

අවසාන වාර පරීක්ෂණය - 2020 සැප්තැම්බර් අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 ඔක්තෝම්බර්

රසායන විදනව I Chemistry I

13 ලේණිය

පැය දෙකයි Two hours

සැලකිය යුතුයි :

☀ මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.

* සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.

විතාත පුතුණු පරිසමණය - 41 Exam Training Test (ETT) - 41

- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම ලියන්න.
- ☀ උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් ද සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන පිළිතුර තෝරාගෙන, එය උත්තර පතුයේ දැක්වෙන උපදෙස් පරිදි කතිරයක් (X) යොදා දක්වන්න.

ගණක යන්නු භාවිතයට ඉඩ දෙනු නො ලැබේ. සාර්වතු වායු නියකය, $R=8.314~{
m J}~{
m K}^{-1}~{
m mol}^{-1}$ ඇවගාඩරෝ නියකය, $N_A=6.022\times 10^{23}~{
m mol}^{-1}$ ප්ලෑන්ක්ගේ නියකය, $h=6.626\times 10^{-34}~{
m J}~{
m s}$ ආලෝකයේ පුවේගය, $c=3\times 10^8~{
m m}~{
m s}^{-1}$ පැරඩෙ නියකය, $F=96500~{
m c}~{
m mol}^{-1}$ Revision - 2020

- 01. කැතෝඩ කි්රණ අංශුවක ආරෝපණය/ ස්කන්ධය යන අනුපාකය, කැතෝඩ කි්රණ නලය තුළ අඩංගු වායුව අනුව වෙනස් නොවන බව පෙන්නුම් කළේ,
 - (1) J. G. ස්ටෝනි
- (2) අර්නස්ට රදර්ෆර්ඩ
- (3) J. J. තොම්සන්

- (4) R. A. මිලිකන්
- (5) විලියම් කෲක්ස්
- 02. Li, K, N, O, Ne සහ Ar යන මූල දුවායන්ගේ පළමු අයතිකරණ ශක්තිවල <mark>වැඩිවන</mark> නිවැරදි පිළිවෙළ වන්නේ,
 - (1) K < Li < O < N < Ar < Ne
- (2) Ne < Ar < N < O < Li < K
- (3) K < Li < O < N < Ne < Ar
- (4) K < O < Li < N < Ar < Ne
- (5) Li < N < O < K < Ar < Ne
- 03. පහත දැක්වෙන සංයෝගයේ IUPAC නම කුමක් ද ?

 $CONH_2$ $C = CH - CH - CH - CH_2 - CH_3$ OH

- (1) 4 amminohex-1-en-3-ol
- (2) 2 ethyl 3 hydroxypent 4 en 1 amide
- (3) 2 ethyl 3 hydroxypentenamide
- (4) 3 hydroxy 2 ethyl 4 pentenamide
- (5) 2 ethyl 3 hydroxypent 4 enamide

04.	${ m x}$ නැමති ආන්තරික නොවන මූලදුවා තුන්වන ආවර්තයට අයත් වේ. එය ${ m xCl}_4^7$ අයනය සාදන අතර එ	ාහි
	හැඩය සී-සෝ ආකාරයේ වේ. $ {f x} $ හි අවසන් උපශක්ති මට්ටමේ ඇති ඉලෙක්ටුෝනයක ක්වොන්ටම් අං	ක
	කුලකය වන්නේ,	

(1) n=3 $\ell=2$ $m_{\ell}=-1$ $m_{s}=+\frac{1}{2}$

(2) n = 3 $\ell = 1$ $m_{\ell} = -1$ $m_{s} = +\frac{1}{2}$

(3) n = 3 $\ell = 0$ $m_{\ell} = 0$ $m_{s} = -\frac{1}{2}$

(4) n=2 $\ell=1$ $m_{\ell}=1$ $m_{s}=+\frac{1}{2}$

(5) n = 3 $\ell = 0$ $m_{\ell} = 0$ $m_{s} = -\frac{1}{2}$

05. A, B, C, D සහ E යනු එකම ආවර්තයක පිහිටි අනුයාත මූලදුවා පහකි. එහි පුථම අයනීකරණ ශක්තිය වැඩිවන අනුපිළිවෙළ A < B < D < C < E වේ. ඉලෙක්ටෝනයක් ලබාගැනීමේ එන්කැල්පිය + අගයක් ගත හැකි මූලදුවා වන්නේ,

(1) A (2) B (3) C (4) D (5) E

06. නයිටේට මිශුණයක $NaNO_3$ සහ KNO_3 අතර මවුල අනුපාතය 2:1 ලෙස ඇත. මෙම මිශුණයෙන් දන්නා ස්කන්ධයක් රත් කළ විට සෑදුනු O_2 සම්මත උෂ්ණත්වයේ දී සහ පීඩනයේ දී $4.03~\mathrm{dm}^3$ පරිමාවක් ගනී. රත් කරන ලද නයිටේට මිශුණයේ ස්කන්ධය වන්නේ, (ස. උ. පි දී වායු මවුල එකක් ගන්නා පරිමාව $22.4~\mathrm{dm}^3$ ක් වේ.) $(N=14,\,O=16,\,Na=23,\,K=39)$

(1) 13.86 g

(2) 17.22 g

(3) 344.1 g

(4) 501.35 g

(5) 530.95 g

 25° C දී CI $^{-}$ වලට සාපේක්ෂව සාන්දුණය $0.003~\mathrm{mol~dm^{-3}}$ වූ ද $\mathrm{Br^{-}}$ වලට සාපේක්ෂව සාන්දුණය $0.001~\mathrm{mol~dm^{-3}}$ වූ ද ජලීය දාවණයකින් කොටසකට සාන්දුණය $0.05~\mathrm{mol~dm^{-3}}$ වූ ජලීය $\mathrm{AgNO_3}$ දාවණයක් කුමයෙන් එකතු කරන ලදී. පළමුව අවක්ෂේප වන හේලයිඩය, අවක්ෂේප වන මොහොතේ දී දාවණය තුළ තිබෙන $\mathrm{Ag^{+}}$ අයනවල අවම සාන්දුණය වනුයේ,

 $Ksp_{(AgCl)} = 2.5 \times 10^{-10} \text{ mol}^2 \text{dm}^{-6}$

 $Ksp_{(AgBr)} = 1.2 \times 10^{-13} \text{ mol}^2 \text{dm}^{-6}$

(1) $2.5 \times 10^{-7} \text{ mol dm}^{-3}$

(2) $1.2 \times 10^{-10} \text{ mol dm}^{-3}$

(3) $5 \times 10^{-2} \text{ mol dm}^{-3}$

(4) $2.4 \times 10^{-10} \text{ mol dm}^{-3}$

(5) $12 \times 10^{-8} \text{ mol dm}^{-3}$

08. Na සම්බන්ධව පහත කුමන පුකාශ අසතා වේ ද ?

(1) එය පහන්සිඑ පරීක්ෂාවේ දී කහ පැහැයක් ලබා දේ.

(2) එය හයිඩුජන් වායු ධාරාවක රත් කළ විට අයනික ඝනයක් වන NaH සාදයි.

(3) මක්සිජන් සමඟ රත් කළ විට ${
m Na_2O_2}$ මෙන්ම ${
m Na_2O}$ සාදයි.

(4) නයිටුජන් සමඟ පුතිකිුිිිියාවෙන් Na₃N සාදයි.

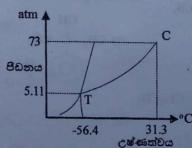
(5) එහි ඝනත්වය ජලයේ ඝනත්වයට වඩා අඩු වේ.

- පහත සඳහන් සංයෝගවල ආම්ලික ගුණය ආරෝහණයවන නිවැරදි අනුපිළිවෙළ වනුයේ,

 - (1) $P_2O_5 < Al_2O_3 < MgO < SO_3 < Cl_2O_7$ (2) $Cl_2O_7 < SO_3 < Al_2O_3 < P_2O_5 < MgO$
 - (3) $Al_2O_3 < MgO < SO_3 < P_2O_5 < Cl_2O_7$ (4) $SO_3 < Cl_2O_7 < MgO < Al_2O_3 < P_2O_5$
- - (5) $MgO < Al_2O_3 < P_2O_5 < SO_3 < Cl_2O_7$
- පහත දී ඇති Q නම් කාබනික සංයෝගය සළකන්න. 10.

$$C_2H_5 - C - CH_2 - C - C = C - H$$

Q සංයෝගය සම්බන්ධයෙන් දී ඇති පුකාශ අතුරින් සතා පුකාශය/ පුකාශ කුමක් ද ?


- (A) Q තනුක HCl මෙන්ම තනුක NaOH සමඟ ද පුතිකිුයා කරයි.
- NaNH₂, Q සමඟ පුකිකියා කර NH₃ පිට කරයි.
- (C) 0° C දී Q සහ $NaNO_2$ / HCl පුතිකිුයා වී N_2 වායුව පිට කරයි.
- (D) Q අණුවක ආම්ලික හයිඩුජන් එකකට වැඩියෙන් ඇත.
- (1) A 80%.
- A සහ B පමණි.
- (3) A, B සහ C පමණි.

