

නාලන්දා විදුසාලය - කොළඹ 10 NALANDA COLLEGE - COLOMBO 10

අධ්නයන පොදු සහතික පතු උසස් පෙළ විභාගය 2019 දෙවන වාර පරික්ෂණය - 2019 මාර්තු රසායන විදුනුව - I

13 ශේුණිය

කාලය : පැය 02 යි

සැලකිය යුතුයි :

- 🟶 මෙම පුශ්න පතුය පිටු 10 කින් යුක්ත වේ.
- # සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- 🗯 උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම ලියන්න.
- 🏶 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් ද සැලකිලිමත් ව කියවන්න.
- 🗯 මෙම පුශ්න පතුය සඳහා පිළිතුරු ඔබට සපයා ඇති කොටු කඩදාසියේ නිවැරදිව සලකුණු කරන්න. බහු පිළිතුරු සඳහා ලකුණු පුදානය කරනු නොලැබේ.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

සාර්වතු වායු නියතය, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ ඇවගාඩ්රෝ නියකය, $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$ ප්ලාන්ක් නියකය, $h = 6.624 \times 10^{-34} Js$

ආලෝකයේ පුවේගය, $C=3 \times 10^8 \text{ms}^{-1}$

- 01. පහත අයන අතුරින් සම ඉලෙක්ටුෝනික අයන ඇතුළත් කාණ්ඩය වනුයේ,
 - (1) Ag⁺, Cd⁺

- (2) Ga^{3+} , As^{3+}
- V^{5+} , K^{+} (3)

- Ti³⁺, Ca²⁺ (4)
- Zn^{2+} , Cu^{2+} (5)
- පහත පුභේදවල මධා පරමාණුවේ ඔක්සිකරණය අංක හා මුහුම්කරණය සමාන යුගලය වනුයේ,
 - XeOF₄, S₂OF₄ (1)
- (2) N_2H_4 , $NOCl_2$
- (3) ClO_3^- , SO_2Cl^-

NF₃, HN₃ (4)

- (5) F_2O , NO_2
- $\mathrm{CH_2NO_2^-}$ අයනය සම්බන්ධයෙන් පහත කුමන වගන්තිය අසතාවේද?
 - ${f C}$ හා ${f N}$ පරමාණුවල මුහුම්කරණය ${f sp}^2$ වේ. (1)
 - (2) මුළු එකසර යුගල ගණන 🗲 කි.
 - මුළු σ බන්ධන ගණන 5 කි.
 - (4) C පරමාණුව වටා හැඩය චතුස්තලීය වේ.
 - සංයුජතා කවච මුළු ඉලෙක්ටුෝන සංඛ්යාව 24 කි.
- පහත සංයෝගයේ IUPAC නාමය නිවැරදිව දැක්වෙනුයේ, 04

- 3-amino-5-ethyl-2-hydroxy-4-methylhex-4-enal (1)
- (2)3-amino-2-hydroxy-4,5-dimethylhept-4-enal
- (3) 2-hydroxy-4,5-dimethyl-1-oxo-hept-4-en-3-amine
- 3-amino-4,5-dimethyl-1-oxohept-4-enol (4)
- (5) 3-amino-5-ethyl-4-methyl-1-oxohex-4-enol

05. පහත පුකාශ අතුරින් අෂනා පුකාශ වනුයේ,

- (1) ජලයේ කශීනත්වයට හේතුවන ලෝහ කැටායන Ca^{2+} සහ Mg^{2+} වෙයි.
- (2) ජලයේ උෂ්ණත්වය ඉහළයන්ම දුවින ඔක්සිජන් සාන්දණය අඩුවේ.
- (3) ජලයේ සන්නායකතාව, අයනවල සාන්දුණය, අයනවල සවලතාව ඔක්සිකරණ අවස්ථාව යන සාධක මත පමණක් රඳා පවතී.
- (4) ක්ෂුදුජීවීන් විසින් සිදුකරන, කාබනික දුවාවල ඔක්සිකරණ සඳහා අවශා ඔක්සිජන් පුමාණය ජෛව රසායනික ඔක්සිජන් ඉල්ලුම (BOD) නම් වේ.
- (5) ජලය පිරිසිදු කිරීමේ කි්යාවලිය සඳහා $\mathrm{Al}_{(\mathrm{eq})}^{3+}$ යොද ගතහැක.
- 06. පහත කුමන සංයෝග AgNO_{3(aq)} දාවණයක් සහ ත. NH_{3(aq)} දාවණයක් සමග පුතිකිුයාවෙන් තිරීක්ෂණයක් ලබාදෙනුයේ,

(1) A සහ B පමණි.

