය දුර 50 cm වන අපසාරී කාචයකි.				

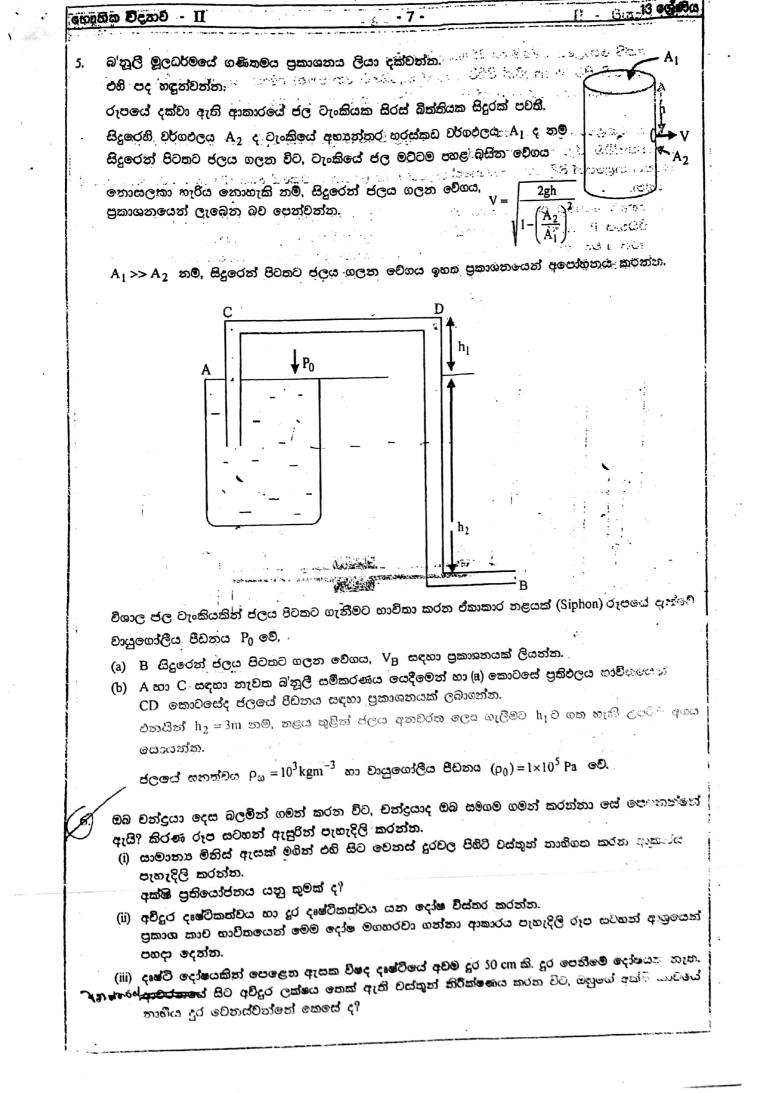

ំ


Scanned by CamScanner


3


		- 7 -	· · · · · · · · · · · · · · · · · · ·	13 ලෝණිය		
භෞත	තික විදහාව - I	- /				
34.	එක සමාන අරයෙන් යුත් එහෙත් ρ ₁ හා ලෝහ ගෝල දෙකක් ඝනත්වය ρ වන අතහරින ලදී. ගෝලවල ආන්ත පුවේග	ි දුවයක පුංචා අ පිළිවෙලින් V _I හා	V ₂ නම V ₁ /V ₂ අනුපා	ාතය වන්නේ,		
	(1) 1 (2) ρ_1/ρ_2 (3)					
35.	යංමාපාංකය 7×10 ⁷ Nm ^{–2} වන A <i>l</i> දන් හැකිවීම සඳහා දන්ඩට තිබිය යුතු අවම හ	හරස්කඩ වර්ගවලර				
	(1) 5×10^{-2} (2) 1×10^{-3}	(3) 1×10^{-4}	(4) 1.4×10^{-3}	(5) 7×10		
36.	සංඛාහතය 252 Hz වූ සරසුලක් තවත් එහි 2 ක් ඇසේ. පළමු සරසුලේ දැත්තට ඉටි 1 ක් ඇසේ. දෙවෙනි සරසුලේ සංඛාහනය (1) 250 Hz (2) 251 Hz	යවල්පයක තවරා ා වන්නේ,	ග එකට නාද කළවිට, ජ එහි බර වැඩිකළ විට ජ (4) 253 Hz (5)			
37.		්වරයේ සංඛාානය		ත් කවර පුකාශයන්		
	 (2) පීඩනය ඉහළ ගියහොත් මුල් ස්වරං (3) මෙහි මූලික සංඛාාතයට සමාන මූ මෙන් දෙගුණයකි. (4) නළය අඩු ඝනත්වයකින් යුත් වායුව (5) පළමුවන උපරිතානයේ සංඛාාතය (1000) 	යේ සංඛාභතය වැ ලික සංඛාභතය අ මකින් පිරවූ විට මූ 750 Hz වේ.	ඩවේ. ැති විවෘත නළයක දිග ලික සංඛාාතය අඩුවේ.			
38.	ඒක පරමාණුක වායුවක් මවුලයක උෂ්ණත්වය 20 °C සිට 30 °C දක්වා නැංවීම සඳහා අව්ශා තාප පුමාණය H වේ. නියත පීඩනයේ පවතින ද්වි පරමාණුක වායුවක මවුලයක උෂ්ණත්වය 20 °C සිට 25 °C දක්වා ඉහළ නැංවීම සඳහා ලබාදිය යුතු තාප පුමාණය වන්නේ,					
				5) 3/411		
39.	3 ms ⁻²	5 m - 5 m	<u>≯</u>			