- (4) B, C සහ D පමණි. (5) A, B, C හා D සියල්ලම.
- 11. කිසියම් වායුවක 8.0 g ක ස්කන්ධයක් 3.0 dm³ පරිමාවක් තුළ 2.05 x 10⁵ Pa පීඩනයක් යටතේ පවතී. මෙම වායුවේ වර්ග මධානා පුවේගය වනුයේ,
 - $2.0 \times 10^4 \text{ m}^2\text{s}^{-2}$
- (2) $2.3 \times 10^5 \text{ m}^2 \text{s}^{-2}$
- (3) $2.4 \times 10^6 \text{ m}^2 \text{s}^{-2}$

- (4)
 - $7.6 \times 10^4 \, \mathrm{m^2 s^{-2}}$ (5) දී ඇති දක්ක මඟින් ගණනය කළ නොහැක.
- $m HCN, \ CH_4, \ C_2O_4^{2-}, \ CO_2$ සහ $m CO_3^{2-}$ යන රසායනික විශේෂවල m C පරමාණුවේ විදාපූත් ඍණතාවය වැඩිවන පිළිචෙළට සැකසූ විට නිවැරදි පිළිතුර වනුයේ,

 - (1) $CH_4 < C_2O_4^2 < CO_3^2 < HCN < CO_2$ (2) $HCN < CO_2 < CO_3^2 < C_2O_4^2 < CH_4$

 - (3) $CO_2 < HCN < CO_3^2 < C_2O_4^2 < CH_4$ (4) $CO_2 < HCN < CO_3^2 < CH_4 < C_2O_4^2$
 - (5) $CO_2 < HCN < C_2O_4^2 < CO_3^2 < CH_4$
- CO_2 ඩී කලාප රූපසටහන පහත දැක්වේ. 1 atm හිදී CO_2 හී උෂ්ණත්වය $-60^{\mathrm{o}}\mathrm{C}$ සිට $-30^{\mathrm{o}}\mathrm{C}$ දක්වා ඉහළ නැංවූ විට සිදුවන්නේ,
 - (1) සනීභවනයකි.
 - වාෂ්ජිභවනයකි.
 - ඌර්ධවපාතනයකි.
 - විලයනයකි. (4)
 - පරමාණුකරනයකි.

- 14. පහත දැක්වෙන ඒවායින් නිවැරදි නොවන පුකාශය හඳුනා ගන්න.
 - (1) සල්ෆර්වල බහුරූපී ආකාරවලින් රොම්බසීය සහ ඒකානති සල්ෆර් ස්එටිකරූපී වේ.
 - (2) නයිටුජන් හී ධන ඔක්සිකරණ අවස්ථා සියල්ලටම අදාළව ඔක්සයිඩ සාදයි.
 - (3) NH3(g) වැඩිපුර Cl2 වායුව සමඟ NCl3 සාදයි.
 - (4) තයෝ සල්ෆියුරික් අම්ලයේ ජලීය දුාවණයක් කාමර උෂ්ණත්වයේ දී වියෝජනය වී සල්ෆර් සැදිය හැකිය.
 - (5) CuO සමඟ NH₃ දුබල ඔක්සිකාරකයක් ලෙස කි්ුයාකරයි.
- 15. 25° C දී සාන්දුණය C_0 mol dm $^{-3}$ වන CH_3COOH 25.00 cm 3 ක් NaOH මඟින් අනුමාපනයේ දී සමකතා ලක්ෂායේ p^H අගය සඳහා පහත ඒවායින් නිවැරදි පුකාශනය කුමක් ද ? මෙහි S යනු සැදෙන ලවණයේ සාන්දුණය වන අතර K_a යනු CH_3COOH හී විඝටන නියතය වන අතර K_w යනු 25° C දී ජලයේ විඝටන නියතය වේ.

(1)
$$P^{H} = \frac{1}{2}P^{ka} + \frac{1}{2}P^{kw} + \frac{1}{2}\log s$$

(2) $P^H = P^{kw} + \log s$

(3) $P^H = P^{ka}$

(4) $P^{H} = \frac{1}{2}P^{ka} - \frac{1}{2}\log C_{o}$

(5) $P^{H} = -\frac{1}{2}P^{ka} - \frac{1}{2}P^{kw} + \frac{1}{2}\log s$

- 16. නැප්තලීන් $\left[C_{10}H_{8}\right]1.435\,\mathrm{g}$ ක් සම්පූර්ණයෙන් දහනය කිරීමෙන් එක්තරා ජල පරිමාවක උෂ්ණත්වය $20.28^{\circ}\mathrm{C}$ සිට $25.95^{\circ}\mathrm{C}$ දක්වා වැඩි කිරීමට පුළුවන. ජලයේ තාප ධාරිතාව $10.17~\mathrm{kJ^{\circ}C^{-1}}$ නම් නැප්තලීන්වල මවුලික දහන තාපය සොයන්න. (මෙහිදී තාප හානියක් සිදුනොවන බව ද කැලරිමීටරයේ තාප ධාරිතාව නොසැලකිය හැකි තරම් කුඩා බව ද සලකන්න.)
 - (1) $-5151 \text{ kJ mol}^{-1}$
- (2) $-515.1 \text{ kJ mol}^{-1}$
- (3) $-32.6 \text{ kJ mol}^{-1}$

(4) $-3.26 \text{ kJ mol}^{-1}$

CH₃NH₂

- (5) 57.66 kJ
- 17. පහත සංයෝගවල භාෂ්මිකතාවය වැඩිවන අනුපිළිවෙළ නිවැරදිව නිරූපනය කරනුයේ කවරක් මඟින් ද ? O

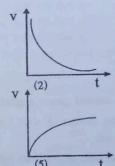
(A) (B)

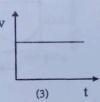
C₆H₅NH₂

 $CH_3 - \overset{\parallel}{C} - NHC_6H_5$

CH₃NHC₂H₅ (D)

CH₃NHC₆H₅

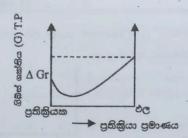

- $(1) \quad C < D < B < A < E$
- (2) C < B < E < A < D
- $(3) \quad C < A < E < B < D$


- (4) A < E < B < D < C
- $(5) \quad C < B < A < D < E$
- 18. පහත දී ඇති කාබනික සංයෝගය සලකන්න. මෙම සංයෝගය වියළි ඊතර් මාධායේ දී වැඩිපුර C-Cl පුමාණයක් CH_3MgBr සමඟ පුතිකියා කරවා ජලය සමඟ පිරියම් කළ විට ලැබෙන ඵල/ ඵලය වන්නේ පහත කවරක් ද $C-O-CH_2CH_3$
 - C-CH₃
 C-O-CH₂CH₃
 C-O-CH₂CH₃
- (2) CH₃ C CH₃ (3) CH₃ (7) C O CH₂CH₃

(4) O (5) $CH_3 - C - CH_3$ O $CH_3 - C - CH_2 - CH_3 + CH_3 - C - CH_2 - CH_3$

එක්තරා වායු ස්කන්ධයක පීඩනය නියතව තබා එහි උෂ්ණත්වය (t ^oC)වෙනස් කරන විට පරිමාවේ සිදුවන වෙනස් වීම පුස්ථාරගත කළ විට ලැබෙන නිවැරදි පුස්තාරය කුමක් ද ?

- $2~{
 m AB}_{{m Z}(g)}
 ightarrow {
 m A}_2{
 m B}_4\,_{(g)}$ යන පුතිකියාව පළමු පෙළ වේ. පද්ධතියේ ආරම්භක ජීඩනය P වේ. මෙම 20. පුතිකියාවේ සීගුතාවය ආරම්භක සීගුතාවයෙන් බාගයක් බවට පත් වූ පසු, නියත උෂ්ණත්වයේ දී පද්ධතියේ පරිමාව අඩු කිරීමෙන් පුතිකියා සීගුතාවය නැවත ආරම්භක සීගුතාවයට පත් කරන ලදී. ඒ සඳහා පද්ධතිය තුළ ඇති කළ යුතු මුළු පීඩනය කොපමණ ද ?


- (4)
- ${
 m Li,\,Na,\,K}$ සහ ${
 m Mg}$ ${
 m O_2}$ වායු ධාරාවක රක් කළ විට ලැබේ යැයි අපේක්ෂිත පුධාන ඵල වනුයේ පිළිවෙළින්,
 - Li₂O₂, Na₂O, KO₂, MgO
- Li₂O, Na₂O, K₂O, MgO (2)
- Li₂O, Na₂O₂, KO₂, MgO
- (4) Li₂O, Na₂O₂, K₂O, MgO
- (5) Li₂O, Na₂O, KO₂, MgO
- එක්තරා භාජනයක් තුළ යම් උෂ්ණත්වයක දී A සහ B 3:1 මවුල අනුපාතයෙන් දෘඩ සංවෘත බඳුනක් තුළ මිශු කර නියත උෂ්ණත්වයේ දී සමතුලිත වීමට ඉඩ හැරිය විට ආරම්භක B වලින් 75 % ක් වැය වී තිබුණි. එම උෂ්ණත්වයේ දී පද්ධතියේ සමතුලිතතා නියතය K_P වනුයේ,

 $A_{(g)} + B_{(g)} \rightleftharpoons 2 D_{(g)}$ (1) 0.12 (2) 0.25 (3)

- 0.40
- (5)
- $m H_2S$ වායුව, $m SO_2$ වායුවෙන් වෙන් කර හඳුනාගැනීම සඳහා වඩාත්ම සුදුසු වන්නේ,
 - ලිට්මස් කඩදාසි (1)
- හුණු දියර
- (3) ආම්ලික ZnNO3 දාවණයක්

- Cd(CH3COO)2 දාවණයක්
- (5) NH3 දාවණයක්
- ජල කත්ත්ව පරාමිතියක් නොවන්නේ,
 - (1)
 - රසායනික ඔක්සිජන් ඉල්ලුම (2)
 - ජලයේ කයීනත්වය (3)
 - ජලයේ ආව්ලතාව (4)
 - ජලයේ ඇති බනු සංයුජ ලෝහ කැටායනවල සාන්දුණය

25.