(2) B සහ D පමණි.

(3) A com C colo.

(4) A, C com D co€.

- (5) ඉහත සියල්ලම.
- 07. 25°C දී පහත පුතිකිුයා සලකන්න.

$$N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{(g)}$$
; $\Delta H = +180.0 \text{ kJ mol}^{-1}$

$$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$$
; $\Delta H = -92.0 \text{ kJ mol}^{-1}$

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(g)}$$
; $\Delta H = -484.0 \text{ kJ mol}^{-1}$

පහත දී ඇති සමීකරණය සම්බන්ධයෙන් කුමන වගන්තිය අසතාවේද?

$$4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(g)}$$

- (1) පුතිකුියාවේ සම්මත එන්නැල්පි විපර්යාසය –908 kJ mol^{–1} වේ.
- (2) පුතිකිුිිියාව අවසානයේ එන්ටොපිය වැඩිවේ.
- (3) ඕනෑම උෂ්ණත්වයක් සඳහා පුතිකියාව ස්වයංසිද්ධ වේ.
- (4) $NH_{3(g)}$ හි සම්මත දහන එන්තැල්පිය $-227~{
 m kJ~mol}^{-1}$ ${\it o}$ වේ.
- (5) පුතිකිුිිියාව තාපඅවශෝෂක වන අතර උෂ්ණත්වයත් සමග එන්තැල්පි වෙනස වැඩිවේ.
- 08. $A + 2B \longrightarrow AB_2$ යන උපකල්පිත පුතිකිුිිිිිිිිිිිිිි සඳහා සීඝුතාව පිළිබඳ පරීක්ෂණ ශ්‍රේණිිිිිිිිිිිි සිිිිි සාන්දුණය තියතව තබාගෙන A හි සාන්දුණය දෙගුණ කළවිට පුතිකිුිිිිිිිිි සිිිිි සත්දුණය නියතව තබාගෙන B හි සාන්දුණය දෙගුණයක් කළවිට පුතිකිුිිිිිිිිි සිිිිිිි සත් ගුණයකින් වැඩිවිය.

ඉහත පුතිකියාව සඳහා සීසුතා සමීකරණය වනුයේ,

(1)
$$R = K[A]^2[B]$$

(2)
$$R = K[A][B]$$

(3)
$$R = K[A][B]^2$$

$$(4) R = K[A][B]^4$$

$$(5) R = K[A]^2[B]^2$$

- 09. A නම් අවර්ණ ජලීය දුාවණය තුළ X සහ Y යනුවෙන් අයන වර්ග දෙකක් අඩංගු වේ. A දුාවණයට තනුක අම්ල දුාවණයක් එක්කළ විට ගන්ධයක් සහිත දුඹුරු පැහැති වායුවක් පිටවිය. Pb(CH₃COO)₂ දුාවණය සමග අයන දුාවණය පරීක්ෂා කළවිට සාන්ද NH₃ තුළ අදුාවා සුදු පැහැති අවක්ෂේපයක් ලැබුණි. X සහ Y අයන විය හැක්කේ,
 - (1) $Br^- \cos SO_3^{2-}$

