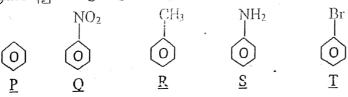
		12x		· ·		
හිය එම හිමිකා		e distribution of the state of	44 SACRAN	(1)[[[]][[]][[]][[][[]][[]][[][[]][[]][[]	Sc	
ආනන්ද විදන Anapda Col		ලෝ Ananda College ආක් ge අවටනාන් අවේ ණ නො Ananda College ආක්	ಗ್ಗೆ ರಿಕ್ಷಚಾಡು Anand 30 ೀ ಚಾಡು Anand ಕಲ್ಪ ರೀಪಾಡು Anand	a College ආක්කුද් වරසිය වැර අ profess සාක්කුද්	ිද හලය Ananda College College ආනන්ද විදහලය ිද්යාලය Ananda Colleg	c ආනන්ද විදහාලය a Ananda Gollege c ආනන්ද විදහාලය
,,,,,		වන වාර පරීක්ෂණ				
	යන විදාහාව I	02	$\overline{S \mid I}$		කාලය - පැ	ය 02 සි
083	385,04200 1	02		.3		
(1)) පහත දී ඇති විදාෘුත් වු ^ර	මබක විකිරණ අතුරින්	්, ඉහළම තරං	ග ආයාමය ඇ (3) අ	ති විකිරණය කුම¤ _{වෙ} ධ් රක්ත කිරණ	र्जं द?
	(1) γ ක්රණ (4) දෘශාා කිරණ . `	(5) ක්ෂුදු ත	රංග			
- (2)		ක චිකිරණයක ලෆ ් ලේ	ා්තයක ශක්ජ	3ω 4.85×10 ⁻¹⁹	් J නුම, එහි තරංග	අායාමය
	කොපමණ වේද? (ප්ලාන්ක් නියතය = 6 (1) 970 nm (4) 410 nm	5.63x10 ⁻³⁴ JS, ආලල් (2) 810 nr (5) 243 nr	කයේ පුවේගය n	$s = 3x10^8 \text{ms}$ (3) 48	1) 5 nm	
(3) පහත පුගේද අතුරින් ද - (A) C ₂ H ₂	එකම හැඩය ඇති අණු (B) NO₂ ⁺	/අයන වනුයේ (C) NO:		(D) XeF ₂	
•.1	(1) A හා B (4) A,B හා D	(2) B හා ((5) A, C හ	00 D	(3) C	j	
. (4) වඩාත් ම ස් ථායි කාලබ			CH₃		, , , , , , , , , , , , , , , , , , ,
	(1) CH ₃ CH ₂ CH- I	(2) Br		C – Br		
	(3) $CH_2 = CH C - 1$		I₃ CH₂ CH₂ (CH₂ Br	(5) $CH_2 = CH$	CH₂ CH₂ Br
	CH₃				CH CH-CH	
(5	5) C ₂ H ₅ OH (A)	C ₆ H ₅ OH (B)	CH ₃ C≡ (C))	CH₃CH=CH₂ (D)	
	(A) A, B, C, හා D වලින් වනුයේ ;					
	(1) D <a<c<b (4) D<c<b<a< td=""><td>(2) D<c- (5) D<a< td=""><td><r<c< td=""><td></td><td>A<b<c<d< td=""><td>, mol⁻¹ @D</td></b<c<d<></td></r<c<></td></a<></c- </td></c<b<a<></a<c<b 	(2) D <c- (5) D<a< td=""><td><r<c< td=""><td></td><td>A<b<c<d< td=""><td>, mol⁻¹ @D</td></b<c<d<></td></r<c<></td></a<></c- 	<r<c< td=""><td></td><td>A<b<c<d< td=""><td>, mol⁻¹ @D</td></b<c<d<></td></r<c<>		A <b<c<d< td=""><td>, mol⁻¹ @D</td></b<c<d<>	, mol ⁻¹ @D
. (6	 (4) D<c<b<a< li=""> (5) ඇමෝනියම් ෆෙරස් සි එම ලවණයෙන් 3.57 තෙක් තනුක කිරීමේන (1) 3.84 x 10³ </c<b<a<>	oල්ලේට FeSO ₄ . (NF 5 g ක්, 250 cm ³ පරිර ත් FeSO ₄ දාවණයක් (2) 9.6	සාදා ඇත. එම	ි දුාවණිමයි S (3) 9.6x10 ²	n ස්කන්ධය /13 ළි ලෙශේ දියකර, එහි O4 ²⁻ අයන ස∘යුති	සලකුණ ය ppm වලින්;

- (7) $C_x H_y + \frac{9}{2} O_2 \to x C O_2 + y H_2 O$ ඉහත x නම් වායුමය හයිඩොකාඛනය ($C_x H_y$) සම්පූර්ණයෙන් දහනය කළ විට, සැදෙන $C O_2$ වායුව හා ජල වාෂ්ප පරිමා අතර අනුපාතය 2:3 විය. සියලුම මිනුම් එකම උෂ්ණත්ව පීඩන වලදී ලබා ගන්නා ලද නම්, හයිඩොකාඛනයේ අණුක සූනුය වනුයේ,
 - (1) C_2H_8


 $(2) C_3H_8$

 $(3) C_4H_6$

(4) C_2H_4

- $(5) C_2H_6$
- (8) එක්තරා ලවණයක් ජලයේ දාවණය වී වර්ණවත් දාවණයක් ලබා දුනි. මේ දාවණයට තනුක පුබල ක්ෂාරය ස්වල්පයක් එක් කළ විට, ලා කොළ පාට අවක්ෂේපයක් ලැබුනි. එම අවක්ෂේපයට වැඩිපුර NH4OH එක් කළ විට, නිල් පාට දාවණයක් ලබා දුනි. ඉහත ඝන ලවණයේ ස්වල්පයකට තනුක අම්ලයක් එක් කළ විට දුඹුරු පාට වායුවක් පිටවිය. එම ලවණය විය හැක්කේ,
 - (1) $Fe(NO_3)_2$
- $(2) Cu(NO_3)_2$
- (3) Ni(NO₃)₂

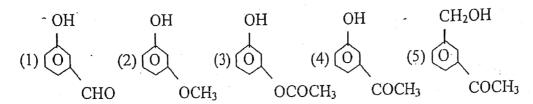
- (4) Ni(NO₂)₂
- (5) Cr(NO₃)₃
- (9) CH₃ CO₂H
 CH₃-C=CH-CH-CH₃ මෙම සංයෝගයේ IUPAC තාමය වනුයේ,
 CHO
 - (1) 2.5-dimethyl-3-formyl-4-hexenoic acid
 - (2) 3-formyl-2,5-dimethyl-4-heptenoic acid
 - (3) 3-oxo-2,5-dimethyl-4-hexenoic acid
 - (4) 2,5-dimethyl-4-formyl-6-hexenoic acid
 - (5) 2,5-dimethyl-3-oxo-4-hexenoic acid
- (10) Ethanol, ethanal බවට පරිවර්තනය කිරීම සඳහා මින් කුමක් වඩාත් සුදුසු වන්නේද?
 - (1) LiAlH4 සමග පුතිකිුයා කරවා, පසුව ජලය සමග පුතිකිුයා කරවීම
 - (2) මාධාාය ආමලික කර CrO3 සමග පුතිකියා කරවීම
 - (3) මාධාාය ආමලික කර $K_2Cr_2O_7$ සමග පුතිකියා කරවීම
 - (4) පිරිඩීනියම් ක්ලෝප්රා ක්රෝමේට් (pcc) සමග පුතිකියා කරවීම
 - (5) ethanol වාෂ්පය රත්කරන ලද ඇලුම්නා මතින් යැවීම
- (11) P,Q,R,S,T යන සංයෝග ඉලෙක්ටොහිලික ආදේශ පුතිකියා වලට සහභාගී වීමේදී පුතිකියා කිරීමේ සීසුතාව අඩුවන පිළිවෙල වන්නේ,