ඉහත දී ඇති පුස්තාරය පිළිබඳ පහත සඳහන් පුකාශ අකුරින් නිවැරදි පුකාශ වනුයේ,

- (1) ඉහත පුතිකිුයාවේ සමතුලිතතා නියතය K <<< 1 වේ.
- (2) ඉහත පුතිකිුියාව ස්වයංසිද්ධ වේ.
- (3) මෙම පුතිකියාව අනිවාර්යෙන් තාප අවශෝෂණ පුතිකියාවකි.
- (4) ඉතා ඉහළ උෂ්ණත්වවල දී ඉහත පුතිකිුයාව අනිවාර්යෙන් සිදු වේ.
- (5) ඵලවල එන්ටොපිය සෑමවිටම පුතිකියකවල එන්ටොපියට වඩා වැඩි ය.

26. ජලය නියැදියක දාවිත ඔක්සිජන් පුමාණය නිර්ණය කිරීමේ දී ජලය නියැදියෙහි 250.00 cm³ ක් ඎරීය මාධායේ දී MnSO4 දාවණයක් සහ වැඩිමනත් KI පුමාණයක් සමඟ පිරියම් කරන ලදී. ඉන්පසු දාවණය ආම්ලිකෘති කර මුක්ත වන අයඩින් 0.020 mol dm³ Na₂S₂O₃ දාවණයක් සමඟ අනුමාපනය කරන ලදී. අවශාව වූ Na₂S₂O₃ දාවණ පරිමාව 100.00cm³ නම් ජල නියැදියේ දාවිත ඔක්සිජන් සාන්දුණය mg dm³ වනුයේ,

- (1) 0.0032
- (2) 0.0064
- (3) 3.

- (4) 64
- (5) 6.4

27. එක්තරා වර්ණවත් අකාබනික ලවණයක් රත් කළ විට කොළ පැහැති ශේෂයක් ද අවර්ණ වායුවක් සහ ජල වාෂ්ප ද ලබා දේ. අවර්ණ වායුව Mg සමඟ පුතිකියා කළ විට සුදු පැහැති ඝනයක් සාදන අතර එය ජලය සමඟ පුතිකියා කළ විට රතු ලිටීමස් නිල් පැහැයට හරවන වායුවක් පිට විය. ඉහත කොළ පැහැති ශේෂය, කුෂාරීය H2O2 දාවණක් සමඟ පිරියම් කළ විට කහ පැහැති දාවණයක් ලබා දේ.

- (1) $(NH_2)_2Cr_2O_7$
- (2) (NH₄)₂CrO₄
- (3) Ca(HCO₃)₂

- (4) Fe(OH)₃
- (5) NH₄NO₃

28. $CH_3 - C - CI \xrightarrow{NH_3} x \xrightarrow{(1) \text{LiAlH}_4} y$

ඉහත පුතිකියා අනුකුමයෙන් සෑදෙන Y හි වනුහය වනුයේ,

- (1) CH₃CH₂OH
- $(2) \qquad CH_3 CH_2 NH_2$
- (3) $CH_3 CH_2 NH_2$

OH

- (4) CH₃ CH₃
- (5) $CH_3 CH = NH$

29. මින් කුමක් සමඟ පුතිකිුයාවේ දී $m H_2O_2$ ඔක්සිහාරකයක් ලෙස හැසිරේද?

- (1) H⁺/KMnO₄
- (2) PbS
- 3) H+/KI

(3)

- $H^+/FeBr_2$
- (5) Na₂SO₄

30. විදාහාගාරයේ දී ඔක්සිජන් වායු සාම්පලයක් ලබාගත නොහැකි වන්නේ,

- (1) KMnO₄ රක් කිරීමෙන් (2)
- KClO₃ රත් කිරීමෙන්
- KNO3 රත් කිරීමෙන්

- (4) H₂O₂ රක් කිරීමෙන්
- (5) PbO₂ රත් කිරීමෙන්

- අංක 31 සිට අංක 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) හා (d) යන පුතිචාර හතර අතුරින් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදිය. නිවැරදි පුතිචාරය / පුතිචාර කවරේ දැයි කෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුනිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛාවක් හෝ
නිවැරදියි	නිවැරදියි	නිවැරදියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදි

- 31. පහත දී ඇති පුකාශ වලින් කුමක්/ කුමන ඒවා සතාා වේ ද ?
 - (a) $\Delta H < 0$ සහ $\Delta \tilde{S} > 0$ වන පුකිකියා සෑමවිටම ස්වං සිද්ධ වේ.
 - (b) $\Delta H > 0$ සහ $\Delta S > 0$ වන පුතිකිුයා සෑමවිටම ස්වං සිද්ධ වේ.
 - (c) $\Delta H < 0$ සහ $\Delta S < 0$ වන පුතිකියා අඩු උෂ්ණක්වයේ දී ස්වං සිද්ධ වේ.
 - $\Delta H > 0$ සහ $\Delta S < 0$ වන පුතිකියා සියලු උෂ්ණක්වවල දී ස්වං සිද්ධ නොවේ.
- 32. පරිපූර්ණ වායු සම්බන්ධයෙන් වන පහත කුමන වගන්ති සතා වේ ද ?
 - (a) සියලු වායු අණු එකම වේගයෙන් ගමන් කරයි.
 - (b) ඒවායේ අන්තර් අණුක ආකර්ශන බල නොපවතී.
 - (c) වායු අණුවක ස්කන්ධය ශුනා නොවේ.
 - (d) වායුවක පීඩනය ඒකක පරිමාවක අණු සංඛාහවට සමානුපාතික වේ.
- 33. 2P+Q o S යන පුතිකිුයකයට සම්බන්ධ වන චාලක විදාහත්මක තොරතුරු කිහිපයක් පහත දී ඇත.
 - Q හි සාන්දුණය නියතව තබා නියත උෂ්ණත්වයේ දී P හී සාන්දුණය දෙගුණ කළ විට ප්‍රතිකියා සීසුතාව හතර ගුණයක් වේ.
 - 25° C දී පතිකියකයට අදාළ සීසුතා නියතය 48 mol⁻³ dm[©] s⁻¹ වේ. අදාළ පතිකියාවට සම්බන්ධ ඉහත තොරතුරුවලින් ලබාගත හැකි අනිවාර්ය නිගමනයක්/ නිගමනයන් වන්නේ,
 - (a) මූලික පුතිකිුයාවකි.
 - (b) දෙවන පෙළ පුතිකිුයාවකි.
 - (c) Q ව සාපේක්ෂව පෙළ ගැන කිව නොහැක.
 - (d) 25° C දී P හා Q හී සාන්දුණ $0.1\,\mathrm{mol\,dm^{-3}}$ වන විට පුකිකියාවේ සීසුකාව $48\,\mathrm{x}\,10^{-4}\,\mathrm{mol\,dm^{-3}s^{-1}}$ ෙව්.
- 34. සොල්වේ කුමයේ දී අටඑ තුළ අඩු උෂ්ණත්වයක් පවත්වාගැනීම සඳහා අටඑ වටා ජලය සංසරණය කරනු ලැබේ. මෙය සිදුකිරීමට හේතුව/ හේතු විය හැක්කේ,
 - (a) වායුත් ජලයේ දියවීම තාපදායක කිුයාවලියක් වීම.
 - (b) NH₄OH සමඟ ජලීය CO₂ පුනිකිුයා කර NH₄HCO₃ ලබාදීම තාපදායක කිුයාවලියක් වීම.
 - (c) CO_2 වායුවේ ජල දාවාතාව, NH_3 වායුවේ ජල දාවාතාවයට වඩා වැඩි නිසා පුතිපුවාහ කුමය කාර්යක්ෂම කරගැනීමට හැකි වීම.
 - (d) NH3 හී චක්‍රියකරණය සඳහා අටඑ සිසිල්ව තබාගැනීමට දායක වීම.