	දිගු ටොලියක් මත පිටුපස කෙළවරේ සිට ටොලියේ තිරස් පෘෂ්ඨය සහ ලී කුට්ටිය අ ඒකාකාර ත්වරණයෙන් චලිත වේ නම්, ලී දුර වන්නේ,	තර සර්ෂණ සංගු ද කුට්ටිය ටොලියෙන	ණකය 0.2 වේ. ටොලිය නි න් පහතට වැටෙන විට, ෙ	ශ්චලතාවයේ සිට		
		(3) 25 m හි පවතින 800 g ස	(4) 30 m ා ජලය අන්තර්ගහ වේ. ජ	(5) 35 m ලය නැදීම සඳහා		
	12 මිනිත්තු ගතවේ. 210 V විභව සැපයුමක්	යටතේ සපයන ශ	ක්තියෙන් 10% ක් තාපය ර	ලෙස අපතේ යයි.		
	කේතලයේ දගරයේ පුතිරෝධය වන්නේ (ජ	ලයේ සහ තඹවල	ව, තා, ධා, පිළිවෙලින් 42	200 J kg ⁻¹ k ⁻¹ සහ		
•	$420 J kg^{-1}k^{-1})$ (1) 94.5 Ω (2) 115 Ω	(3) 127 Ω	(4) 156 Ω	(5) 196Ω		

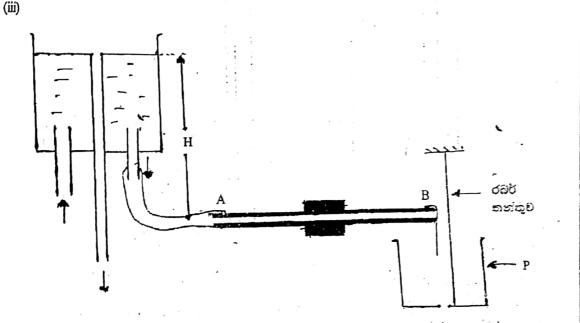
•



- 11 -භෞතික විදනව - I 48. පුකාශ සංචේදී ලෝහයක දේහලී සංඛානනය f_0 වේ. සංඛානනය $f = 2 f_0$ වන ආලෝකයෙන් ආලෙ කළවිට නිකුත්වන ඉලෙක්ටෝනවල උපරිම පුවේගය V_0 වේ. සංඛාහනය $f'=5f_0$ වන ආලෝ ඒ හා සමාන ලෝහයක් ආලෝකමත් කළවිට නිසුත්වන පුකාශ ඉලෙක්ටෝනයේ උපරිම පුවෙං වන්නේ, (5) √3 V₀ (4) 4 V₀ (3) **2√**2 V₀ $\sqrt{2} V_0$ (2) 2 V₀ (1) 49. පෘරීවිය මත E₀ විදසුත් ක්ෂේතුයක් පහළව ඇති පු*දේ*ශයක m₀ ස්කන්ධයක් ඇති ආරෝපණය q₀ වූ අවලම්හ බට්ටා (දිග සර්ල **අවලම්භයක් සාදයි. අවලම්**හයේ දෝලන කාලය (1) විදාුය් ක්ෂස්තු **තිවුතාවය** (Fg) ගමන වෙතස්මිම පුස්තාරිකව දැක්වෙන්නේ, E0 T 4 T qo E₀ Eb (2) (1) TA Т T 0 É0 E0 E₀ (4) (3) (5)

මහතික විදනාව - II

අක්ෂි ගෝලයේ විෂ්කම්භය 25 mm යයි ගන්න. ඇසෙහි සිට 25 cm දුරින් පිහිටි වස්තූන් නැරඹීමට කොපමණ අමතර බලයක් ලබාදීය යුතු දෑ ඔබ ඉහස කොටයේ ලබාගත් පිළිතූර භාවිතා කොට පැළඳිය යුතු කාවයේ නාභීය දුර කොයන්න.