- (1) Q>P>T>R>S
- (2) S>R>P>T>Q
- (3) T>P>Q>R>S

- (4) S>R>T>P>Q
- (5) R>S>T>Q>P
- (12) නියත පීඩනයේදී හා $298~{
 m K}$ වලදී ${
 m Cl}_2$ වායුව හා ${
 m F}_2$ වායුව පුතිකියා කර ${
 m ClF}_3$ වායුව සෑදීමේ පුතිකියා හා සම්බන්ධ දත්ත පහත දී ඇත. ඒවා උපයෝගී කරගෙන එම පුතිකියාවේ ගිබ්ස් ශක්තිය ගණනය කරන්න. ${
 m Cl}_2({
 m g}) + 3{
 m F}_2\left({
 m g}\right) o 2{
 m ClF}_3\left({
 m g}\right)$.

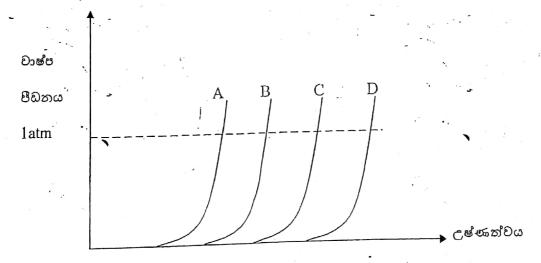
H _f , kJ mol⁻¹	S°, Jmol ⁻¹ K ⁻¹
. 0	223.0
. 0	202.7
-163	281.5
	0

- (1) -246.1 kJmol⁻¹
- (2) -268.1 Jmol⁻¹
- (3) -326Jmol⁻¹


- (4) -608 kJmol⁻¹
- (5) -831.1 Jmol⁻¹

July 1 Dec	· · · · · · · · · · · · · · · · · · ·	3.		第二条		等海 建筑线机
ຜ ⊛ . ຜ	ායිටුක් ඔක්සයිඩ (NO) ව මීකරණයට අනුව පුතිකි මම උෂ්ණත්ව පීඩන යර මග පුතිකියා කළ විට ල N=14, මෙම තත්ව යට	වායුව හා හයිඩුජන් (H ₂ යා කරයි. 2NO (g) + වතේදී නයිටුක් ඔක්සයි ලබන නයිටුජන් වායු	1) වායුව 150°C 2H _{2 (g)} → N _{2 (g} ඩ වායු 500 cm පුමාණය කොප	ිට ඉහළ උෂ් ₃₎ + 2H ₂ O (g ³ ක් සම්පූර්ණ මෙණ ද?	්ණක්ව වලදී පහත) නෙත් හයිඩුජන් (l	$ m H_2)$
-	0) 0.01 mol 3) 0.14 mol	(2) 0.02 mol (5) 0.28 mol	•	(3) 0.1 mo	1	
l ₂ cc (1	ාම්ලික මාධායේදී සිදුවා (aq) බවට පරිවර්තනය මීකරණයට අනුරුපව අ 1)- 6 හා 3 4) 12 සහ 6	වේ. එම පුතිකිුයාවේදී	I ₂ (aq) මවුල 1	ක් ලබාගැනීම	ම සඳහා ඉහත අයන්)ලින්,	ාඩීන් 3ක
2 F F , &	හත අර්ධ පුතිකියා සඳහ $Z_{n_{(aq)}}^{2+} + 2e^- o Z_{n_{(s)}}^{2}$ $E_{(aq)}^{2+} + 2e^- o F_{e_{(s)}}^{2}$ $E_{(aq)}^{2+} + Z_{n_{(s)}}^{2+} o Z_{n_{(s)}}^{2+}$ වනුයේ, $Z_{n_{(s)}}^{2+} o Z_{n_{(s)}}^{2+}$	ත සම්මත ඔක්සිහරණ දි E ^O = -0.76V E ^O = -0.41V	ව හා සම්බන්ධ	කෝෂයේ විද (3) +0.35V	5	
(17)	ප්ලැටිනම් ඉලෙක්ටෝඩ තුල ඇම්පියර් 9.65 ක වි පුවණයේ සාන්දුණය mo (1) 0.46 (4) 1.25 SrCO ₃ හා SrF ₂ වලින් ස එම දුාවණයේ ඇති F අය Ksp SrCQ ₃ =7.2x10 ⁻¹⁰ r	ැසුත් ධාරාවක් යවන ලදී ol dm ⁻³ වලින්, (F=9650 (2) 0.625 (5) 1.45 න්තෘප්ත ජලීය දුාවණය නේත සාක්දණය ඉතාපමා	. එම විද ු ක් විච් 00 C) ක, CO3 ²⁻ අයන ණුද?	ලේදනයෙන් (3) 0.92 සාන්දුණය 1	පසු විදායුත් විව්ඡේද	.
	(1) 1.8x10 ⁻² mol dm ⁻³ (4) 1.8x10 ⁻⁴ mol dm ⁻³	(2) 3.65 (5) 7.25	x10 ⁻² mol dm ⁻³ x10 ⁻² mol dm ⁻³	(3) 3	3.6x10 ⁻⁴ mol dm ⁻³	
	SO _{2(g)} + NO _{2 (g)} ⇌ SO: එක්තරා උෂ්ණත්වයකදී මවුල 1 බැගින්, 1dm³ ක NO _{2(g)} හි සමතුලිත සාන (1) 1.6 සහ 0.4 (4) 0.4 සහ 0.4	මෙම පුතිකිුයාව සඳහා (බුදුනක් තුල බහා සමතු	ලිතතාවට පත්වී	්මට ඉඩ හරිත	ා ලද නම්, NO _(g) හ	9)
	NH ₄ Cl සහ ජලීය NH ₃ (1) Ca ²⁺ _(aq) (4) Mg ²⁺ _(aq)	පුතිකාරක මීශුණය මගි (2) Al ³⁺ _(aq) (5) Zn ²⁺ _(aq)	ත් අවක්ලෂ්ප වැ	ත අයනය වන් (3) Bi ³⁺ _(aq)	ිතේ,	
(20)	25 °C & Mg(OH) ₂ දාව ((1) 2.24x10 ¹¹ mol ³ dm (4) 5.60x10 ⁻¹² mol ³ dm	$^{-9}$ (2) 3.36x10 $^{\circ}$	mol ³ dm ³	ල දුාවාාතා ගුණ (3) 1.12x10	ණිතය විය හැක්ලක්, ⁻¹¹ mol ³ dm ⁹	•
(21)	CH₃COONa 0.5 mol ක දාවණයේ pH අගය වනු (1) 1.0 (2) 2	ಂ ದೆ,		.1 ක් එකතු ක 4.74	රන ලදී. එවිට (5) 5.35	