- 35. H_2O , H_2S , H_2Se හා H_2Te යන හයිඩුජන් හේලයිඩ පිළිබඳ සතා නොවන්නේ පහත සඳහන් කුමන පුකාශය/ පුකාශ ද ?
 - (a) විශාලම බන්ධන කෝණය ඇත්තේ H₂Te වලය.
 - (b) කාමර උෂ්ණත්වයේ දී මේ සියල්ල ම දුව තත්ත්වයේ පවතී.
 - (c) මෙම සියල්ලෙහි ම ආම්ලික ලකුණ පවතී.
 - (d) පුබලම අන්තර් අණුක බල ඇත්තේ H_2O වලය.
- 36. A හා B වාෂ්පශීලී දුව දෙකක් ද A හී වාෂ්පශීලීතාව B හී වාෂ්පශීලීතාවයට වඩා වැඩි යැයි ද ඒවා එකිනෙක මිශු කිරීමෙන් පරිපූර්ණ දුාවණයක් සාදන්නේ යැයි ද සිතමු. මෙම දුව සහ දුාවණය සම්බන්ධව පහත කුමන/ කුමක් ඒවා සතා වේ ද ?
 - (a) යම් උෂ්ණත්වයක දී A/B දුාවණයේ B හී දුව කලාපයේ මවුල භාගය $\dfrac{P_A^0 P_A}{P_A^0}$ ට සමාන වේ.
 - (b) A හා B ඕනෑම සංයුතියකින් මිශු කිරීමෙන් සෑදෙන දාවණයේ තාපාංකය සෑමවිටම B හී තාපාංකයට වඩා වැඩි වේ.
 - (c) උෂ්ණත්වය නියත විට A හී සංකෘප්ත වාෂ්ප පීඩනය B හී සංකෘප්ත වාෂ්ප පීඩනයට වඩා වැඩි වේ.
 - (d) භාගික ආසවනය මඟින් මෙම දුව එකිනෙක වෙන් කළ හැකිය.
- 37. පහත දැක්වෙන සංයෝග සලකන්න.

COOH

OH

$$CH_{2}CHO$$
 $CH_{2}C \equiv CH$
 $CH_{2}C \equiv C - CH_{3}$
 $CH_{2}OH$

(a)

(b)

(c)

(d)

පහත දක්වා ඇති සියලුම නිරීඤණ පෙන්නුම් කරන්නේ ඉහත කුමන සංයෝගය/ සංයෝග ද ?

- අාම්ලික KMnO₄ සමඟ පුතිකියා කරයි.
- Na සමඟ පුතිකියා කර H₂ පිට කරයි.
- PCl₅ සමඟ පුතිකියා කිරීම.
- 38. NH4OH හී 0.1 mol ක දිය කරන ලද 500,00 cm³ ජලීය දුාවණයක් පිළිබඳව සතා වන්නේ,
 - (a) එහි ${
 m OH^{-}}$ සාන්දුණය ආසන්නව $0.2~{
 m moldm^{-3}}$ වේ.
 - (b) එය ජලයෙන් තනුක කරන විට OH සාන්දුණය ඉහළ යයි.
 - (c) NaOH 0.1 mol ක් එක් කළ විට pH පහළ යයි.
 - (d) A1³⁺ සමඟ ස්ථීර අවක්ශේපයක් සාදයි.
- 39. $m H_2SO_4$ අම්ලය සම්බන්ධව පහත කුමන පුකාශය/ පුකාශ සතාා වේ ද ?
 - (a) එය ද්විපොටික අම්ලයකි.
 - (b) දුව එතනෝල් සමඟ පුකිකියාවේ දී එය විජලකාරකයකි.
 - (c) Cu සමඟ පුතිකිුයාවේ දී ඔක්සිහාරකයක් ලෙස කිුයා කරයි.
 - (d) එයට සාන්දු HBr ඔක්සිකරණය කළ නොහැකිය.
- 40. පහත දී ඇති අණුව පිළිබඳව මින් කුමන වගන්තිය/ වගන්ති සතා ෙවේ ද ?
 - (a) සියලු C පරමාණු sp² මුහුමකරණයේ පවතී.
 - (b) සියලුම C C බන්ධන එකම දිග වේ.
 - (c) b, c, d පරමාණු සරල රේඛාවක පිහිටයි.
 - (d) සියලුම C එකම තලයක පිහිටයි.

• අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුකිචාරවලින් කවර පුතිචාරය ද'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුකිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහද දෙයි.
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහද නොදෙයි.
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා වේ.
(5)	අසතා වේ.	අසතා වේ.

ජලයේ තාපාංකය, $ m H_2O_2$ වල තාපාංකයට වඩා ඉහළ වේ.	H ₂ O ₂ අස්ථායී නිසා පහසුවෙන් ආලෝක - ජේරික වියෝජනයට භාජනය වේ.
නයිටුජන් ටුයි ක්ලෝරයිඩ් ජලයේ විෂබීජ නාශකයක් ලෙස භාවිතා කරයි.	නයිටුජන් වුයි ක්ලෝරයිඩ් ජලය සමඟ පුතිකියාවෙන් හයිපොක්ලෝරස් අම්ලය සාදයි.
Na _(s) වල සම්මත පරමාණුකරණ එන්තැල්පියෙහි අගයත් Na _(s) වල සම්මත ඌර්ධවපාතන එන්තැල්පියෙහි අගයත් එකම වේ.	සම්මත ඌර්ධවපාතන සහ සම්මත පරමාණුකරණ එන්තැල්පිය යනු සම්මත අවස්ථාවේ ඇති මූලදුවෳයක් එහි වාෂ්පය බවට පත්වීමට අදාළ එන්තැල්පිය වේ.
trimethylammine, dimethylammine වලට වඩා භාෂ්මික වේ.	ඇල්කිල් කාණ්ඩ එය බැඳුණු පරමාණුව මත ඉලෙක්ටෝන ඝනත්වය වැඩි කරයි.
CH3COCH3 සහ CH3MgBr අතර පුතිකියාවෙන් (CH3)3 COMgBr සැදේ.	CH3MgBr භීකාබො කැටායනය CH3COCH3 හී කාබොනිල් කාබන් පරමාණුවට ඉලෙක්ටෝෆිලිකව පහරදීමෙන් ආරම්භවන ආකලන පුතිකියාවකි.
නියත උෂ්ණත්වයේ දී ජලීය දුාවණයක H ⁺ සාන්දුණය සිය ගුණයකින් අඩු කළ විට දුාවණයේ pH අගය දෙකකින් ඉහළ යයි.	pH අගය යනු දුාවණයක හයිඩුජන් අයනයේ සාකීයතාවයෙහි පාදය 10 වූ සෘණ ලසු ගණකයයි.
$ m OH^-$ යනු $ m H_2O$ හී සංයුග්මක භෂ්මය වේ.	සංයුග්මක භෂ්මයකට එක් පුෝටෝනයක් අඩුවෙන් ඇත.
පරිපූර්ණ වායුවක දී ඇති උෂ්ණත්වයක දී සියලුම වායු අණුවල චාලක ශක්ති සමාන වේ.	වර්ග මධානා පුවේගය රඳාපවතින්නේ නිරපේක්ෂ උෂ්ණත්වය මත පමණි.
I ₂ ජලයෙහි දීට වඩා CCl ₄ හි දුාවා වේ.	C - Cl බන්ධනවල ධුැවීයතාවය මඟින් නිර්ධැවීය I_2 වඩා ධුැවීය කරමින් CCl_4 තුළ I_2 හි දුවාකාව වැඩි කරයි.
$\left[\mathrm{Mn}\left(\mathrm{H_2O}\right)_6 ight]^{2+}$ ජලීය දුංචණයකට $\mathrm{NH_{3(aq)}}$ එකතු කළ විට එය $\left[\mathrm{Mn}\left(\mathrm{NH_3}\right)_6 ight]^{2+}$ බවට පත් වේ.	Mn ²⁺ සමඟ H ₂ O බන්ධ කාණ්ඩයට වඩා ස්ථායී බන්ධන, NH ₃ බන්ධ කාණ්ඩ සමඟ ඇති වේ.
	ඉහළ වේ. නයිටුජන් ටුයි ක්ලෝරයිඩ් ජලයේ විෂබීජ නාශකයක් ලෙස භාවිතා කරයි. Na(s) වල සම්මත පරමාණුකරණ එන්තැල්පියෙහි අගයත් Na(s) වල සම්මත ඌර්ධවපාතන එන්තැල්පියෙහි අගයත් එකම වේ. trimethylammine, dimethylammine වලට වඩා භාෂ්මික වේ. CH3COCH3 සහ CH3MgBr අතර පුතිකියාවෙන් (CH3)3 COMgBr සැදේ. නියත උෂ්ණත්වයේ දී ජලීය දුංවණයක H+ සාන්දණය සිය ගුණයකින් අඩු කළ විට දුංවණයේ pH අගය දෙකකින් ඉහළ යයි. OH යනු H2O හී සංයුග්මක භෂ්මය වේ. පරිපූර්ණ වායුවක දී ඇති උෂ්ණත්වයක දී සියලුම වායු අණුවල වාලක ශක්ති සමාන වේ. [Mn(H2O)6]

A කොටස - ව්යුහශත රචනා

සියලුම පුශ්නවලට පිළිතුරු සපයන්න.