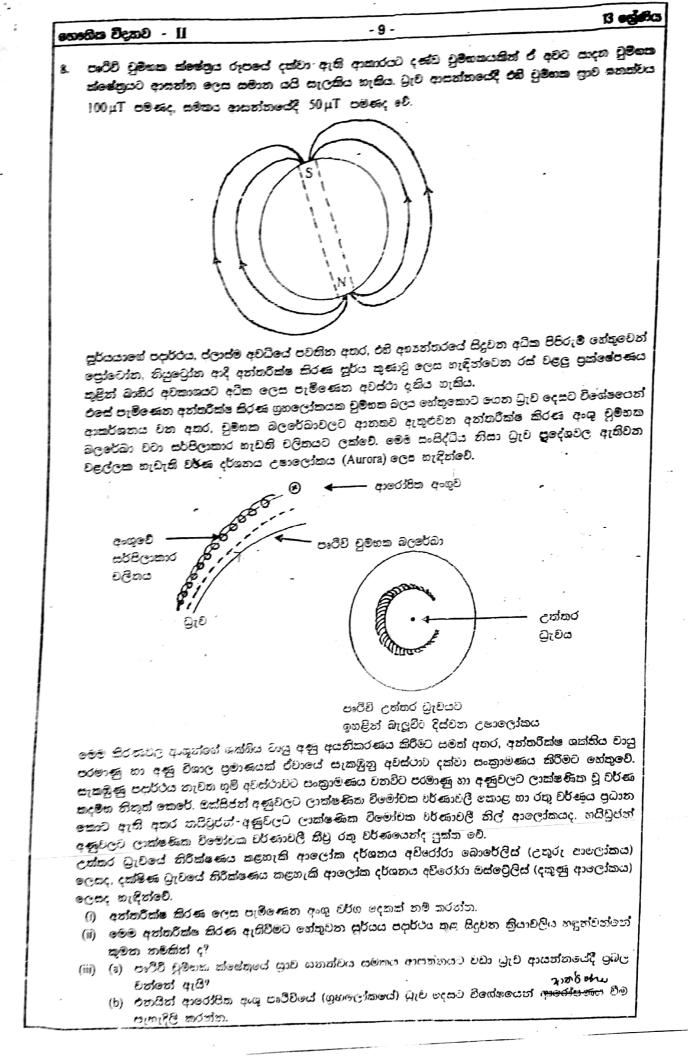

- 8 -

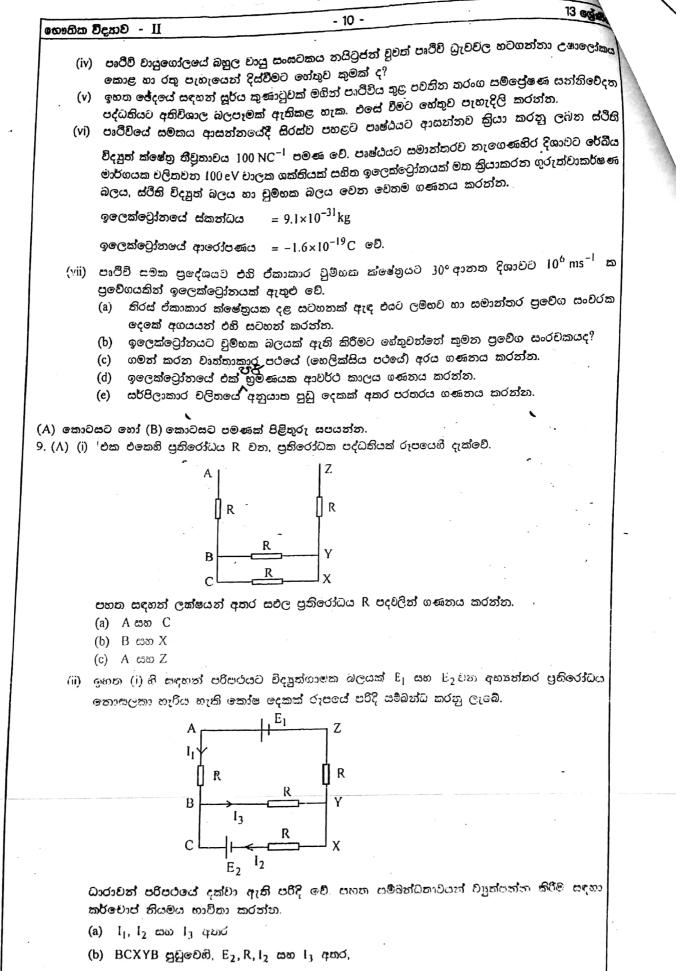
.)නළයක් කෙළවරට දුව පටලයක් ගෙන නළය තුළ පීඩනය තුමයෙන් වැඩිකරන විට, දුව මාවකයේ ජය _____(R) වෙනස්වීම, රූප සටහනකින් දක්වන්න.