(22) [Cu (NH₃)₄ (H₂O)₂] Cl₂ හි IUPAC තාමය වනුයේ,


海岸可变冷藏的的变形。冷水散出,以此流行人心神,此形

- (1) Diaquatetraamminecopper(II) chloride.
- (2) Diaquatetraamminecopper(II) dichloride.
- (3) Tetraamminediaquacopper(II) chloride.
- (4) Tetraamminediaquacopper(II) dichloride.
- (5) Dichlorotetraamminediaquacopper(II)
- (23) X නමැති සංශෝගයක් උදාසීන FeCl_3 සමග දම් පැහැයක් ලබාදුනි. තනුක HCl එකතුකළ වීට මෙම වර්ණය තැති විය. ලබුඩ් පුතිකාරකය සමග X තැඹිලි පාට අවක්ෂේපයක් ලබා ලද්. වොලත් පුතිකාරකය සමග X රිදී කැඩපතක් ලබා තොලද් X විය හැක්ලක්,

- (24) ලෝහ -අදාවා ලවණ ඉලෙක්ටුෝඩයක් නිවැරදි ලෙස නිරුපණය වන්නේ පහත කුමන අවස්ථාවේදීද?
 - (1) $Ag_{(s)}/Ag^{+}_{(aq)}/Cl^{-}_{(aq)}$
- (2) Ag(s)/AgCl(s)/Cl(aq)
- (3) $Cu_{(s)}/Cu^{2+}_{(aq)}$

- (4) $Ag^{+}_{(aq)}/AgCl_{(s)}/Cl_{(aq)}$
- (5) $Hg_{(1)}/Hg_2Cl_{2(s)}/Hg^+_{(aq)}$
- (25) උෂ්ණත්වය සමග A,B,C,හා D යන දුව කීපයක වාෂ්ප පීඩනයන් ලවනස්වන ආකාරය පහත පුස්ථාරය මගින් දළ වශයෙන් නිරුපණය කර ඇත.

A,B,C,D යන දුව විය හැක්කේ පිළිවෙලින්,

- (1) ඩයි මෙතිල් ඊතර්, ජලය, එතුනෝල්, එතුනොයික් අම්ලය
- (2) එතතොයික් අම්ලය, ජලය, එතතෝල්, ඩයිමෙතිල් ඊතර්
- (3) ඩයිමෙතිල් ඊතර්, එතතෝල්, ජලය, එතනොයික් අම්ලය
- (4) එතතෝල්, ඩයිමෙතිල් ඊතර්, ජලය, එතතොයික් අම්ලය
- (5) ඩයිමෙනිල් ඊතර්, එනනොයික් අම්ලය, ජලය, එනනෝල්
- $(26)~0.1~{
 m moldm}^{-3}~{
 m Cu(NO_3)_2}$ දාවණයක $100~{
 m cm}^3$ ක් තුළින් වැඩිපුර ${
 m H_2S}$ වායුව බුබුලනය කරන ලදී. ඉන් ලැබෙන ඵලය නටවා H_2S ඉවත්කර පෙරා, පෙරණය $0.1~\mathrm{moldm}^{-3}~\mathrm{NaOH}$ දුාවණයක් මගින් සම්පූර්ණයෙන් උදාසීනකරණය කරන ලදී. ඒ සඳහා අවශය NaOH පරිමා වන්නේ,
- $(2) 100 \text{ cm}^3$
- $(3) 150 \text{ cm}^3$
- $(4) 200 \text{ cm}^3$
- $(5) 400 \text{ cm}^3$

(27) ඇයිටැල්ඩිහයිඩ හා පොපනැල්ඩිහයිඩ මිශුණයක් NaOH හමුවේ පුතිකියා කළ විට සැදිය නොහැක්කේ පහත දැක්වෙන කුමන සංයෝගයද?

 $(28)~{
m X}$ නැමැති අකාබනික සංයෝගයක ජලීය දුාවණයකට ${
m NH_4OH}$ එකතු කළ විට අවක්ෂේපයක් ලබා ලදන අතර එය වැඩිපුර NH4OH හමුවේ දිය නොවේ. නමුත් NaOH සමග අවක්ලෂ්පයක් ලබා දී වැඩිපූර NaOH හමුවේ දිය වේ.

X හි ඇති කැටායනය වීමට වඩාත්ම ඉඩ ඇත්තේ,

- (2) Fe^{2+}
- $(3) Al^{3+}$
- (4) Co^{3+} (5) Cu^{2+}
- (29) $1000~{
 m K}$ උෂ්ණත්වයකදී ${
 m CO_2}$ වායුව $0.5{
 m x}10^5~{
 m Pa}$ පීඩනයක් යටතේ පවතී මෙම භාජනයට ගුැෆයිට් (මිනිරන්) කුඩු ස්වල්පයක් එකතු කළ විට, $\mathrm{CO}_{2(\mathrm{g})}^+\mathrm{C}_{(\mathrm{s})}$ $\rightleftharpoons 2\mathrm{CO}_{(\mathrm{g})}$ යන සමතුලින තත්වයට පත් වේ. එවිට පද්ධතියේ පීඩනය $0.8 \times 10^5 \, \mathrm{Pa}$ වේ. මෙම සමතුලිකය සදහා Kp හි අගය ගණනය කරන්න.
 - (1) 0.18x10⁵ Pa
- $(2) 0.3x10^5 Pa$
- $(3) 0.9 \times 10^5 \text{ Pa}$

- $(4) 1.8 \times 10^5 \text{ Pa}$
- $(5) 3x10^5 Pa$
- (30) ඉබන්සීන් නිර්ජලීය AlCl3 හා CH3COCl සමග පුතිකියා කරවා ඉන් ලද කාබනික ඵලය වෙන් කර එය HCN සමග පුතිකියා කරවන ලදී. ලැබෙන ඵලය තනුක අම්ලයක් මගින් ජලවිච්ඉප්දනය කිරීමෙන් අනතුරුව ලැබුණු ඵලය LiAlH4 සමග පුතිකියා කරවා, ජලය සමග පුතිකියා කරවුයේ නම්, ලැබිය හැක්කේ පහත කවර එලයද?

පුශ්න අංක 31 සිට 40 දක්වා උපදෙස්

(1)	(2)	(3)	(4)	(5)
(a) හා (b) පුතිචාර පමණක් නිචැරදි වේ.	(b) හා (c) පුතිවාර පමණක් නිවැරදි වේ.	(c) හා (d) පුතිවාර පමණක් නිවැරදි වේ.	(a) හා (d) පුතිවාර පමණක් තිවැරදි වේ.	පුතිවාර එකක් හෝ වෙනත් සංඛාාවක් හෝ නිවැරදි වේ.