- 01. (a) පහත දැක්වෙන පුකාශ සතා ද නැතහොත් අසතා ද යන බව සඳහන් කරන්න. (හේතු අවශා නොවේ.)
- විද්යුත් ක්ෂේපුයක් හරහා ගමන් කිරීමේ දී He පරමාණු උත්කුමණයක් පෙන්නුම කරයි.
- \equiv හැලජන සාදන අම්ල අතුරින් HF උපරිම තාපාංකයක් පෙන්වන අතර එය හැලජන සාදන අම්ල අතුරින් දුබලම අම්ලය වේ.
- (iii) ICI_2 හා NO_2 යන දෙකම හැඩමයන් සමාන වේ.
- (TV) ඉන් සැදෙන බන්ධනයේ දිග අඩු වේ. බන්ධනයක් සෑදීමට සහභාගීවන කාක්ෂිකවල S ගුණය වැඩිවන විට
- 3 N-O බන්ධන දෙකෙනීම දිග සමාන වේ. $m NO_2Cl$ සඳහා ලුවිස් වයුන දෙකක් පමණක් ඇඳිය නැති අතර එහි
- 3 3 C_3H_3 NO අණුව සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් වයුහය අඳින්න. (එම අණුවේ සැකිල්ල

E වයුනය පහත දක්වා ඇත. මෙම අණුව සඳහා ලුවිස් වයුහ තුනක් අඳින්න. (මෙහි R යනු ඇල්කිල් කාණ්ඩයකි.) R-COCI, සෝධියම ඒසයිඩ් $\left(NaN_3\right)$ සමඟ පුනිතියා කර $RCON_3$ සාදයි. එනි සැකිලි

පහත දී ඇති අණුව සලකන්න. ඒ ඇසුරින් (i), (ii), (iii), (iv) කොටස් සඳහා පිළිතුරු සපයන්න

- **E E** VSEPR යුගල් පරමාණු වටා ඇති හැඩය
- ₹ B පරමාණු වටා ඉලෙක්ටෝන යුගල ජාාමිතිය පරමාණුවල මුහුම්කරණය සඳහන් කරන්න.

(iv)	(iii)	(i)	Θ	
මුහුමකරණය	හැඬය	ඉලෙක්වෝන සුගල ජාාමිතිය	VSEPR සුලේ	
				C ₂
				Z
				C ₇
	-8			80

- (iv ඉහත (iii) කොටසෙහි දෙන ලද වනුහයෙහි මුහුම් කාක්ෂික සඳහන් කරන්න. පහත ග බන්ධන සෑදීමට සහභාගීවන පරමාණුක/
- 2 Ξ C2 - C3 N-C1 C_2 C₃ C
- (3) C3 - O C3 0 0
- ඉහත (iii) කොටපෙහි දෙන පරමාණුක කාක්ෂික ලියන්න. 0-0, ලද ව්‍පුහයෙහි පනත සඳහන් πබන්ධන සෑදීමට සහභාගීවන C7

3

- Ξ N-0 Z
- 2 C6 - C5 °C C₅ 0
- 0 වරහන් තුළ දී ඇති ගුණය වැඩිවන පිළිවෙළට පහත සඳහන් දෑ සකසන්ත. (හේතු අවශය තොවේ.)
- CO₂, NH₃, Ne, He (කාපාංකය)
- 2 (3) SO2, C2H4, CCI₄, SOC12 S2032-CO, SO42-CF₄ (C & (S-O බන්ධන විද්යුත් සෘණතාවය) දග)
- 3 Li₂CO₃, Na2CO3, MgCO₃, CaCO₃ (කාප ස්ථායිකාචය)

(3)	3 (a)		02. (a) Z & Z & Dtg @@:	රසාශන විදුනව II
E 80 F = 0.0000		N 8 8 N	Z යනු ආවර්තිතා වගුම Z ₁ තා Z ₂ යන සංයෝග වැදගත් කාර්මික නිෂ්ප මූලදුවායකි.) ක්ෂුදු කරංග,
ජලය සමඟ පුකිකුියාව 	aOH සමඟ සිදුක කමක පතිකියාණෙ	Z =නඳුනාගැනීමට පදනම් කරගන් හේතුව ලියන්න. භූමි අවස්ථාවේ දී Z හි ඉලෙක්ටුෝනික විනාහසය ලියන්න. Z හි වඩාත්ම ස්ථායී බහුරුපී ආකාරයේ පවතින අණුවක වනුහය අඳින්න.	ගුමව් කුන්වන ආශ්‍යාර්ග දෙක සාදයි. ්ෂ්පාදන සඳහා අ න්න.	- 04 - ග, х කිරණ, ץ කිරණ, අධෝරක්ත කිරණ (තරංග ආයාමය)

_
Y :
_
Z
හි
ල
ČŠ.
8
2
Ø,
9
8
8

9 X සහ Y යනු ජලදුාවා ස්ඵටිකරුපී සංයෝග දෙකකි. X ස පරීක්ෂණ කීපයක් හා ඊට අදාළ නිරීක්ෂණ පහත වගුවේ දැක්වේ. X eso හඳුනාගැනීම සඳහා සිදුකළ

6	5	4	w	2	-	අංකය
(4) හි පෙරණයට සාන්දු HNO ₃ කුඩා පුමාණයක් එකතු කර NH ₄ SCN දුාවණයක් එකතු කිරීම.	ඉහත (4) නිදී ලැබෙන පෙරණය NH ₄ Cl / NH ₄ OH එකතු කරන ලදී.	Y නී දුාවණයකට BaCl ₂ දාවණයක් එකතු කරන ලදී.	X නී ජලීය දුාවණයකට තනුක HCl එකතු කරන ලදී.	X හී ජලීය දාවණයකට Al කුඩු හා NaOH දමා රත් කරන ලදී.	X සංලය්ගය කදින් රත්කරන ලදී.	පරික්ෂාව
රතුපාට දාවණයක් ලැබුණි.	අවක්මෂ්පයක් නැත.	තනුක HNO ₃ තුළ අදුවප සුදු අවක්ෂේපයක් ලැබුණි.	වැඩිපුර HCl නී දියවන සුදු අවක්ෂේපයක් ලැබුණි.	නෙස්ලර් පුකිකාරකය පොඟවන ලද පෙරහන් කඩදාසියක් ඇල්ලූ විට දුඹුරු පාට විය.	රතු දුඹුරු වායුවක් පිටවිය.	නිරික්ෂණය

	3
	-
	_
	×
	~
•	2
- 2	5
- 0	3
- 0	2
-	-
	≺
	-
•	20
- 8	~
•	,
06	ລ
164	3
-	е.
- 6	7
	-2
•	•
CO Paris	
	~
	~
	_
•	9
٠,	л
-	A
	うえず
- (X
- 2	7
- 2	

×	4	×	
ı			

(ii) ඉහත එක් එක් නිරීක්ෂණවලට අදාළව ඔබ සිදුකරන නිගමන ලියන්න.

6	5	4	w	2	1	-G 05
						නිරීක්ෂ ණ නිරීක්ෂ ණ
						- BI
			HE.			
	45					Oh
						නිගමනය
						88
						191
						31.77
				1	130	
			1			
						444

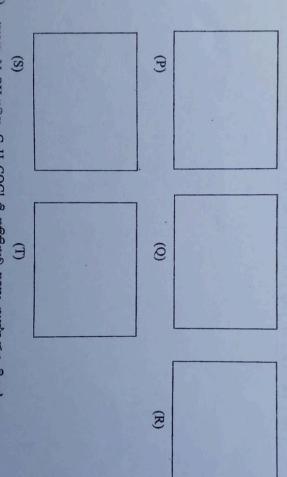
(ii)		100.00 (i)	(b) එක්තර කාමර	
ඉහත දුංචිණයෙන් 20.0 cm ³ ට 0.1 mol dm ⁻³ CH ₃ COOH දුංචිණයකින් 10.0 cm ³ එක් කරන ලදී. එව්ට දුංචිණයේ pH අගය සොයන්න. CH ₃ COOH හි K _a හි අගය 1.8 x 10 ⁻⁵ mol dm ⁻³ වේ.	CaCO ₃ අවශාෂය විශාන නොව මෙම දුවණ 100 cm ි ව එක් කළ හැකි උපරිම Na ₂ CO ₃ ස්කන්ධය කවරේද ? K _{sp} (CaCO ₃) = 1.6 x 10 ⁻⁷ mol ² dm ⁻⁶	ාවණයක් සමඟ අනුමාපත 3 තා 20,0 cm³ විය. 10 ⁻⁶ mol ³ dm ⁻⁹ නම කාම	එක්තරා පරීක්ෂණයක දී $\mathrm{Ca}\left(\mathrm{OH}\right)_{2(s)}$ වැඩිපුර $0.2\mathrm{moldm^{-3}}$ NaOH දුංචණයක් තුළ දිය කර තාමර උෂ්ණත්වයේ දී සංතෘප්ත දුංචණයක් සාදන ලදී. එම දුංචණය පෙරා එයින්	$ m H_2O_2$ වල සාන්දුණය $0.15~ m moldm^{-3}$ වන විට මිශුණය නිල් පැහැ වීමට ගතවන කාලය සොයන්න.