මාවකය නළයෙන් බිඳී යන මොහොතේ නළයේ අරය (r) සහ මාවකයේ අරය (R) අතර සම්බන්ධතාවයන් ලියන්න.

- (i) පහළව යොමුවූ ජල කරාමයක බිහි දොරින් නිර්මාණය වන ජල බිංදුවක්, අරය r හා බුබුල කළ පීඩනය P, කාලය t සමග වෙනස්වන ආකාරය පුස්තාරිකව ඇද පෙන්වන්න.
- (ii) අරය a වන සබන් බුබුලක් අරය b වන තවත් සබන් බුබුලක් සමග සමෝෂ්ණ තත්වයක් යටතේ සම්බන්ධ වී අරය R වූ තනි බුබුලක් සාදයි. බුබුලු සෑදී ඇති දුවායේ පෘෂ්ධීක දානතිය T නම් බාහිර

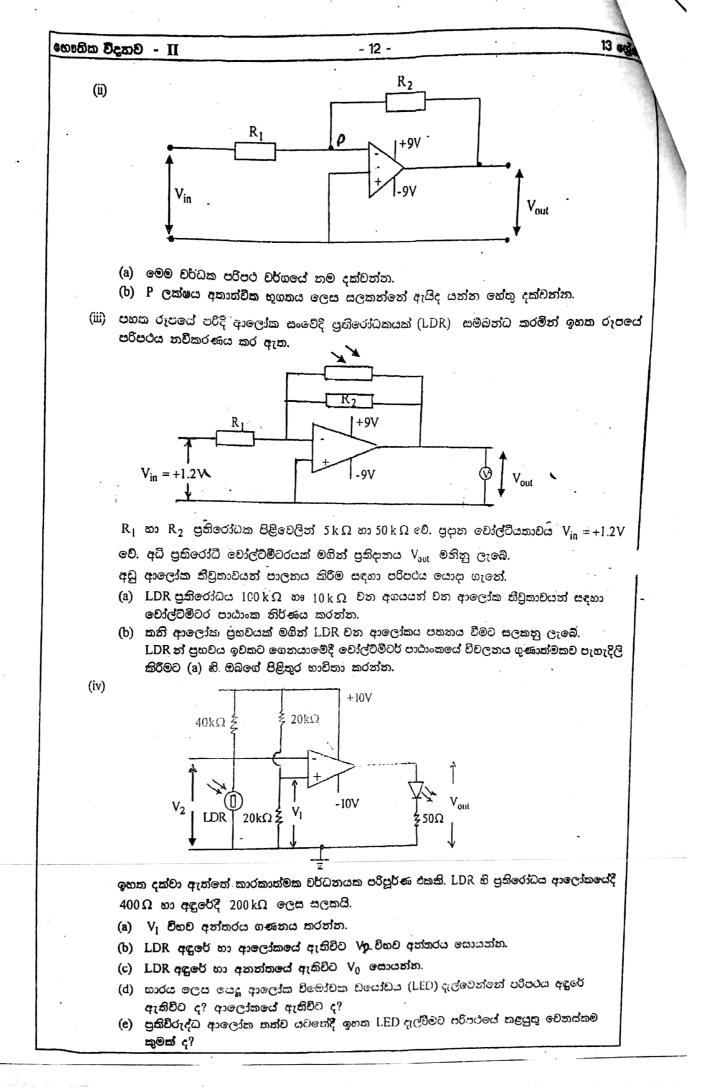
පීඩනය P නම්,
$$P = \frac{4T(a^2 + b^2 - R^2)}{(R^3 - a^3 - b^3)^2}$$
 බව පෙන්වන්න.