(2) $NO_2^- \cos S_2O_3^{2-}$

(3) $NO_2^- \cos SO_4^{2-}$

- 10. Sodium percarbonate $(NO_2CO_3)_x$. $y (H_2O_2)$, යනු ඔක්සිකාරකයකි. $0.1 \, \text{mol dm}^{-3}$ වූ Sodium percarbonate $10.0 \, \text{cm}^3$ ක් කාමර උෂ්ණත්ව පීඩන තත්ත්ව යටතේ ආම්ලීකරණයේදී $CO_{2(g)}$ වායු $48.0 \, \text{cm}^3$ ක පරිමාවක් මුදාහරී. $10.0 \, \text{cm}^3$ ක තවත් සාම්පලයක් සාන්දණය $0.05 \, \text{mol dm}^{-3}$ වූ $KMnO_4$ සමග අනුමාපනයේදී $24.0 \, \text{cm}^3$ ක් පුථමයෙන් ම ලා රෝස පැහැයක් දක්නට ලැබෙන මොහොතේදී වැයවිය. x:y අතර අනුපාතය වනුයේ.
 - (1) 1:3
- (2) 2:3
- (3) 1:6
- (4) 1:2
- (5) 3:4
- 11. ස්පර්ශ කුමයෙන් $m H_2SO_4$ අම්ලය නිෂ්පාදනය සම්බන්ධයෙන් පහත කුමන වගන්**තිය අසතාවේද**?
 - (1) අප වායු මුදාහැරීමක් සිදුනොවේ.
 - (2) පහත් උෂ්ණත්ව, ඉහළ පීඩන හා පුතිකියකවල ඉහළ සාන්දුණ අතාහචශා වේ.
 - (3) උත්පේරකය ලෙස $\frac{1}{2}{
 m O}_{5(s)}$ භාවිතා කරයි.
 - (4) $SO_{3(g)}$ අම්ලයට අවශෝෂණය කිරීමෙන් Oleic (ඔලෙයික්) අම්ලය සාදයි.
 - (5) පුතිකියාව තාපඅවශෝෂක වේ.
- 12. අදාල කාර්මික නිුයාවලියේදී සිදුනොවන පුතිකිුයාව සහිත පිළිතුර හඳුනා ගන්න.
 - (1) යකඩ නිස්සාරණය $CaO_{(s)} + Al_2O_{3(s)} \longrightarrow Ca(AlO_2)_{2(\ell)}$
 - (2) පොස්ෆේට් පොහොර නිෂ්පාදනය $CaCl_{2(s)} + (NH_4)_2SO_{4(g)} \longrightarrow CaSO_{4(s)} + 2NH_4Cl$
 - (3) මස්වල්ඩ් කියාවලිය $2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$
 - (4) හේබර් කිුයාවලිය $2CH_{4(g)} + O_{2(g)} \longrightarrow 2CO_{(g)} + 4H_{2(g)}$
 - (5) ටයිටේනියම් නිස්සාරණය $TiO_{2(s)} + C_{(s)} + Cl_{2(g)} \longrightarrow TiCl_{2(\ell)} + CO_{2(g)}$
- 13. Dopamine නැමති සංයෝගය සම්බන්ධයෙන් කුමන පුකාශය අසකාවේද?

$$HO \longrightarrow CH_2 - CHCO_2H$$

- (1) පුකාශ සමාවයවික යුගලයක් පවතී.
- (2) නනුක බනිජ අම්ල සමග පුනිකිුයා කර ලවණයක් සාදයි.
- (3) NaOH සමග 1 : 3 ස්ටෙයිකියෝමිතික අනුපාතයට පුතිකියා කර ලවණයක් සාදයි.
- (4) $NaNO_2$ / HCI සමග පුතිකියාවෙන් N_2 වායුව ලබාදේ.
- (5) ඉලෙක්ටුොෆිලික ආදේශ හා නියුක්ලියෝෆිලික ආකලන පුතිකියා සිදුකරයි.

14. පහත දක්වා ඇති සමතුලින පද්ධතිය සම්බන්ධයෙන් සතන පුකාශය කුමක්වේද?