- 04. (a) A, B, C යනු අණුක සූපුය C_5H_{10} O වූ ද Br_2 දියර විවර්ණ නොකරන්නා වූ ද වසුහ සමාවයවික වේ. B වෙත වෙතම කනුක NaOH සමඟ සංගණත පුනිකියාවට බදුන්වන අතර C, NaOH සමඟ පුනිකියා ලබාදේ. D නිර්ජලීය ${
 m Al}_2{
 m O}_3$ ඇති වීට ලැබෙන එලය පාරතිුමාන සමාවයව්කතාවය නොදක්වයි. ${
 m A}$ හා B ද්විතියික ඇල්කොහොලයක් වන D ද A හා C පිළිවෙළින් පුාථමික ඇල්කොහොල වන E හා F ද A පමණක් පුතිරුප අවයව සමාවයවිකතාව දක්වයි. මෙතතෝල් ඇතිවිට $NaBH_4$ සමඟ පුතිකියාවෙන්
- A, B, C, D, E දැක්වීම අවශා තැක.) ess F වල වාෘුහ පහත කොටුවල අඳින්න. (නිමාන සමාවයවික ආකාර ඇඳ

(A)	
(B)	
(C)	
	(B)

- 6 පතක දී ඇති පුනිකියාවල G, H, I, J සහ K යන පුතිකාරකය/ උක්ලේරකය සුදුසු තත්ත්ව සමඟ පැහැදිලිව දී ඇති කොටු තුළ ලියන්න.
- (i) $CH_3 C = C H \xrightarrow{G} CH_3 CH = CH_2$
- (ii) $H_3C-CH_2-CH_2\xrightarrow{H} CH_3CH_2CO_2H$ OH
- (iii) $CH_3 C = C H \xrightarrow{I} CH_3 C = \overline{C} Na^+$
- (iv) COCH₂ COOH → CH CH₂ COOH CH₃ OH
- (v) $C_6H_6 \xrightarrow{K} C_6H_5 \overset{\cdot}{C} C_6H_5$

(c) පහත දී ඇති පුතිකියාවල පුධාන කාඛනික එල වන P, Q, R, S හා T දී ඇති කොටු තුළ ලියන්න.


(i)
$$C_6H_5N_2CI \xrightarrow{\text{sign}} N_{\text{aOH}} P$$

(ii)
$$CH_3 - \stackrel{\cdot}{C} - \stackrel{\cdot}{C} - H$$
 $\xrightarrow{\text{Diggin NaOH}} Q$ $\stackrel{\cdot}{C}H_3$ $\xrightarrow{\Gamma_{Aa}(NH_1)} T^{\bullet}_{CH_2}$

(iii)
$$CH_3CH_2CHO \xrightarrow{\left[Ag(NH_3)_2\right]^{\dagger}OH^{-}} R$$

(iv)
$$C_6H_5COCH_3 \xrightarrow{1) 2,4-DNP} S$$

(v)
$$C_6H_5OH \xrightarrow{Br_2} T$$

(d) තනුක N_aOH සමඟ C_2H_5COCl නි පුනිතියාව සඳහා යාත්තුණය ලියන්න.

S

පහද විද්යාලය. කොළඹ 18 දෙකාවද් විද්යාලය කොළඹ 10 නොමේ විද්යාලය කොළඹ 10 Amunda College, Colombo 10 Amund

රසායන විදුනාව Chemistry

අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගය,

අවසාන වාර පරීක්ෂණය

1

2020 සැප්තැම්බර්

2020 ඔක්තෝබර්

13 ලේකුණිය

Revision -2020

කොටස - රචනා

පුශ්න **දෙකකට පමණක්** පිළිතුරු සපයන්න.

Exam Training Test (ETT) - 41 විතාග පුහුණු පරික

(a) පරිමාව $2.0~{
m dm}^3$ වන දෘඩ භාජනයක් තුළ A_2 හා B_2 හී සමාන මවුල සංඛxාව බැගින් $240.5~{
m K}$ උෂ්ණත්වයක පවතී. මෙම භාජනය තුළට AB වායුවෙහි මවුල $0.2~{
m m}$ ඇතුල් කළ විට ආරම්භයේ දී භාජනය පිහිතය $5\times10^5~{
m Pa}$ විය. ඉන්පසු එම භාජනය එම උෂ්ණත්වයේ දී පහත සමතුලිතකාවයට Pa විය. ඉන්පසු එම භාජනය එම උෂ්ණන්වයේ දී පහත සමතුලිකකාවයට

එළඹීමට ඉඩහරින ලදී. (මෙම සමතුලිකය සඳහා $\mathrm{K}_\mathrm{p} = 1.6 \times 10^{-1}, \, \mathrm{RT} = 2000 \, \mathrm{J \, mol}^{-1})$

 $2 AB_{(g)} \rightleftharpoons A_{2(g)} + B_{2(g)}$

- \odot පද්ධතියට AB වායුව එකතු කළ පසු පද්ධතිය සමතුලිනයට එළඹීම සඳහා කුමන දිශාවට පුතිකියාව වැඩිපුර සිදුවේදැයි ගණනය කිරීමක් මඟින් පෙන්වන්න.
- 3 මෙම පද්ධතිය ඉහත උෂ්ණත්වයේ දී සමතුලිතව පවතින විට එක් එක් වායුවේ ආංශික පීඩනය ගණනය
- 9 වූ තාපය $5484~{
 m KJ}$ විය. මෙම උෂ්ණත්වයෙහි ${
 m CO}$ තා ${
 m CO}_2$ වායු මිශුණයක් ලැබුණි. රසායනික දත්ත භාවිතයෙන් පහත ඒවා ගණනය කරන්න. $\mathrm{C}_2\mathrm{H}_4$ වායුව 5 mol ක් සෙමින් ඔක්සිජන් පරිමාවක් තුළ දහනය කළ විට සම්මත තත්ත්ව යටලත් පිට දී ඇති තාප

ΔS JK ⁻¹ mol ⁻¹	ΔH _f KJ mol ⁻¹				
68	54	$C_2H_4(g)$			
198	-110	$CO_{(g)}$			
214	- 394	CO _{2(g)}			
70	-285	$\mathrm{H}_{2}\mathrm{O}_{(\ell)}$			
200	0	O _{2(g)}			

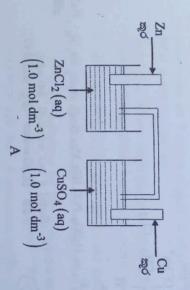
- 39 මෙම අසම්පූර්ණ දහනයේ දී සැදෙන ${
 m CO}_2$ වා මුල ගණන සොයන්න. මෙම දහනය $27^{
 m o}$ ල උෂ්ණත්වයේ දී ස්වියංසිද්ධ වන බව සුදුසු ගණනය කිරීමක් මඟින් පෙන්වන්න.
- (H) ඉහත දහනයෙන් ලැබෙන වායු ම්ශුණය නැවත පූර්ණ දහනයට ලක්කිරීමෙන් ලබාගත හැකි තාප පුමාණය, ඉහත ලැබෙන තාප පුමාණයෙහි පුතිශතයක් ලෙස දක්වන්න.
- (c) (i) අාංශික පීඩන නියමය ඇසුරෙන් ගොඩනගන්න. වාෂ්ප පීඩන පිළිවෙළින් ${
 m P}_{
 m L}^{
 m c}$ න ${
 m P}_{
 m M}^{
 m c}$ වේ. L හා M දුව දෙක පරිපූර්ණ දුාවණ මිශුණයක් සාදයි. 298 K උෂ්ණත්වයේ දී L හා M හී සංකෘප්ත නී මවුල භාගය (YL) සඳහා පුකාශනයක් P_L^0 හා P_M^0 මඟින් රවුල් නියමය සහ ඩෝල්ටන්ගේ L හා M නී සම මවුල දාවණයක වාෂ්ප කලාපයේ L
- Œ $298~{
 m K}$ උෂ්ණත්වයේ දී ${
 m L}$ හී සංකෘප්ත වාෂ්ප පීඩනය $80~{
 m kPa}$ හා ${
 m M}$ හී සංකෘප්ත වාෂ්ප පීඩනය $60~{
 m kPa}$ වේ. ${
 m L}$ හා ${
 m M}$ හී යම් දාවණ මිශුණයක් සමඟ සමතුලිනව පවත්නා වාෂ්ප කලාපයේ ${
 m L}$ දී මවුල භාගය 0.2 වේ. L හා M හි යම් දාවණ මිශුණයක් සමඟ සමතුලිකව පවත්තා වාෂ්ප 1.2 වේ. මෙම උෂ්ණත්වයේ දී පද්ධතියේ සම්පූර්ණ වාෂ්ප පීඩතය ග