(31) වා	ලක අණුක වාදය අනු	ව පිරපූරණ වායුවක සද		_	
(a)	$PV = \frac{1}{3} \text{ mN } \overline{C^2} \odot \delta$				
. (-7	ි 3 රම සංසිකම්ණක්වයක	දී අණුවල මධාsයතා අං ද වල වටුලා වලක (ეය වාලක ශක්තිය ති	යුතු ලව.	
(0)) ද ඇතු උමනානයක් . ී එ හිමනයක් ස	ණුවල මධානය වාලක ශ	ක්තිය නියත වේ	10 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	ලව්.
(c)) ද ඇතු පසනයකාද අ	මේ දේශ කොයවනු න	_{ඔත්} එය තිරපේක්ෂ උ	ෂ්ණත්වයට සමාතුටාටාක	00.
(d) PV ගුණකය පඩනාග	මත රදා ජනාවරහන හ	200 0 22	ෂ්ණත්වයට සමානුපාතික	
(32) ર્વર્	ටිධාකරණ පුතිකිුයා/පුැ	හිකියාවන් වන්නේ,	(b) Cl_{+} + OH^{-}	$_{(q)} \rightarrow HOCl_{(aq)} + Cl_{(aq)}$	
(a)	$2H_2O_{2(aq)} \rightarrow 2H_2O_{(aq)}$	$O_{2(g)}$	(b) $Cl_{2(g)} + Oli (a)$ (d) $CuCl_{2(aq)} + Cl$	$_{1/c} \rightarrow 2CuCl_{(5)}$	
(c)	$) \operatorname{Cu}^{2+}_{(aq)} + \operatorname{Zn}_{(s)} \to Z$	$\operatorname{Cn}^{2+}_{(aq)} + \operatorname{Cu}_{(s)}$	(d) CuCl _{2(aq)} 1 C	(5)	
	•				
(33) පැ	_{හත ස} ඳහන් කුමක්/කු®	මත වගන්ති සතා වේද?	-		
(a) ඉලෙක්ටෝනයකු අ	ංශුමය ගුණු මෙන්ම තරං	ගමය ගුණ ද ඇත.	•	
(h	ට ලසුල්ලටුද්නයකට නි	යලටැනයකට වඩා වැඩ ර	යකුතු යයක ඇය.		
(c) සියලම පුරමාණවල	ඉලෙක්ටෝන, පුෝ ^ර ෝ	න හා නියුටුෝන ඇත		
(6) සියලුම සයන වල ල ම	පු්රෙට්න එකක්වත් නැත)		
(2.4) C	0 - 00 - 0-1	හඳුනාගැනීම සඳහා පහත	කුමක්/කුමන ඒවා හා	විතා කල හැකිද?	
(34) S	O ₂ හා CO₂ වෙනකර ``	ල්දුනාගැනම සඳහා පහස (h) ලෙ	A ඇසිලට්ට් වලින් මප	හවූ පෙරහන් කඩදාසිය	
(8	a) Ba(OH)2 ජලීය දුංව		සාට මල්පෙති කැබැල් පාට	ලක්	
(0	c) K ₂ Cr ₂ O ₇ ජලීය දුාව)ණය <u>(a)</u>			
		0 0 × 4 1 0 00	නු දෙනු වගන්නිය/ වග	ත්ති වත්ලත්,	
(35) F	e ²⁺ (aq) හා Fe ³⁺ (aq)	අයන වලට අනුරූප වන	නුරුල්ද පම්පාටියා කර් කර්ණයක් ලබා ඉද්	• •	
(8	a) K ₃ Fe(CN) ₆ දාවණ	යක් සමග Fe ³⁺ (aq) දුඹුර	ැටල්කෙස්සුයන් ලබා ල	گ.	
(b) K₃Fe(CN)6 දාවණ	යක් සමග Fe ²⁺ (aq) නිල්	40m10@0mm1 C.22	٦٠	
· (6	c) KSCN සමග Fe ි	රතු වර්ණයක් ලබා ලද්.	٠		
- (d) NH₄SCN ೞ಄ග Fe	²⁺ දුඹුරු වර්ණයක් ලබා (Φ° ζ .		
		- 08 - 0	` ````````````````````````````````````	ුම සිල්පි කටු ස්කන්ධයකට)
(36) &	3ප්පි කටුවල අඩංගු Ca	iCO3 පුතිශතය නිර්ණයක	්රීලක සටක කණයක් දී ල වේදීම ප්රකාශ කණයක් දී ල	ාම සිප්පි කටු ස්කන්ධයකට ග දාවණයෙකු් 25 cm³ ක්,	-
٤)ැඩිපූර, දන්නා HCl පු	මාණයක් දමා, සම්පූර්ණ [©]	යෙනු දය පූ පසු ලැම්මෙ	ත දාවණයෙන් 25 cm³ ක්, ම කියාවලිය සම්බන්ධව අය	න නා
٠.6	හන්දුණය දන්නා Na ₂ 0	$\mathbb{C}\mathrm{O}_3$ දුාවණයක් සමග අතු	ුමා පනය කාරතා ලද. මැ •	ම කිුයාවලිය සමබන්ධව අය	
5) x (@ x ()				
(a) දර්ශකය ලෙස Phe	nolpthlene භාවිතා කළ	ທາක.	· · · · · · · · · · · · · · · · · · ·	
		the cronge (012) 201 2012	(3)7 (Q).	2-2 5 4 842 4 427	
	"	う … るべく @(O)の め(d)の((COCO (BOD) (Linguage)	දුාවණය මෙසදිය සුවුය.	
Ì	d) බියුරෙට්ටුවට Na ₂ (ეკ දුාවණය ගෙන, සමූග 203 දුාවණය ගෙන, ප්ලා	ස්කූවට ඉහත ලබාගත	දුාවණය ගෙදය යුතුය.	
					0
(37)	සංශුද්ධ ජලයේ දුවණ	ය කළ විට ලිට්මස් නිල් ප	ැහැයට හරවන දුාවණිර	ෘක් ලබා දෙන්නේ පහත කු	ම තා
	සංලයා්ග(ය)ද?				
	a) $Ba(NO_3)_2$	(b) CH₃COOK	(c) Na_2CO_3	(d) NH ₄ Cl	
	•		0.000)-0 0 Bml	
(38) 8	බුයුට්රියම් (D) යනු H	වල සමස්ථානිකයකි. D_2 () යන සංමයාගය පළිද	බඳව පහත පුකාශන වලින්	
	නෙක්/ නමන ඒවා අස	ථා වේද?			
	$(a) { m D}_2{ m O}$ වල ඝනත්වය	ා ජලයේ ඝනත්වයට වඩා	අപ്പൂധ.		
(h) D₂O වල සාලජක්ෂ	ා අණුක ස්කන්ධය ∠∪ ලැ).		
1	(a) DaO Da desida (12)	ක ගුණු ජලයට සමාතාය			
($(d) \; \mathrm{D_2O} \;$ වල ඝනත්වශ	ා ජලයේ ඝනත්වයට වඩා -	වැඩිවේ.	•	•
(39)	නයිලෝන් පිළිබඳ සත	ා වගත්තිය/වගත්ති වනු	ಿ		
((a) කෘත්ම සංඝනන බ	හු අවයවකයක			
	(b) ස්වාභාවික සංසන	න බහු අවයවිකයකි			
	1 . 40	න අවයවිකයකි 📑			1
	(d) ලර්බීය නයිලෙන්න්	දාම එකිනෙක සමග H -	බන්ධන සැදීමේ හැකිර	හාව ඇත	
(u, 0000 0,220	•			