$$A_{(g)} + B_{(s)} \rightleftharpoons C_{(g)} + D_{(g)}$$

- (1) ඉහත පද්ධතියේ $K_P=K_C$ වේ.
- (2) $A_{(g)}$ පුමාණය වැඩි කරන විට ඉදිරි පුතිකිුයාව සීසුවී Q_C ද වැඩිවේ.
- (3) B_(s) පුමාණය වැඩි කරන විට ඉදිරි පුතිකිුයාව සීසුවේ.
- (4) $C_{(g)}$ හා $D_{(g)}$ පුමාණය වැඩි කරන විට ආපසු පුතිකිුයාව සීඝු වී Q_{C} අගය වැඩිවේ.
- (5) පද්ධතියේ උෂ්ණත්වය වෙනස් කළද K_P හා K_C අගය වෙනස් නොවේ.
- 15. ද්විභාෂ්මික අම්ලයක $0.4~{
 m g}$ ක සාම්පලයක් සම්පූර්ණයෙන් ම උදාසීන කිරීමට $0.40~{
 m mol\,dm}^{-3}$ වූ ${
 m NaOH}$ දාවණ $8.00~{
 m cm}^3$ ක් අවශා විය. අම්ලයේ සාපේක්ෂ අණුක ස්කන්ධය වනුයේ, $({
 m g~mol}^{-1})$
 - (1) 62.5
- (2) 625
- (3) 250
- (4) 640
- (5) 500
- 16. කාබනික අම්ලයක් හෙක්සේන් තුළ දියවෙනවාට වඩා තෙගුණයක් ජලය තුළ දියවේ. කාබනික අම්ලයක 14.5 g ක් හෙක්සේන් 100 cm³ ක් හා ජලය 100 cm³ ක් සමග මිශුකර සොලවයි. සමතුලිතතාවය එළැඹි විට හෙක්සේන් 50 cm³ ක් තුළ අම්ලය 1.6 g ඇති බව සොයාගත හැකිවිය. ජලය තුළදී අම්ලයේ විසටන පුතිශතය වනුයේ,
 - (1) 15.04 %
- (2) 2.504 %
- (3) 10.40 %

- (4) 12.20 %
- (5) 5.6 %
- $NH_2CN_{(s)} + rac{3}{2}O_{2(g)} \longrightarrow N_{2(g)} + CO_{2(g)} + H_2O_{(\ell)}$ යන පුතිකියාවේ සම්මත එන්නැල්පි විපර්යාසය $-743~{
 m kJ~mol}^{-1}$ වේ.

බන්ධනය	සම්මත බන්ධන විසටන
	එන්තැල්පිය / kJ mol ^{–1}
N-H	+388
0=0	+496
N ≡ N	+945
C=O	+728
O-H	+463
C-N	+276

- $C\equiv N$ ති සම්මත බන්ධන විසටන එන්තැල්පිය වනුයේ, $(kJ \, mol^{-1})$
- (1) 613
- (2) 898
- (3) 960
- (4) 788
- (5) 398
- 18. 27° C දී "R" වායුව අන්තර්ගත දෘඪ බඳුනක් තුළ පීඩනය $1 \times 10^6~\mathrm{Nm}^{-2}$ වේ. මෙය ආලෝකයට නිරාවරණය වීමේදී වියෝජනය වී පහත සමතුලිතතාව ඇතිකර ගනී.

$$2 R_{(g)} \rightleftharpoons 2 S_{(g)} + Q_{(g)}$$

 27° C දී සමතුලිතතාවයට ළඟා වූ විට බඳුනේ පීඩනය $1.2 \times 10^6~\mathrm{Nm}^{-2}$ බව සොයා ගන්නා ලදී. සමතුලිත විට වියෝජනය වූ "R" හි පුතිශතය වන්නේ,

- (1) 70
- (2) 20
- (3) 40
- (4) 60
- (5) 85

19. පහත දී ඇති විදුසුන් රකායනික කෝෂය සලකන්න.

$$M_{(s)} |M_{(sq)}^+| |X_{(sq)}^-| X_{(g)}, E_{(M_{(s)}|M_{(sq)}^+)}^+ = + 0.44 \text{ V} \text{ ass } E_{(X_{(sq)}^-|X_{(g)})}^+ = + 0.33 \text{ V}$$
 easied allowards

පහත කුමන පුකාශය සනාවෙද?