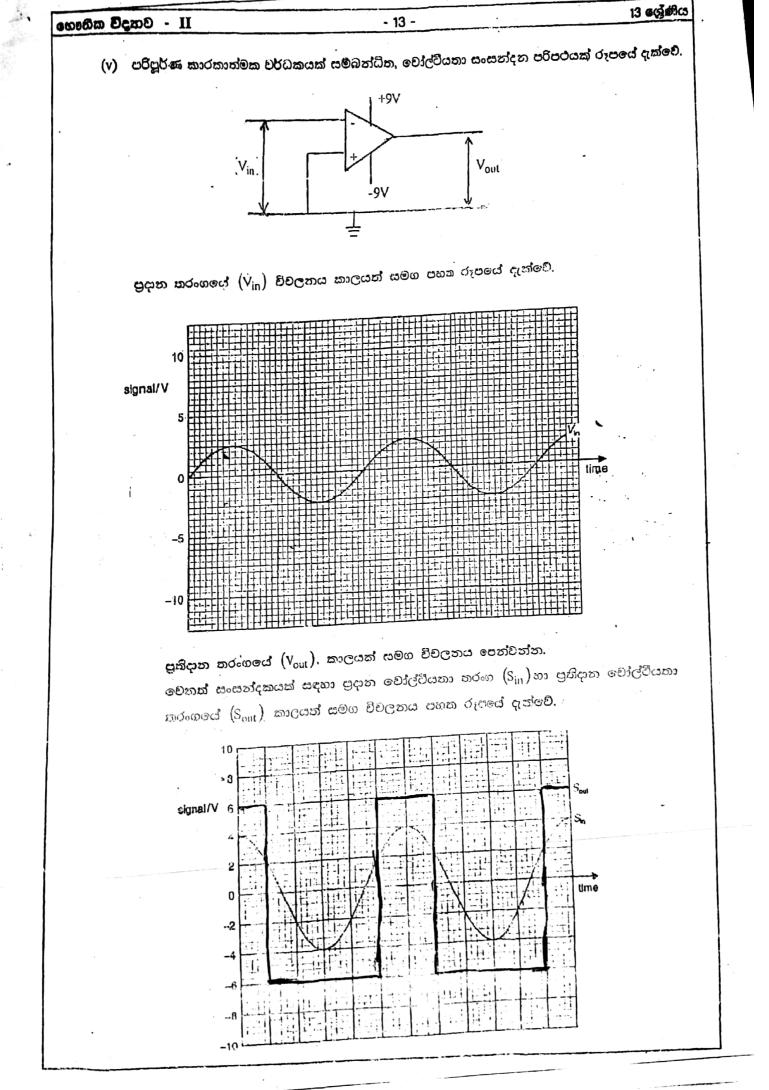


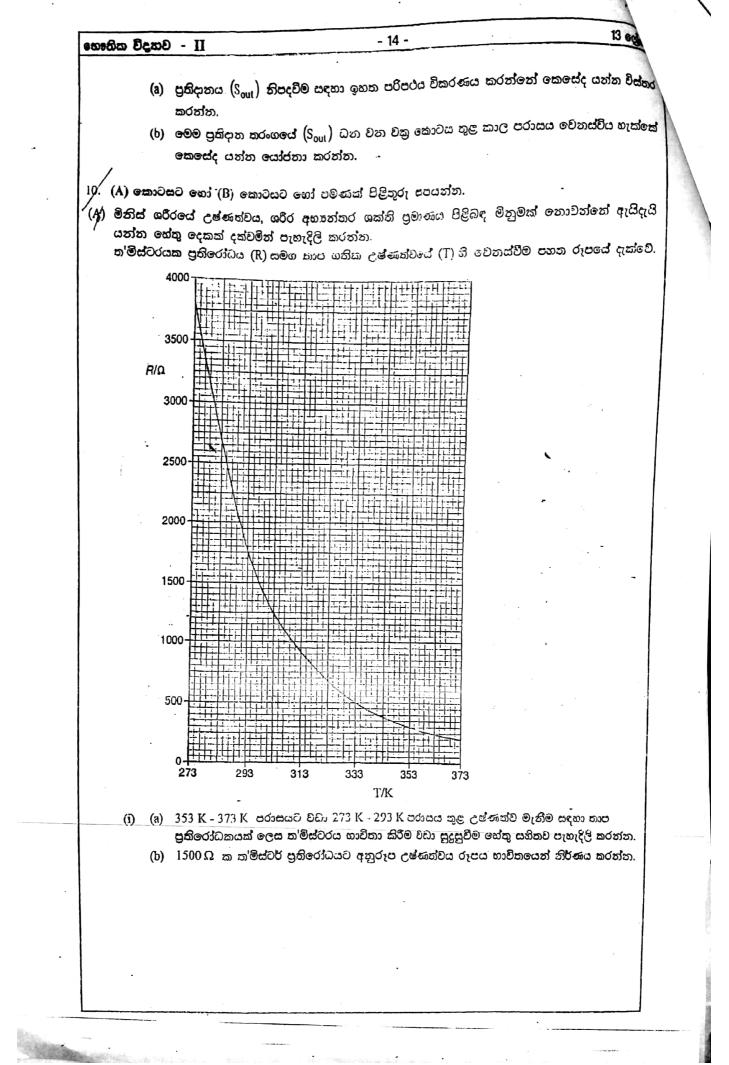

රූපයේ පෙන්වා ඇත්තේ, පොයිසල්ගේ සමීකරණය ඇසුරින් දුවයක දුස්සාවිතා සංගුණකය නිර්ණය කරන උපකරණ ඇටවුමකි.