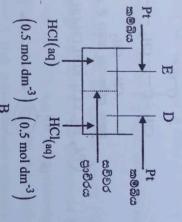
- 0 (a) 3 ස්වාරක්ෂක දුාවණයක් යනු කුමක් ද ?
- Ξ දුබල අම්ලයක් වන HA සහ එහි සෝඩියම් ලවණය වන NaA මඟින් සැදුණු ස්වාරක්ෂක දාවණයක් සඳහා $pH = pKa + log_{10}$ (සංයුග්මක සම්මය) (අම්ලය) යන සම්බන්ධතාව වනුත්පන්න
- 9 25°C මඟින් අනුමාපනය කරනු ලැබේ. මෙම අනුමාපනයේ දී පහත ලක්ෂවල කරන්න. දී $0.1~{
 m mol~dm^{-3}~NH_3}$ ජලීය දාවණයකින් $25.00~{
 m cm^3}$ ගෙන $0.1~{
 m mol~dm^{-3}~HCl}$ දාවණයක් $25^{\circ}\text{C} \ ^{\circ}\text{K}_{b(NH_3)} = 1.8 \times 10^{-5} \text{ mol dm}^{-3}, \text{Kw} = 1 \times 10^{-4} \text{ mol}^2 \text{ dm}^{-6}$ දී pH අගයන් ගණනය
- 3 අනුමාපනයට පෙර NH3 දාවණයේ,
- 3 සමකතා ලක්ෂයේ දී,
- E HCI, 15.00 cm³ ක් එකතු කළ අවස්ථාවේ දී
- ඉහස (iii) හී දුාවණයට HCl 0.01 mol ක් එකතු කළ පසු දුාවණයේ pHඅගය කුමක් ද ? HCI එකතු කිරීමේ දී දුාවණයේ පරිමාව වෙනස් නොවන බව උපකල්පනය කරන්න.
- 0 බියු \otimes රට්ටු පාඨාංකය $10.00~{
 m cm}^3$ ක් විය. කාබනික ස්ථරය සහ ජලය අතර ${
 m NH}_3$ හී වසාප්ති දුාවකයේ සහ ජලය තුළ එකම අණුක ආකාරයට වාහජන වේ. ස්ථර වෙන් වූ පසු ජලීය ස්ථරයෙන් $100.00~{
 m cm}^3$ ක් සමඟ නොඳින් සොලවන ස්ථර එකිනෙක වෙන්වීමට තබන ලදී. $2~{
 m mol~dm^{-3}~NH_3}$ ජලීය දාවණයකින් $100.00~{
 m cm^3}$ ක් ගෙන ජලය සමඟ අමිශු කාබනික දාවකයකින් සංගුණකය ගණතය කරත්ත. $25.00~{
 m cm}^3$ ක් ගෙන, $1~{
 m mol~dm}^{-3}$ HCl දාවණයක් සමඟ අනුමාපනය කරන ලදී. එවීට අන්ත ලක්ෂයේ එවිට NH₃ කාමනික
- (a) අෂ්ටතලීය ජනමිතියක් සහිත නිකල් හී සංගත සංලයාග වේ. යැමේ දී A හා B නම් සංයෝග දෙකක් සාදයි. සංයුතිය නිර්ණය කිරීම සඳහා පහත සඳහන් කුියාපිළිවෙළ භාවිතා කරන ලදී. ${
 m NiCl}_2$ යනු කොළ පැහැති සංයෝගයකි. ${
 m NiCl}_2$ ඝනය ජලයේ දිය කර ජලීය ${
 m NH}_3$ එක් කරගෙන A හා B යනු H2O, NH3 හා CI ලිගන අඩංගු A හා B වෙන්කර ඒවායේ පරමාණුක

A හි විශ්ලේෂණය

තුරු උඳුනක වේලු විට ලැබුණු ස්කන්ධය 3.5875g වේ. \overline{A} හී $0.5~{
m mol~dm}^{-3}$ දාවණයකින් $25.00~{
m cm}^3$ ට වැඩිපුර ජලීය ${
m AgNO}_3$ එක් කළ විට තතුක ජලීය NH₃ නී දාවප සුදු පැහැති අවක්ෂේපයක් ලැබුණි. අවක්ෂේපය සෝදා නියත ස්කන්ධයක් ලැබෙන

ඉතන A දාවණය $25.00~
m cm^3$ ක් වැඩිපුර NaOH දාවණයක් සමඟ රත් කළ විට ලැබුණු ඇමෙග්නියා ස්කත්ධය 0.425 g කි.


B නී විශ්ලේෂණය


දී ලැබුණු සුදු අවක්ෂේපයම ලැබුණි. අවක්ෂේපය සෝආ උදුනක වේලූ විට ලැබුණු නියත ස්කන්ධය 3.5825 දු වේ. ${
m B}$ හී $0.5~{
m mol~dm}^{-3}$ දුංචණයකින් $50.0~{
m cm}^3$ කට වැඩිපුර ජලීය ${
m AgNO}_3$ එක් කළ විට ${
m A}$ හි විශ්ලේෂණයේ

ඉහත B හී දුාවණ $50.0~{
m cm}^3$ ක් වැඩිපුර NaOH දුාවණයක් සමඟ රත් කළ විට ඇමෝනියා 1.275 g ක් ලැබුණි. (සා. ප. ස්. ${
m Ag}=108$, ${
m C1}$ - 35.5, ${
m N}=14$, ${
m H}=1$, ${
m O}=16$)

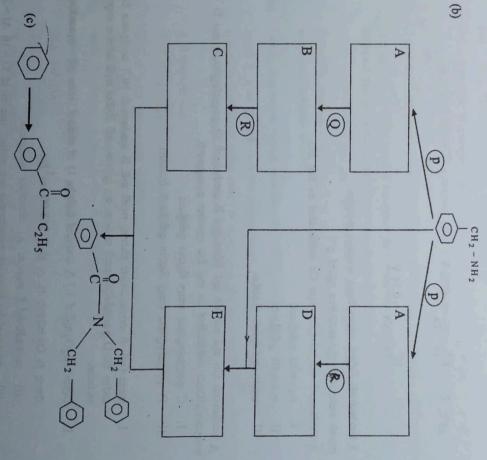
- 9 නී දී Ni නී ඉලෙක්ටොනික විනාහසය ලියන්න
- නී වනුහ අමපාහණය කරන්න
- තී IUPAC තම ලියන්න.

7. (b) 25°C හිදී කියාත්මකවන පහන සඳහන් විද්යුත් රසායනික කෝෂ දෙක සලකන්න.

$$25^{\circ}$$
C & $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$

$$E_{Cu^{2+}/Cu}^{o} = 0.34 \text{ V}$$

- A කෝෂයෙහි විද්ඩුත් ගාමක බලය ගණනය කරන්න.
- 3 3 ලවණ මස්තුවෙහි කියාකාරීත්වය කුමක් ද ?
- 1 A කෝෂයෙහි ඉලෙක්ටුෝඩ දෙක Cu කම්බියකින් යා කළ විට,
- කැතෝඩ
- H. ඇතෝඩ පුතිකුියාව
- III. කෝෂ පුතිකියාව ලියන්න.
- **E** ඉලෙක්ටෝඩයට කම්බියකින් යා කළ විට ලැබෙන සැකසුමෙහි. A කෝෂයෙනි Cu කුර සහ Zn කුර පිළිවෙළින් B කෝෂයෙනි C ඉලෙක්ටුෝඩයට සහ D
- C ඉලෙක්ටෝඩය අසල සිදුවන පුකිකියාව
- H. D ඉලෙක්ටෝඩය අසල සිදුවන පුනිකුියාව ලියන්ත.
- 3 ඉහත (iv) හී ගලන ධාරාව නියතව පවති නම් B ඉකා්ෂයෙහි HCl සාන්දුණය වැඩි කරන විට D ඉලෙක්ටුෝඩයෙහි සැදෙන එල පුමාණයෙහි සිදුවිය හැකි වෙනස සඳහන් කරන්න.
- II. විලින $\mathrm{Al}_2\mathrm{O}_3$ තුළින් $3.7\,\mathrm{A}$ ධාරාවක් මිනිත්තු 13 ක් තිස්සේ යවන ලදී. ඇනෝඩයේ එකතු වූ ${
 m O}_2$ පරිමාව ස. උ. පී. දී $168.00~{
 m cm}^3$ විය.
- 9 කැතෝඩගේ දී සැදෙන Al ස්කන්ධය සොයන්න.
- ඉලෙක්වෝන මඩුලයක ආරෝපණය සොයන්න. (සා. ප. ස්. m O=16~Al=27)
- ඉහත දී යැවූ විද්යුත් පුමාණයම M නම් ලෝහයේ (සා. ප. ස්. 137.3) විලීන කැටායනය මත පවතින ආරෝපණය සොය ්ලෙග්රයිඩය තුළින් යැවූ විට M සි 1.373 g ක් ලබාගත හැකි විය. ප සොයන්න.


13 -

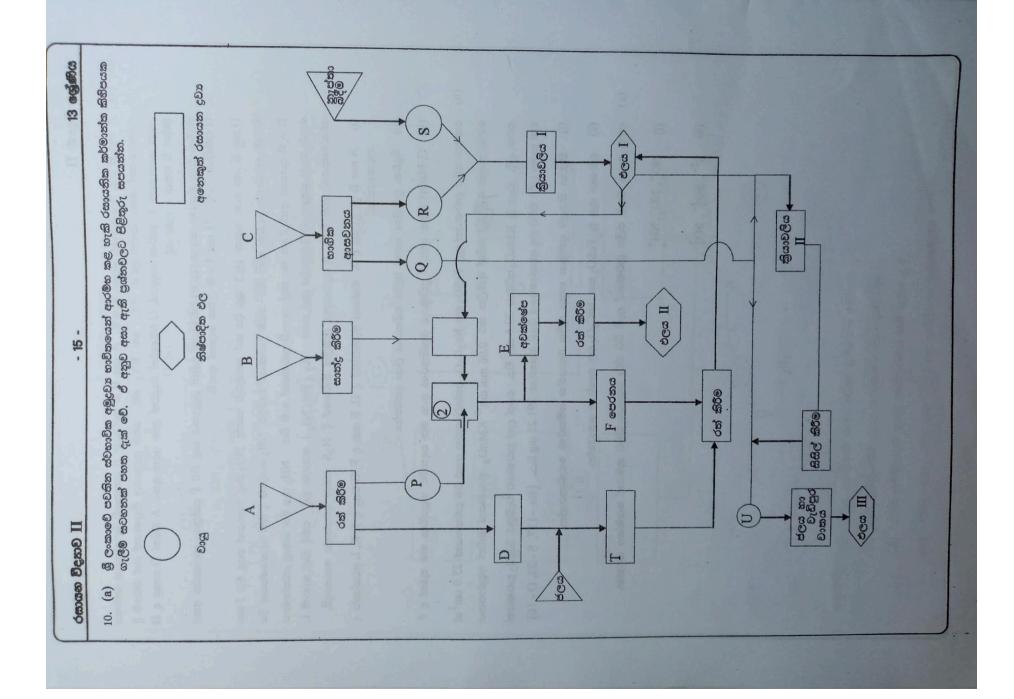
C කොටස - රචනා

(a) 9 කරන්න. (පියවර 9 කට නොවැඩ්) එකම කාබනික සංයෝගය ලෙස $\mathrm{C_2H_2}$ භාවිතා කරමින් පහත සංයෝගය සංස්ලේෂණය

(Pd, Bz, CC14, KOH, CH3OH, Hg²⁺, s. H2SO4, PCC, HBr, Mg, Sag ost, Na, H2, Baso, න්මියන්මන්)

CH = CH₂ (පියවර 5 කට තොවැඩි, **වන ලෙස** ර ලෙකු ප්රිවේර නාකය කිළු කරක්න.