- (2) $E_{cell}^{+} = +0.77 \ V$ සහ $M_{(s)} + X_{(g)} \longrightarrow M_{(aq)}^{+} + X_{(aq)}^{-}$ කෝප පුනිලියාව ස්වයංසිද්ධ වේ.
- (3) $E_{cell}^{+} = +0.11 \ V$ සහ $M_{(s)} + X_{(aq)}^{-} \longrightarrow M_{(aq)}^{+} + X_{(g)}$ පෝෂ පුනිලියාව ස්වයංසිද්ධ වේ.
- (4) $E_{cell}^{\bullet} = -0.11 \ V$ සහ $M_{(s)} + X_{(aq)}^{-} \longrightarrow M_{(aq)}^{+} + X_{(g)}$ කෝප පුතිකියාව ස්වයංසිද්ධ වේ.
- (5) $E_{\rm cell} = +0.77~{
 m V}$ සහ $M_{(s)} + X_{(aq)}^- \longrightarrow M_{(aq)}^+ + X_{(g)}$ කෝප පුතිකිුයාව ස්වයංසිද්ධ වේ.
- 20. සාන්දුණය $0.5 \, \mathrm{mol} \, \mathrm{dm}^{-3}$ වූ ඒකආමලික දුර්වල හන්මයක ($\mathrm{K}_{\mathrm{b}} = 1 \times 10^{-12}$, $25 \, \mathrm{°C}$ දී) $25 \, \mathrm{m}\ell$ ක් දුාවණයක් $0.15 \, \mathrm{mol} \, \mathrm{dm}^{-3}$ වූ HCl අම්ලය සමග $25 \, \mathrm{°C}$ දී අනුමාපනය කරන ලදී. සමකතා ලක්ෂායේදී pH අගය වනුයේ, ($25 \, \mathrm{°C}$ දී $\mathrm{K}_{\mathrm{w}} = 1 \times 10^{-14}$)
 - (1) 3.7
- (2) 2.7
- (3) 8.2
- (4) 12.4
- (5) 8.6
- 21. සංකෘත්ත PbCl₂ දාවණයක් තුළ PbCl_{2(s)} අඩංගු බීකරයක Mg ලෝන පටියක් සහ Pb ලෝන පටියක් ගිල්වා මෙම ලෝන පටි දෙක සන්නායකයක් මගින් සම්බන්ධ කළ විගස දැකිය හැකි නිරීක්ෂණ මොනවාද?

$$Mg_{(aq)}^{2+} + 2e \longrightarrow Mg_{(s)}$$
; $E^{\theta} = -2.38 \text{ V}$
 $Pb_{(aq)}^{2+} + 2e \longrightarrow Pb_{(s)}$; $E^{\theta} = -0.13 \text{ V}$

- (1) Mg තැන්පත් වේ. Pb දියවේ. PbCl_{2(s)} ද දියවේ.
- (2) Mg දියවේ. Pb තැන්පත් වේ. PbCl_{2(s)} දියවේ.
- (3) Mg දියවේ. Pb දියවේ. PbCl_{2(s)} දියවේ.
- (4) Mg දියවේ. Pb දියවේ. PbCl_{4(s)} තැන්පත් වේ.
- (5) දාවණයෙහි Cl සාන්දුණය අඩුවී දාවණය අසංකෘප්ත වේ.
- 22. සංවෘත දෘඪ බඳුනක් තුළ අඩංගු වායු මිශුණයක $CO_{(g)}$, $CH_{4(g)}$ සහ $He_{(g)}$ අන්තර්ගත වන අතර මිශුණයේ පරිමාව $20~{
 m cm}^3$ විය. වැඩිපුරු $O_{2(g)}$ ඇතිවිට බඳුන තුළ ඇතිවන ස්ඓට්ටනයකට පසුව කාමර උෂ්ණත්වයේදී මිශුණයේ පරිමාව $13.0~{
 m cm}^3$ විය. ඉතිරි වූ වායු මිශුණය NaOH දාවණයක් තුළින් යැවූවිට පරිමාව $14.0~{
 m cm}^3$ නේ අඩුවිය. ආරම්භක මිශුණය තුළ CO, CH_4 සහ He වායුවල පරිමා පුතිගත පිළිවෙලින්.
 - (1) 50, 10, 40 (2) 30, 40, 30 (3) 50, 20, 30 (4) 30, 60, 10 (5) 50, 10, 40
- 23. NaOH දුාවණයක් භාවිතයෙන් පහත කුමන යුගලය වෙන්කර හඳුනා ගත හැකිද?

$$CH_3 - C = C - H \cos CH_3 - C - CH_3$$

(5) C₂H₅OH ww CH₃ - C - OH

Grade 13 - Chemistry I - 2019 March

24.	ජලීය Fe ₂ (SO ₄) ₃ දාවණයක 50 cm ³ පරිමාවක් අකිය ඉලෙක්වෝඩ දෙකක් යොදා විද <mark>ුවුන් විච්ඡේදනය ක</mark> ර	න
	ලදී. විදුසුත් විච්ඡේදනයේදී යොදාගත් ධාරාව $1 \mathrm{mA}$ වන අතර සියලුම $\mathrm{Fe^{3+}}$ අයන $\mathrm{Fe_{(5)}}$ ලෙස කැතෝඩ	ක්දී
	තැන්පත් වීම සඳහා තත්පර 9.65 ක් ගතවිය. දාවණයෙහි තිබූ $\mathrm{Fe}_{(\mathrm{aq})}^{3+}$, සාන්දුණය කුමක්වේද?	
	$(1E - 0.6500 \text{ amol}^{-1})$	4