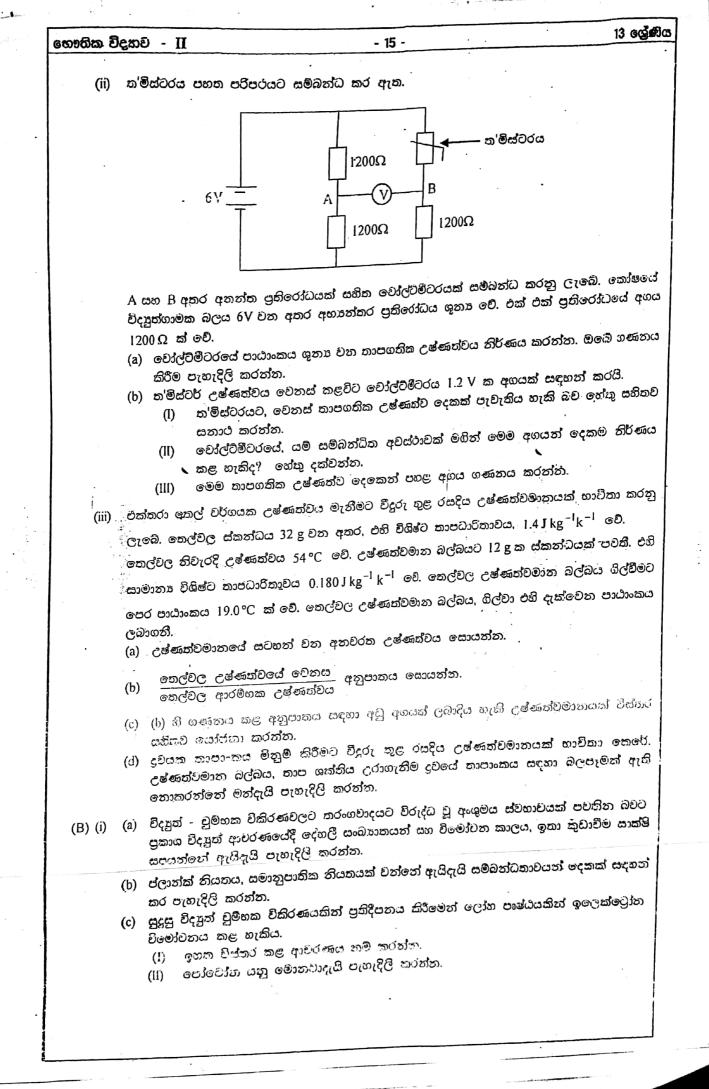
පොයිසල්ගේ සම්කරණය ලියා එය මාන වශයෙන් නිවැරදි බව පෙන්වන්න. ජලය එකතු කිරීමට තබා ඇති P භාජනයේ පතුලේ සිදුරක් පවතී. ටික වෙලාවකට පසුව මෙම සිදුරෙන් ඉවතට ජලය ගලන බව දැකගත හැකිය.