- (40) CH3COCl මගින් බෙන්සීන් ඇසිල්කරණයේදී
 - (a) AlCl3 ලුවිස් අමලයක් ලෙස කුියා කරයි
 - (b) [AlCl4] හෂ්මයක් ලෙස කියා කරයි
 - (c) CH3CO බෙන්සීන් වලයට මුලින්ම පහර දේ
 - (d) මෙය ආකලන පුතිකිුයාවකි

පුශ්ත අංක 41 සිට 50 දක්වා වූ පුශ්ත සදහා උපදෙස්

1 වන වගන්තිය	2 වන වගත්තිය
(1) සතායයි	සතායයි, 1 වන වගන්තිය නිවැරදිව පහදා දෙයි
(2) සනාපයයි	සතාපයයි, 1 වන වගන්තිය නිවැරදිව පහදා නොංදෙයි
(3) සනායයි	අසතාපයයි
(4) අයතාපයයි	සතාපයයි
(5) අසනාපයයි	අසතාායයි

	100		
l වන වගන්තිය	2 වන වගන්තිය		
(41) නයිටුික් අම්ලයට හෂ්මයක් ලෙස කිුයා කළ නොහැක	නයිටුක් අම්ලයට ප්පා්ටෝන දායකයකු ලෙස කියා කළ හැක.		
(42) $1 \times 10^{-2} \text{moldm}^{-3} 2 \text{HCl} 4 \text{මල දුාවණයක්} 1 \times 10^{-2} \text{moldm}^{-3} 2 \text{NaOH} 2 \text{දාවණයක් සමග} අනුමාපනය කිරීමේදී, අන්ත ලක්ෂායය යෙවීමට දර්ශකය ලෙස හිතෝල්ප්තලීන් භාවිතා කළ හැක$	NaOH, HCl අතර අනුමාපනයක සමකතා ලක්ෂාා යේදී දුාවණයේ pH අගය සෑම විටම 7 ට සමාන වේ		
(43) $I_{2(s)}$, $KI_{(aq)}$ වල දියවී KI_3 සැදීමේදී I_2 ඔක්සිකාරකයක් ලෙස කිුයා කරයි	KI KI3 බවට පත් වීමේදී K වල ඔක්සිකරණ අංකය +1 සිට +3 දක්වා ඉහළ යයි		
(44) Ethanal, ඇමෝනීය AgNO3 සමග 8දී කැඩපතක් ලබා ඉද්	භාෂ්මික මාධාායේදී Ethanal ස්වයං සංඝනනය වේ		
(45) PH3 හි තාපාංකය NH3 හි තාපාංකයට වඩා ඉහළය	PH3 හි සාපේක්ෂ අණුක ස්කන්ධය NH3 හි සාපේක්ෂ අණුක ස්කන්ධයට වඩා වැඩිය		
(46) SO_3^{2-} සහ $S_2O_3^{2-}$ අඩංගු දුාවණ ලදකක් තනුක HCl මගින් එකිනෙක වෙන්කර හඳුනා ගත හැකිය	තනුක HCl සමග $S_2O_3^{2^2}$ පමණක් කුණු බිත්තර ගඳක් ඇති වායුවක් පිට කරයි		
(47) සොල්වේ කුමය මගින් K ₂ CO3 නිෂ්පාදනය කළ නොහැකි වේ	NaHCO3 වලට සාලේක්ෂව KHCO3 හි ජල දාවානාව ඉහල වේ		
(48) හයිඩුජන් වල වීමෝචන වර්ණාවලිය, යොදා ගන්නා හයිඩුජන් වායු සාම්පල අනුව වෙනස් වේ			
(49) Na (වායු) පරමාණුවකට වඩා Na ⁺ (වායු) අයනය ස්ථායි වේ.	Na ⁺ (වායු)අයනයට උච්ච වායු විනාසයක් ඇත		
(50) එකිනෙක මිශු නොවන දුව 2 ක් අතර x නම් කාබනික සංයෝගයක වාහජනි සංගුණකය සෙවීමේදී එම ස්ථර දෙකෙහි x හි සාන්දුණය	සමහර අවස්ථා වලදී, විභාග සංගුණකය එකිනෙක මිශු නොවන දුව ස්ථර දෙශකහි අඩංගු දුාවා මවුල සංඛ්‍යා අතර අනුපාකයට ද සමාන වේ.		
ැකුගතු යුතුය.	Control of the state of the sta		

August Au

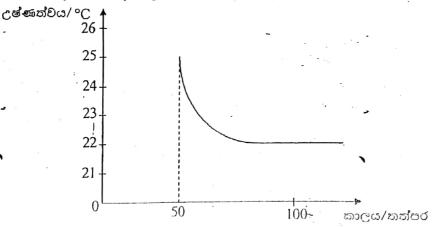
ආනන්ද විදහාලය - කොළම 10

02 S II

අවසාන වාර පරීක්ෂණය - 2012 ජූලි අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2012 අගෝස්තු

රසායන විදහව II Chemistry II

13 ශුේණිය


ထုး ပျွ

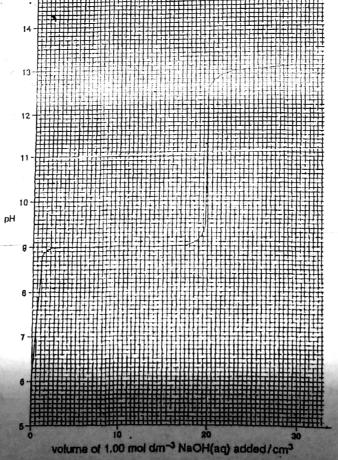
🌞 පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න.

B කොටස - රචනා

5. (a) යූරියාවල (H_2NCONH_2) දාවණ එන්නැල්පි විපර්යාසය $\left(\Delta H_{Sol}^{\phi}\right)$ සෙවීම සඳහා සිසුන් කණ්ඩායමක් විසින් සිදුකරන පරීක්ෂණයක තොරතුරු මෙසේය.

 25° C ඇති ජලය 91.95 g කැලරිමීටරයකට දමා 50 s පසු 25° C ඇති යූරියා 5.13 g ජලය තුළට එකතු කර එය ජලයේ දියවීමේදී සිදුවූ උෂ්ණත්ව විපර්යාසය මතින ලදී. කාලය අනුව සිදුවූ උෂ්ණත්ව විපර්යාසය දැක්වීම සඳහා පුස්තාරයක් අඳින ලදී.

- (i) යූරියා ජලයේ දියවීමේදී සිදුවූ උෂ්ණත්ව විපර්යාසය කොපමණද?
- (ii) යූරියා ජලයේ දියවීම තාපදායිද අවශෝෂකද හේතු දක්වමින් පහදන්න.
- (iii) කැලරි මීටරයේ විශිෂ්ට තාපධාරිතාවය නොසලතා හරිමින්ද යූරියා හා ජලයේ විශිෂ්ට තාපධාරිතාවය $4.2~{
 m Jg}^{-1}{
 m o}{
 m C}^{-1}$ නම්ද,
 - (a) යූරියා ජලයේ දියවීමට අදාළ තාපය J වලින් ගණනය කරන්න.
 - (b) යූරියා දුාවණය වීමේදී සිදුවූ එන්නැල්පි විපර්යාසය $\left(\Delta H_{Sol}^{\phi}\right)$ k.J mol^{-1} ගණනය කරන්න.
- (iv) පහත සඳහන් දත්ත වගුව උපයෝගි කරගනිමිත් ඉහත යූරියා ඌවණයේ $298~{
 m K}$ දී සම්මත එන්ටොපි විපර්යාසය $\left(\Delta S_{Sol}^{\phi}
 ight)$ ගණනය කරන්න.