(1) $1 \times 10^{-5} \text{mol dm}^{-3}$

(2) $5 \times 10^{-5} \text{mol dm}^{-3}$

(3) $1 \times 10^{-4} \text{mol dm}^{-3}$

(4) $2 \times 10^{-4} \text{mol dm}^{-3}$

- (5) $3 \times 10^{-4} \text{mol dm}^{-3}$
- 25. C₃H₇Br සංයෝගය පහත පුතිකිුයා අනුකුමය සිදුකරයි.

$$C_3H_7Br \xrightarrow{KOH_{(aq)}} X \xrightarrow{PCC} Y \xrightarrow{i)} C_2H_5MgBr \xrightarrow{dry \ ether} Z$$

X, Y සහ Z යන සංයෝග විය යුත්තේ,

	<u>X</u>	<u>Y</u>	<u>Z</u>
(1)	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CO ₂ H	CH ₃ CH ₂ CHO
(2)	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH(OH)CH ₂ OH	CH ₃ C(OH)(C ₂ H ₅)CH ₃
(3)	CH₃CH₂CH₂OH	CH ₃ CH ₂ CHO	CH ₃ CH ₂ CH(C ₂ H ₅)OH
(4)	CH ₃ CH(OH)CH ₃	CH ₃ COCH ₃	CH ₃ CO ₂ H
(5)	CH ₃ CH(OH)CH ₃	CH ₃ CH ₂ CHO	CH ₃ CH ₂ CH(C ₂ H ₅)OH

26. L නැමති සංයෝගයක් LiAlH₄ සමග පුතිකිුිිියා කරවා ජලව්ච්ඡේදන්ගෙන් M සංයෝගය ලබාදේ. M CH₃COCl නිර්ධුැවීය දාවණයක් ඇතිවිට උණුසුම් කළවිට N නැමති සංයෝගය ලබාදේ. L හි වනුහය පහත දක්වා ඇත.

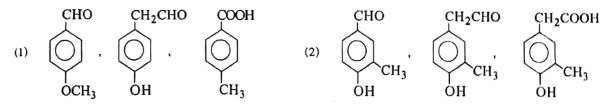
$$\begin{array}{c} H_2N-C=0 \\ O \\ CI \\ CH_3 \end{array}$$

N සංයෝගයේ වසුහය වනුයේ,

$$\begin{array}{c} CH_2NH-C-CH_3 \\ CH_2NH-C-CH_3 \\ CH_2OH \\ CH_3 \\ CH_3 \\ CH_2OH \\ CH_2$$

$$CH_2 - N - C - CH$$

$$CH_2OH$$


$$COOH$$

$$CH_2 - NH - C - CH_3$$

$$CH_2 - CH_2 - C - CH_5$$

$$COOH$$

- 27. $C_8H_8O_2$ යන අණුක සූහුය ඇති A,B සහ C යන para ආදේශිත ඇරෝමැටික සමාවයවික සංයෝග තුන හඳුනා ගැනීම සඳහා පහත පරිදි පරීක්ෂණ සිදුකරන ලදී.
 - I. A සහ B ටොලන්ස් පුතිකාරකය සමග රිදී කැඩපත ලබාදෙන අතර B සංයෝගය $0-5\,^{\circ}\mathrm{C}$ දී $NaNO_2$ / HCl සමග රතු පැහැති අවක්ෂේපයක් ලබාදේ.
 - II. C සංයෝගය ජලීය NaHCO3 සමග ක්ෂණිකව පුතිකියා කරයි.
 - A, B සහ C සංයෝග පිළිවෙලින් වනුයේ,