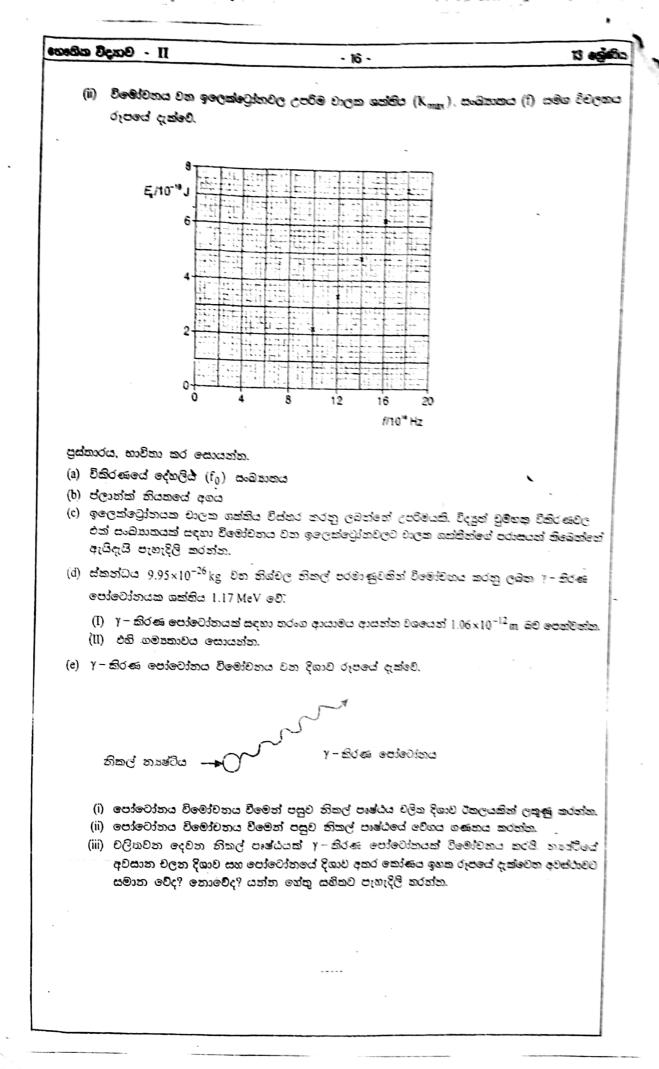
(b) AB නළයේ දිග 44 cm හා ජලය දුස්සුාවිතා සංගුණකය 2×10⁻² Ns m⁻² ද H නි අය්ය 70 cm

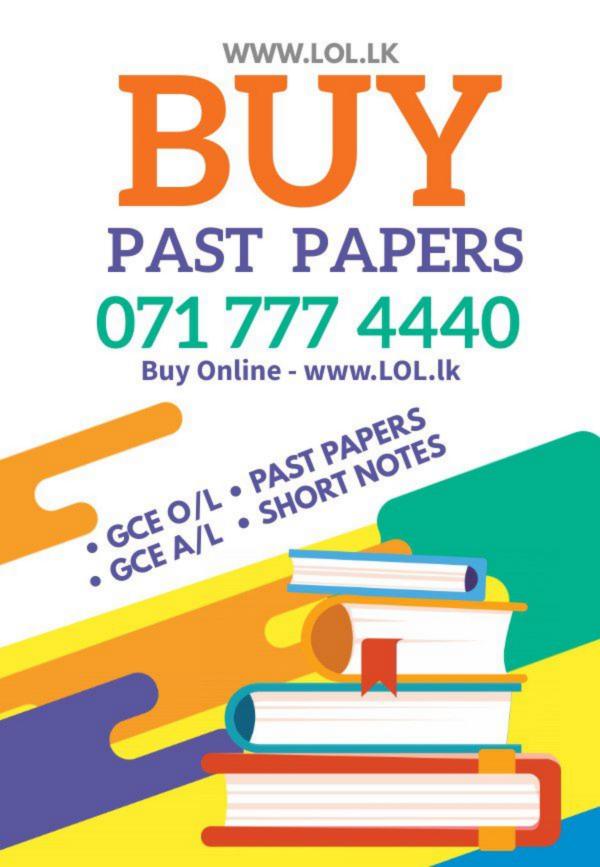

ද නම්, භාජනයේ පතුලේ හරස්කඩ වර්ගඵලය 2×10^{–3} m^{–2} ද නම් බඳුනට ජලය එකතුවීම අරඹා කොපමණ කාලයකට පසුව සිදුරෙන් ජලය කාන්දුවීම සිදුවේ ද?