බලාපොරොත්තු වනු අගයන්	ΔH ^φ _{Sol}	ΔG_{Sol}^{ϕ}
යූරියා දුාවණය	14.0 k. mol ⁻¹	−6.9 k.ſ mol ¹

- (v) යූරියා දාවණයේ $\left(\Delta H_{Sol}^{\phi}
 ight)$ බලාපොරොත්තුවන අගයයන් ඔබට ඉහත ලැබුණු ගණනය කැ අගයයන් අතර ඇති වෙනසට හේතු දක්වන්න.
- (b) CO වායුව $0.15 \, \text{mol}$ හා H_2 වායුව යම් පුමාණයක් $2.5 \, \text{dm}^3$ වූ සංවෘත බඳුනක් තුළ තබා සුදුයු උත්පේරක හමුවේ $700 \, \text{K}$ උෂ්ණත්වයකට පත්කළ විට පහත සමතුලිතතාව ඇතිවිය.

 ${
m CO_{(g)}} + 2{
m H_{2(g)}} \iff {
m CH_3OH_{(g)}}$ සමතුලිත වූ පසු බඳුනේ මුළු පීඩනය $8.5 \times 10^5~{
m Nm}^{-2}$ වනවිට එහිවූ මෙතනොල් පුමාණය $0.08~{
m mol}$ වේ. පහත සඳහන් දෑ ගණනය කරන්න.

- (i) සමතුලිතතාවයට පත් බඳුනෙහි වූ $m H_2$ mol පුමාණය කොපමණදm ?
- (ii) $700\ ext{K}$ උෂ්ණත්වයේදී ඉහත සමතුලිතතාව සඳහා $ext{K}_P$ හා $ext{K}_C$ අගයයන්
- (iii) 700 K උෂ්ණත්වයේදී සමතුලිතතාවට පැමිණීමට පෙර බඳුනෙහි ආරම්භ**ත** මුළු පීඩනය
- (iv) ඉහත ගණනය කිරීම්වලදී ඔබ කරන ලද උපකල්පන වේනම් ඒවා සඳහන් කරන්න.
- (c) ප්ලාස්ටික්වලින් නිර්මාණය කරන ලද භාණ්ඩයක් කෝමියම්වලින් ආලේප කිරීම සඳහා, මුලින්ම එම භාණ්ඩය ගුැපයිටවලින් ආලේපකර, පසුව විදාුුුුත් ලෝහා-ලේපන කිුිිියාවලිය මඟින් කෝමියම් ආලේප කරන ලදී.
 - (i) ප්ලාස්ටික් භාණ්ඩය මුලින්ම ගුැපයිට්වලින් ආලේපනය කරන ලද්දේ ඇයි?
 - (ii) ඉහත ආකාරයට විද්‍යුත් ලෝහා-ලේපනය සඳහා ගනු ලබන පරිපථ සටහනක නම් කරන ලද රූප සටහනක් අඳින්න.(මෙහි විද්‍යුත් විච්ඡේ්‍දන, ඇනෝඩ, කැනෝඩ පැහැදිලිව දැක්විය යුතුයි.)
 - (iii) ඉහත පරිපථය හරහා $0.50\,\mathrm{A}$ ධාරාවක් $300\,\mathrm{s}$ හරහා යවත ලද නම් භාණ්ඩය මත තැන්පත්වන Cr වල ස්කන්ධය ගණනය කරන්න. ($\mathrm{Cr}=52$)
 - (iv) ඉහත ආකාරයට Zn ආලේප කිරීම අපහසු වන්නේ ඇයිදැයි හෝතු දක්වමින් පහදා දෙන්න.

6. (a) ජලීය MgCl₂ දුංචණයකින් 50 cm³ ක් 1.0 mol dm⁻³ NaOH සමඟ සිදුකරන ලද අනුමාපනයකදී ජලාස්කුව තුළ සිදුවූ pH වෙනස්වීම වැයවූ NaOH පරිමාවට එරෙහිව අඳින ලද පුස්නාරයක් පහත දැක්වේ.

(b) පහත දැක්වෙන පුතිකිුිිිිිිිිිි හැකි අාකාරයත් එම එක් එක් අවස්ථාවලදී අපේක්ෂිත පුධාන එල වාහුත් පහත අඳින්න.

- (c) පහත දැක්වෙන සංශ්ලේෂණ ඔබ සිදුකරනු ලබන ආකාරය දක්වන්හ.
 - (i) එකම ආරම්භක කාබනික සංයෝගය ලෙස H-C ගෙන C_4H_{10} ලබාගැනීම H
 - (ii) එකම ආරම්භක කාබනික සංයෝගය ලෙස ගෙන,

(ii) කාබතික සංයෝග ලෙස

$$NH_2$$
 හා $2-$ Pentene වලින් ආරම්භ කර $N=C_2H_5$ සංශ්ලේෂණය

C කොටස - රචනා

- 🕸 පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න.
- 8. (a) igapha නැමති කළු පැහැති සංයෝගය කනුක H_2SO_4 සමඟ පුතිකියා කළවිට igapha නැමසි වායුව මුක්ත වූ අතර එම වායුව igo C නැමති අම්ලය තුළින් බුබුලනය කළවිට දුඹුරු පැහැති වායුවක් වන igo D හා දුාවණය තුළ ආවිලතාවයක් දක්නට ලැබුණි.

- \bigcirc දුාවණය ආම්ලික කර ඒ මතට \bigcirc KI ජලීය දුාවණයක් කුමයෙන් එකතු කිරීමෙදී සුදු පැහැති අවක්ෂේපයක් වන \bigcirc ලැබුණි.
- f E හි ජලීය දුාවණයක් මතට වැඩිපුර ${
 m BaCl}_2$ එකතු කළවිට ත. ${
 m HNO}_3$ හමුවේ දියවී නොයන සුදු පැහැති අවක්ෂේපයක් ලැබුණි.

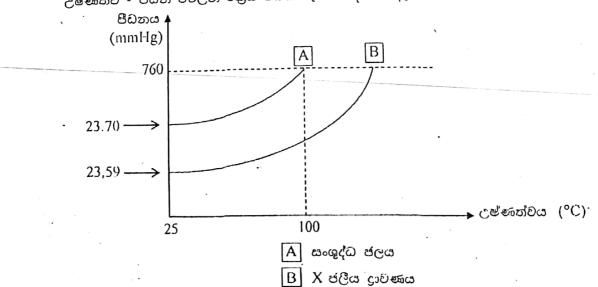
A සිට H දක්වා සංයෝග හඳුනා ගෙන අදාළ විපර්යාස සඳහා තුළිත රසායතික සමීකරණ දෙන්න.