CHO
$$CH_2CHO$$
 CH_2COOH CH_2COOH CH_3 CCH_3 CCH_3 CCH_3 CH_3 $CH_$

- 28. පුෝටෝනයක් (Proton) ආලෝකයේ පුවේගය මෙන් 50% ක වේගයකින් යුතුව චලනය වේ. පුෝටෝනයේ ස්කන්ධය $1.673 \times 10^{-27} \mathrm{kg}$ නම් ඩිබොග්ලි තරංග ආයාමය වනුයේ,
 - (1) $2.64 \times 10^{-15} \text{ nm}$

(2) $5.28 \times 10^{15} \text{ nm}$

(3) $1.32 \times 10^{-8} \text{ nm}$

(4) $5.28 \times 10^{-8} \text{ nm}$

- (5) $2.92 \times 10^{-16} \text{ nm}$
- 29. x සහ y යන දුාවක දෙක එකිනෙක මිශු වීමෙන් පරිපූර්ණ දුාවණයක් සාදයි. x හි $1 \, \text{mol}$ ක් ද y හි $3 \, \text{mol}$ ක් ද අඩංගු වන දුාවණයේ $300 \, \text{K}$ දී වාෂ්ප පීඩනය $3.0 \times 10^5 \, \text{Pa}$ වේ. එම උෂ්ණත්වයේදී y හි $1 \, \text{mol}$ ක් දුාවණයට එක්කළ විට දුාවණයේ වාෂ්ප පීඩනය $1.0 \times 10^5 \, \text{Pa}$ වලින් වැඩිවිය. x හා y හි සංශුද්ධ අවස්ථාවේදී වාෂ්ප පීඩන පිළිවෙලින් වනුයේ,
 - (1) $2.2 \times 10^5 \text{ Pa} \implies 3.3 \times 10^5 \text{ Pa}$
 - (2) $7.8 \times 10^5 \text{ Pa} \implies 1.3 \times 10^5 \text{ Pa}$
 - (3) $3.3 \times 10^5 \text{ Pa} \mod 4.3 \times 10^5 \text{ Pa}$
 - (4) $4.6 \times 10^5 \text{ Pa} \implies 6.2 \times 10^5 \text{ Pa}$
 - (5) $5.6 \times 10^5 \text{ Pa} \iff 6.2 \times 10^5 \text{ Pa}$

30. ethylbromide හි නියුක්ලියෝෆිලික ආදේශ පුතිකියාවල පුතිකියා යාන්තුණ අතුරින් දෝෂ සහිත යාන්තුණය ඇත්තේ,

(1)
$$\begin{array}{c} \bigoplus \\ |\delta^{+} \delta^{-} \\ |\delta^{+} \delta^{-} \\ |H \end{array} \longrightarrow \begin{array}{c} H \\ |CH_{3} - C - CN \\ |H \end{array} \longrightarrow \begin{array}{c} \bigoplus \\ CH_{3} - C - CN \\ |H \end{array} \longrightarrow \begin{array}{c} \bigoplus \\ |H \\ |H \end{array}$$

$$(2) \qquad \overset{\bigoplus}{OH} \qquad \overset{H}{+} \qquad \overset{H}{+} \qquad \overset{\bigoplus}{H} \qquad \overset{\bigoplus}{H}$$

(3)
$$CH_3 - C \equiv C + CH_3 - C - Br$$

$$H \qquad H \qquad CH_3 - C = C - CH_3 + Br$$

$$H \qquad H$$

(5)
$$CH_3 - NH_2 + CH_3 - C + Br$$

$$CH_3 - CH_2 - NH_2 - CH_3 + Br$$

- අංක 31 සිට අංක 40 තෙක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) හා (d) යන පුතිචාර හතර අතුරින් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදිය. නිවැරදි පුකිචාරය / පුතිචාර කවරේදැයි කෝරාගන්න.
 - (a) හා (b) පමණක් නිවැරදි නම් 1 මතද
 - (b) හා (c) පමණක් නිවැරදි නම් 2 මතද
 - (c) හා (d) පමණක් නිවැරදි නම 3 මතද

වෙනත් පුතිවාර සංඛාාවක් හෝ සංයෝජනයක් හෝ තිවැරදි නම්........ 5 මතද 'X' ලකුණු කරන්න.