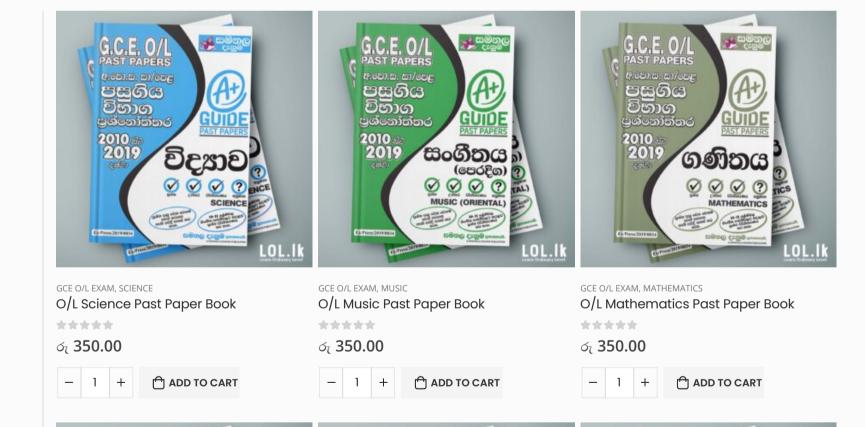

(c) ABCXYZA පුඩුවෙනි E₁, E₂, R, l₁ සහ l₂ අතර,


13 60 500 - 11 -භෞතික විදනව - II (iii) පුතිරෝධය R₁ සහ R₂ වන පුතිරෝධක දෙකක් සමාන්තරගතව සම්බන්ධ කළවිට ඊට සමාන තුනි පුතිරෝධය R වේ. (a) කර්චොප් නියම භාවිතයෙන් එම R, $R = \frac{R_1 \cdot R_2}{R_1 + R_2}$ මගින් දෙනු ලබන බව පෙන්වන්න. මෙම සමීකරණ ලබාගැනීමට ඔබේ අපෝහණයේදී භාවිතා කළ කර්චොප් නියම එක එකක් පැහැදිලිව සඳහන් කරන්න. (b) පහත අවස්ථා සඳහා, R හි අගය ලබාගන්න. (1) $R_1 = 600 \Omega \mod R_2 = 3000 \Omega$ $R_1 = R_2 = 600 \Omega$ (II) (III) $R_1 = 600 \Omega$ සහ R_2 අතන්තයක් විට, $\mathrm{R_{1}}$ = 600 Ω වන තියක අගයක ඇතිවිට $\mathrm{R_{2}}$ සමග R හි විචලනය පුස්තාරගත කරත්න. (c) (iv) පුකාශ සංචේදී පුතිරෝධයක් (LDR), 600 Ω පුතිරෝධකයක් සමග සමාන්තරගතව සම්බන්ධ කරන අතර ඒවා අභාන්තර පුතිරෝධය 30Ω, 12V බැටරියකට දක්වා ඇති පරිදි සම්බන්ධ කරනු ලැබේ. 600 Ω අඩු තීවුතාවයක් සහිත ආලෝක තත්ව යටතේ $\, { m LDR}$ පුනිරෝධයේ අගය 3000 Ω වේ. පහත (a) ඒවා ගණනය කරන්න. LDR හරහා ධාරාව (l) (II) LDR හි ක්ෂමතා උත්සර්ජනය. (b) හදිසියේම පුකාශ සංචේදී පුතිරෝධය (LDR) ආලෝකයට නිරාවරණය වීම හේතුවෙන් එහි පුතිරෝධය 100 Ω දක්වා පහත වැටේ. 0.5 w ලෙස සඳහන් කර ඇති LDR පුතිරෝධය හාතිවේද යන්න පැහැදිලි කරන්න. (c) වෙනස් මට්ටම් හතරකදී පුදීපනය කරනු ලබන පරිපථයට සම්බන්ධිත LDR හි විභව අන්තරය සැසඳීම සඳහා පරිපථයට විභවමානයක් සහිත නම් කරන ලද පරිපථයක් අඳින්න. (B) (i) පරිපූර්ණ කාරකාත්මක වර්ධකයක් (op-amp) හා සම්බන්ධිත පරිපථයක් පහත රූපයෙන් දැක්වේ. 9. +9V Vout අපචර්තන හා අපවර්තන නොවන පුදානයන්ට ලබාදෙන චෝල්ටීයතා අගයන් පිළිවෙලින් V_I හා V2 GD. (a) $V_1 > V_2$ (b) $V_1 < V_2$ වූ විට, පුතිදාන චෝල්ට්යතා අගයයන් දක්වන්න.



ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500

More than 1000+ Papers For all major Subjects and mediums



ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

GCE O/L Exam

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P... ★★★★★

*σ*₁ 350.00