(b) පොටැසියම් ක්ලෝරේට් සහ පොටෑසියම් ක්ලෝරයිඩ් අඩංගු තෙතමනය සහිත සහ මිගුණයක 1 g ක් ජලයේ දියකර $250~{\rm cm}^3$ දාවණයක් සාදා ගන්නා ලදී. පළමුව මෙම දාවණයෙන් වෙන්කර ගත් $25~{\rm cm}^3$ ක් තුළින් ${\rm SO}_2$ වායුව මුබුලන කර අනතුරුව ඉතිරිව තිබූ ${\rm SO}_2$ රත්කිරීමෙන් ඉවත් කරන ලදී. පසුව එම දාවණයට වැඩිපුර සිල්වර් නයිටේට් එකතු කිරීමෙන් අනතුරුව ලද අවක්ෂේපයේ ස්කන්ධය $0.1435~{\rm g}$ විය.

- (i) භාවිතා කළ MgCl_2 වල සාත්රුණය $\mathrm{mol\ dm}^{-3}$ වලින් ගණනය කරන්න.
- (ii) NaOH 10 cm³ ක් එකතු කළ විට,
 - (a) දුාවණයේ ${
 m OH}^-$ සාත්දුණය ${
 m mol\ dm}^{-3}$ වලින් ගණනය කරන්න.
 - (b) ප්ලාස්කුව තුළ අඩංගු $\mathrm{Mg}_{(aq)}^{2+}$ සාන්දුණය කොපමණ වේද?
- (iii) Mg(OH)₂ වල Ksp ගණනය කරන්න.
- (iv) NaOH දාවණයෙන් $30 {
 m cm}^3$ ක් එකතු කළ පසු pH අගය 13.1 වී ඇත්තේ ශකලස්දැයි ගණනය කිරීමක් ඇසුරින් පෙන්වා දෙන්න.
- (b) රත් කිරීමේදී PCl₅ පහත ආකාරයට සමතුලිත විය.

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$
 $\Delta H = + 120 \text{ kJ mol}^{-1}$

 PCl_5 15.0 g ක් පරිමාව 1×10^{-3} m 3 වූ සම්පූර්ණයෙන්ම රේචනය කරන ලද භාජානයක් තුළ තබා $473~{
m K}$ ට රත්කළ විට පීඩනය $3.10 \times 10^5~{
m Pa}$ දක්වා වැඩිවිය.


- (i) ඉහත දත්ත උපයෝගි කරගෙන වායු මිශුණයේ මධානා සාපේක්ෂ අණුක ස්කන්ධය ගණනය කරන්න.
- (ii) පහත දී ඇති පුකාශනය උපයෝගි කර ගතිමින් ඉහත පුතිකිුයාවේ විසටන පුමාණය ගණනය කරන්න. (x) (P=31 , Cl=35.5)

විසටහ පුමාණය
$$(x)$$
 = $\dfrac{\begin{pmatrix} PCl_5 & 20 \ empty & 20 \ emp$

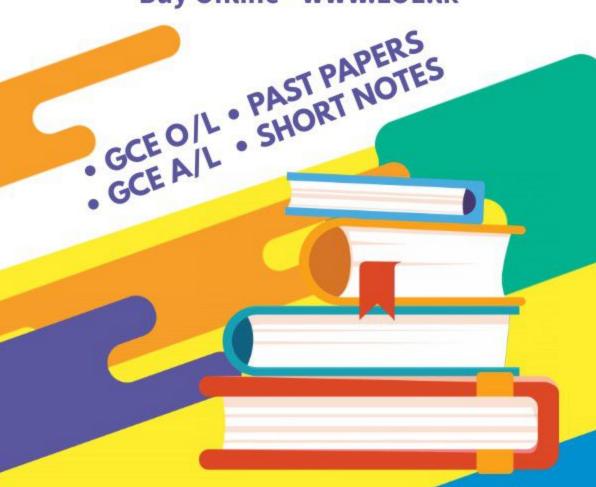
- (iii) $K_C = \frac{x^2}{1-x}$ ඇසුරින් K_C වල අගය $= 1.0 \times 10^{-2}$ බවට අපෝනණය කරන්න.
- (c) 25°C ඇති
 - (i) 0.4 mol dm⁻³ වූ ethanoic acid සහ 0.2 mol dm⁻³ වූ sodium ethanoate අදිංගු දුාවණය pH අගය කොපමණ වේද?
 25°C දී ethanoic acid වල K_a = 1.8 × 10⁻⁵ mol dm⁻³ වේ.
 - (ii) ඉහත දුාවණ $1~\mathrm{dm}^3$ තුළට NaOH $0.05~\mathrm{mol}$ එකතු කළවිට සිදුවන pH වෙනස්වීම කොපමණද?
 - (iii) 25°C දී සංශුද්ධ ජලය 1 dm³ තුළට NaOH 0.05 mol එකතු කළවිට සිදුවන pH චෙනස්වීම කොපමණද?
 - (iv) ඉහත (ii) හා (iii) පිළිතුරුවල චෙනස්කම ඔබ පහදා දෙන්නේ කෙසේද?
- 7. (a) පහත වගන්ති ඔබට හැකි පමණ පහදා දෙන්න.
 - (i) ඇල්කයිල් හේලයිඩ ජලවිච්ඡේදන පුතිකියා නියුක්ලියෝහිලික ආදේශ යාන්තුණ වර්ගයට (SN වර්ගයට) අයත්වන අතර පාරමික ඇල්කයිල් හේලයිඩ ජල විචඡේදනය පුතිනියාවේ සීසුතාවය SN₂ ආකාරයට වර්ග කර දක්වන අතර තෘතීයික ඇල්කයිල් හේලයිඩ ජලවිච්ඡේදන පුතිකියාවේ සීසුතාවය SN₁ ආකාරයට දක්වනු ලැබේ.
 - (ii) ඇල්ඩිහයිඩ හා කීටෝන ගිුනාඩි පුතිකාරකය සමඟ සිදුකරන පුතිකියා සැලකුවිට ඇල්ඩිහයිඩ දක්වන පුතිකියා සීඝුතාවය කිටෝනවලට වඩා වැඩියි.
 - (iii) ගිනාඩ් පුතිකාරක පිළියෙල කිරීම සඳහා ඇල්කයිල් හේලයිඩ Mg සමඟ සිදුකරන පුතිකියාවේදී වියළි ඊතර් මාධායෙක් යොදාගනු ලැබේ.

දෙවනුව ආරම්භක දුාවණයෙන් වෙන් කරගත් $25~\mathrm{cm}^3$ පරිමාවක්, $0.2~\mathrm{mol~dm}^{-3}$ පෙරස් සල්පේට දුාවණ $30~\mathrm{cm}^3$ ක් සමග රත්කර පුතිකිුයා නොකළ ෆෙරස් සල්පේට පුතිකිුයා මාධ්‍යයෙන් ඉවත් කරන ලදී. මේ සඳහා $0.08~\mathrm{mol~dm}^{-3}$ වූ ආමලික සිල්වර් නයිවේට දුාවණ $37.5~\mathrm{cm}^3$ අවශා විය. ආරම්භක ම්ශුණයේ වූ පොටෑසියම් ක්ලෝරේට් සහ පොටෑසියම් ක්ලෝරයිඩ් හි ස්කන්ධ පුතිශත ගණනය කරන්න. ($K=39,~\mathrm{Cl}=35.5,~\mathrm{O}=16$)