- 9 ඉහත පුනිකිුයාව සඳහා අවශා පුනිකාරක මොනවා ද ?
- (E) එම පුතිකිුිිියාවට අදාළ යාත්තුණය ලියා දක්වත්ත.
- 1 මෙම පුනිකිුයාවට අදාළ යාන්තුණයේ නම කුමක් ද ? OH
- CH3-CH2-OH ex O වල ආම්ලිකතා සන්සන්දනය කරන්න


14 -

(a) A සහ B යනු d ගොනුවේ ලෝහ දෙකකි. ලවන දෙකෙන්ම F අවර්ණ වායුවන්, G වර්ණවන් වායුවන් ලබා දෙන අතර A මඟින් D ඝනය ද B මඟින් E ඝනය ද ලබා දේ. ඇතායනයක් සමඟ සාදන ලවන AX_2 සහ BX₂ වේ. A සහ B නී කැටායන p ගොනුවේ මූලදුවායක ඔක්සො මෙම ලවනවල ම්ශුණයක් රත් කිරීමේ දී

පිටවන වායු මිශුණය නනුක NaOH දාවණයක් තුළින් බුබුලනය කළ විට F පුතිකිුියා නොකරන අතර G පුතිකිුිිිිිිිි වීමෙන් H සහ I නම් ලවන දෙකක් සාදයි.

මෙරා එයට තනුක HCI දමා දිය කර එයට වී A හී අයනක් අන්තර්ගත තද නිල් පැහැති දුංචණයක් ඇති විය. K නම් අවක්ෂේප දෙකක් ඇති විය. මෙම දුංචණයට වැඩිපුර NH_3 යෙදීමෙ දී එක් අවක්ෂේපයක් දිය D සහ E යන ඝන, නනුක HCl තුළ දිය කර අනතුරුව සාන්දු NH₃ බිංදු වශයෙන් යෙදූ වීට J සහ අවක්ෂේපයක් ඇති විය. දීමා දිය කර එයට ${
m K}_3\left[{
m Fe}({
m CN})_6
ight]$ යොදන ලදී. එහිදී නිල් පැහැති ${
m A}$ කැටායනය ආමලික මාධානයේ දී ${
m H}_2{
m S}$ සමඟ අවක්ෂේප නොසාදයි. NH3 තුළ දිය තොවූ අවක්ෂේපය එහිදී නිල් පැහැති L

- A සහ B මූලදුවාය ද X ඔක්සො ඇතායනය ද D,E ඝන ද F,G වායු ද J,K,L අවක්ෂේප ද හඳුනාගන්න.
- සිදුවන පුනිකියා සඳහා තුලිත සමීකරණ ලියා දක්වන්න.
- G, NaOH සමඟ දක්වන පුතිකියාව ඔක්සිකරණ අංක මත පදනමව හඳුන්වන නම කුමක් ද ?
- 9 එක් කරන ලදී. එවිට ලද අවක්ෂේපයේ වියළි ස්කන්ධය $291.25~\mathrm{mg}$ විය. $\mathrm{(Ba-137,\ S-32,\ O-16)}$ කරන ලදී. වැය වූ $\mathrm{KMnO_4}$ පරිමාව $22.5~\mathrm{cm}^3$ විය. එක්තරා ජලීය දාවණයක් තුළ ${
 m FeSO_3}$ සහ ${
 m Na_2C_2O_4}$ අන්තර්ගතවන අතර එම දාවනලයන් ${
 m 25.0~cm}^3$ ක් ගෙන තනුක **අවැට**රු මඟින් ආමලික කර 0.06 mol dm⁻³ KMnO₄ දාවණයක් මඟින් අනුමාපනය එමස් ලක් දාවණයට වැඩිපුර BaCl₂ දාවණයක්
- සිදුවන සියලුම පුනිකියා සඳහා කුලිත රසායනික සමීකරණ ගොඩනගන්න.
- (ii) දාවණය තුළ වූ FeSO3 සහ NiC2O4වල සාත්දුණ මසායන්ත
- 0 පහත අයන එකම ජලීය දුාවණයේ ඇති විට ඒවා හඳුනාගැනීමට කුමයන් යෝජනා කරන්න
- (i) NO₂, NO₃, NH⁺
- (ii) S^{2-} , SO_3^{2-} , SO_4^{2-} ,

- (i) ආරමභක දුවා A, B, C නිකෝණ තුළ ලියන්න.
- D, E, F සහ P, Q, R, S, T, U වලට අදාළ දුවාවල රසායනික සුතු ලියන්න. (3)
- (iii) I, II හා III යන එලයන්ට අදාළ රසායනික සුනු ලියන්න.
- කියාවලිය I සහ කියාවලිය II හිදී අදාළ නිෂ්පාදිතයට ගැළපෙන පුතිකියා තත්ත්ව සහ උත්පේරක ඇත්තම් ඒවා ද සඳහන් කරන්න. (iv)
- ඖෂධ හා දන්තාලේප සුදු වර්ණය ලබාදීම පිණිස භාවිතා කරනු ලබන ${
 m TiO}_2$ ඇතැම් සූර් ${
 m tion}$ කෝෂ නිෂ්පාදනයට ද යොදාගනු ලබයි. TiO2 සතුව ඉහළ වර්තානාංකයක් පැවතීම ද එය වර්ණකයක් ලෙස යොදාගැනීමට හේකු වේ.. පහත සඳහන් ගැටලුව ටයිටේනියම් ඩයොක්සයිඩ් නිෂ්පාදන කියාවලිය හා 9
- Mg නිස්සාරණයේ දී ලබාදෙන අතුරුඵලය රුවයිල් සමඟ කියාකරවීමෙන් ඉහළ සංශුද්ධතාවයකින් එම නිෂ්පාදන කියාවලිය හඳුන්වන නම කුමක් ද ? යුතු TiO₂ නිපදවිය හැකිය.
- එම කිුිිියාවලියේ පුධාන පියවර දෙක නම් කර එම පියවරයන්හීදි සිදුවන පුධාන රසායනික පුතිකියා සඳහා කුලික සමීකරණ ලියන්න. (3)
- ඉහත කුමයට TiO₂ ලබාගැනීමේ දී ඇතිවන වාසියක් සඳහන් කරන්න. (III)
- (iv) ඉහත කුමයේ දී පරිසරයට සිදුවන අතිතකර බලපෑම කුමක් ද ?
- (c) පහත දී ඇති සංයෝග සලකන්න.

 N_2 , NO, CFCI₃, HCFC 22, CH₃ (CH₂)_n CH₃

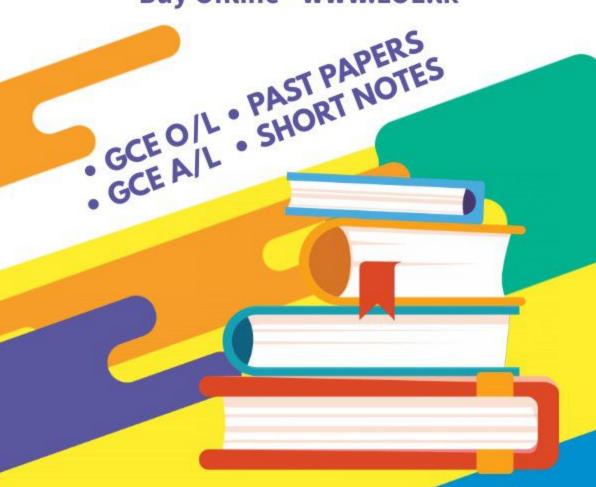
(n=1804)

මේවා අතුරෙන්,

- (i) ඉගා්ලීය උණුසුමකරණය,
- (ii) ඕසෝන් ස්ථරය කුෂය වීම,
- (iii) පුකාශ රසායනික ධුම්කාව

සඳහා දායක වන සංයෝග හඳුනාගන්න.

r																		
	1														2			
1	H		ආවර්තිතා වගුව H														He	
	3	4													7	8	9	10
2	Li	Be												C	N	0	F	Ne
	11	12	13 14 15													16	17	18
3	Na	Mg												Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut			18 19		


-101-

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500 \$

More than 1000+ Papers For all major Subjects and mediums (24)

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

රු **350.00**

ADD TO CART

GCE O/L EXAM, MATHEMATICS

O/L Mathematics Past Paper Book

රු 350.00

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL...

O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

GCE O/L EXAM, HISTORY

රු 350.00

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძე 350.00