- 9. (a) ධාරා ඌෂ්මකයක් තුළදී යකඩ ඔක්සයිඩවලින් යකඩ නිස්සාරණය කරනු ලබයි.
 - (i) මෙහිදී භාවිතා කළහැකි පුධාන ඔක්සයිඩ 3 ක් නම් කරන්න.
 - (ii) මෙම කි්යාවලියේදී ඔක්සිහාරකය ලෙස යොදාගනු ලබන අමුදුවා කුමක්ද?
 - (iii) මෙහිදී යොදාගනු ලබන අනෙක් අමුදුවා කුමක්ද? එහි වැදගත්කම සඳහන් කරන්න.
 - (iv) යකඩ ඔක්සයිඩ, යකඩ බවට ඔක්සිහරණයට අදාල තුළිත රසායනික සමීකරණ ලියා. එම පුතිකියාවන් සිදුවන උෂ්ණත්වද ලියා දක්වන්න.
 - (v) මෙම කියාවලියේදී සෑදෙන ප්‍රධාන අතුරුඵලය කුමක්ද?එය සෑදෙන ආකාරය දැක්වීමට තුළිත රසායනික සමීකරණය ලියන්න.
 - (b) ${\rm Fe}^{2+}$ හා ${\rm Fe}^{3+}$ ජලීය දාවණයකින් $25.00~{\rm cm}^3$ ක් සාන්දුණය $0.01~{\rm mol~dm}^{-3}$ වන පාමලික ${\rm KMnO_4}$ දාවණයන් සමඟ අනුමාපනය කිරීමේදී ${\rm KMnO_4}$ දාවණ $19.00~{\rm cm}^3$ ක් වැයවිය. ඉහත ජලීය දාවණයෙන් තවත් $25.00~{\rm cm}^3$ ක් තුළින් ${\rm SO_2}$ වායුව බුබුලනය කිරීමෙන් අනතුරුව, ඉතිරි වූ ${\rm SO_2}$ වායුව ඉවත් කිරීමට දාවණය මඳක් උණුසුම් කර, ඉහත ${\rm KMnO_4}$ දාවණය සමග අනුමාපනය කිරීමේදී ${\rm KMnO_4}$ දාවණ $32.50~{\rm cm}^3$ ක් වැයවිය.
 - (i) ඉහත අනුමාපත සඳහා යොදා ගත්තා දර්ශකය කුමක්ද?
 - (ii) එහිදී සිදුවන වර්ණ විපර්යාසය කුමක්ද?
 - (iii) මෙහිදී සිදුවන සියළුම පුතිකිුයා සඳහා තුළිත අයතික සමීකරණ ලියන්න.
 - ් (iv) ජලීය දුාවණයේ අඩංගු ${\rm Fe}^{2+}$ හා ${\rm Fe}^{3+}$ අයන සාන්දුණු අතර අනුපාතය ගණනය කරන්න.
 - (c) Na₂CO₃ , Na₂SO₄ හා NaOH වලින් පමණක් සමන්විත මිශුණයකින් සෑදු ජලීය දා<mark>වණයක අධංගු</mark> එක් එක් සංයෝගය පුමාණාත්මක විශ්ලේෂණය සඳහා සුදුසු කිුිිියාවලියක් යෝජනා කරන්න. (ඔබට සාමානාා රසායනාගාර තත්ත්ව / පුතිකාරක (දර්ශක ඇතුළුව) / උපකරණ සපයා දී ඇත.)
 - 10. (a) සංශුද්ධ ජලය $100~{
 m cm}^3$ ක X නැමති අවාෂ්පශීලී දුාවා $5~{
 m g}$ ක් දිය කිරීමෙන් තනාගත් දුාවණයක උෂ්ණත්ව පීඩන විවලන වකුය පහත රූපයේ දක්වා ඇත.

- (i) සංශුද්ධ ජලය තුළ X දිය කිරීමත් සමඟ සංශුද්ධ ජලයේ සංතෘප්ත වාෂ්ප ජීඩන අඩුවීමට හේතුව පැහැදිලි කරන්න.
- (ii) සංශුද්ධ ජලය තුළ X දිය කිරීමත් සමඟ සිදුවූ වාෂ්ප පීඩන පානනය කොපමණ $oldsymbol{\epsilon}$?
- (iii) X හි මවුලික ස්කන්ධය ගණනය කරන්න. (H=1,~O=16) (සංශුද්ධ ජලයේ ඝනත්වය $\log 1 \, {\rm cm}^{-3}$)
- (b) A නැමති කාබනික සංයෝගය අඩංගු ජලීය දුාවණ $1\,\mathrm{dm}^3$ ක් උපයෝගී කරගෙන Λ නිස්සාරණය පහත තුම දෙකකට සිදුකරයි.
 - (a) වරකට ඊතර $200~{
 m cm}^3$ බැගින් යොදමින් අවස්ථා $4~{
 m m}$ දී Λ නිස්සාරණ කිරීම
 - (b) වරකට ඊතර $400 \, \mathrm{cm}^3$ බැගින් යොදමින් අවස්ථා 2 කදී A නිස්සාරණ කිරීම ඉහත දැක්වූ නිස්සාරණ කිුියාවලි අවසානයේදී ජලීය දාවණයෙහි ශේෂව පවතින A හි පුතිශතය ගණනය කරන්න. (ඊතර හා ජල ස්ථර අතර A හි විහාග සංගුණකය 8.5 කි.)
- (c) A හා B නමැති වායූන් නියන උෂ්ණත්ව තත්ත්ව යටතේදී සම්පූර්ණයෙන් රේචනය කරන ලද භාජනයක් තුළ පහන ආකාරයට පුතිකිුිිියා කරවන ලදී.

٠ و	පරීක්ෂණය		ආරම්භක A හා B වල සාන්දුණ		ආරම්භක සීසුතා
	•		(mol dm ⁻³)		(mol dm ⁻³ s ⁻¹)
			A	В	
	1:	,	0.5	0.5	2 × 10 ⁻⁴
	2	:	1.0	0.5	8 × 10 ⁻⁴ .
د	3		1.0	1.0	8 × 10 ⁻⁴
	4	1	1.5	1.5	1.8×10^{-4} !
•				•.	Li


සිදුවූ පුතිකිුයාව, $2A_{(g)}+B_{(g)}\longrightarrow C_{(g)}$ නම්,

- (a) පුතිකියාව සඳහා සීසුතා පුකාශතය ලියත්ත.
- (b) සීසුතා තියතයේ අගය ගණනය කරන්ත.
- (c) A වල සාන්දුණය 3 mol dm^{-3} හා B වල සාන්දුණය 2.5 mol dm^{-3} වූ අවස්ථාවේදී ආරම්භක සීසුතාවය සඳහා අගයයන් ලසායන්න.
- (d) (2) වන පරීක්ෂණය එම සාන්දුණම යොදා ගනිමින්, නමුන් පරීක්ෂණය සිදුකරන ලද භාජනයේ පරිමාව දෙගුණයක් වූ අවස්ථාවක සිදුකරන ලද නම් ආරම්භක සීසුතාවය කුමන ආකාරයකින් වෙනස්වේද?

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500 \$

More than 1000+ Papers For all major Subjects and mediums (24)

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

රු **350.00**

ADD TO CART

GCE O/L EXAM, MATHEMATICS

O/L Mathematics Past Paper Book

රු 350.00

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL... O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

GCE O/L EXAM, HISTORY

රු 350.00

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძდ 350.00