උපදෙස් සැකවින්				
(1)	(2)	(3)	(4)	(5)
(a) හා (b) පමණක් නිවැරදිය	(b) හා (c) පමණක් නිවැරදිය	(c) හා (d) පමණක් නිවැරදිය	(a) හා (d) පමණක් තිවැරදිය	වෙනත් කිසියම් පුතිචාරයක් හෝ පුතිචාර සංයෝජනයක් හෝ නිවැරදිය.

- 31. හයිඩුජන් පමාණුව සඳහා බෝර්වාදය සම්බන්ධයෙන් පහත කුමන වගන්ති/වගන්තිය අසකාවේද? -
 - (a) ${f n}=2$ කක්ෂයේ ඇති ඉලෙක්ටුෝනයක වේගය ${f n}=1$ කක්ෂයේ ඇතිවිට දීට වඩා වැඩිය.
 - (b) නාෂ්ටිය වටා ඇති නිශ්චිත කක්ෂවල ඉලෙක්ටෙුා්න චලනය වෙමින් පවතී.
 - (c) ඉලෙක්ටුෝනය ශක්ති මට්ටමකින් තවත් ශක්ති මට්ටමකට සංකුමණය වේ.
 - (d) මෙම සංකුමණ කිුියාවලියේදී ඉලෙක්ටුෝනයේ ශක්තිය ඉවත් වීම ෆෝටෝන ලෙස පිට කරයි.
- 32. Sulphur dioxide අණුව සම්බන්ධයෙන් පහත කුමන පුකාශ/පුකාශය අසතාවේද?
 - (a) SO_2 අණුව කෝණික වන අතර OF_2 හා සමවපුහ වේ.
 - (b) Sulphuric අම්ලයේ නිර්ජලීය ආකාරය SO_2 ය.
 - (c) SO₂ ආම්ලික ඔක්සයිඩයකි.
 - (d) O S O බන්ධන කෝණය බන්ධන කෝණය F O F බන්ධන කෝණයට වඩා කුඩා වේ.

- 33. $2A_{(g)} + B_{(g)} \longrightarrow 2D_{(g)}$ යන පුනිතියාව සඳහා $\Delta \hat{H}_{300K} = -10 \text{ kJ mol}^{-1}$ හා $\Delta \hat{S}_{900K} = -35 \text{ JK}^{-1} \text{ mol}^{-1}$ වේ. මෙම පුනිතියාව.
 - (a) $\Delta \hat{G} = -500 \text{ kJ mol}^{-1}$ වන අතර ස්වයංසිද්ධ වේ.
 - (b) 10°C දී ක්වයංසිද්ධ වේ.
 - (c) සමකුලිකතාවේ පවකි.
 - (d) උෂ්ණත්වයෙන් ක්වායක්ක වේ.
- 34. සංවෘත දෘත් බහුනක් තුළ සිදුවන $A_{(s)}+AB_{2(g)}$ $\Longrightarrow 2AB_{(g)}$ පුණිසුියාව 400% දී හා 600% දී $AB_{(g)}$ ඵල පුණිණය පිළිවෙලින් 70% සහ 8% වේ. පහත වගන්හි අතරින් සහය වගන්හිය වගන්හි මෝගාවලේ
 - (a) පුතිකියාව තාපදායක වේ.
 - (b) පුතිකුියාව තාපඅවශෝෂක වේ.
 - (c) $A_{(s)}$ ඉවත් කිරීම මගින් සමතුලිතතාව පුතිකුියක දෙසට නැඹුරු කළ හැකිය.
 - (d) උෂ්ණත්වය වැඩි කිරීම ඉදිරි පුතිකුියාවට හිතකර වේ.
- පහත සඳහන් ප්‍‍රකාශන අත්රින් ස්‍රක්‍ර ව්‍රක්‍රයේ.
 - (a) පොලිප්මයිඩ, පොලිප්ස්ටර්, ටෙරලින්, ඛේක්ලයිරි යනු සංසණන බහුපවයවික වෙයි.
 - (b) යූරියා-පෝමැල්ඩිහයිඩ්, පොලිස්වයිරින්, වෙල්ලෝන්, පොලිනින් යනු ආකලන බහුඅවයවික වෙයි.
 - (t) පොලිවයිනයිල් ක්ලෝරයිඩ්, මේක්ලයිට්, සැලිඑස්ටර්, වෙල්ලෝන් යනු සංසණන බහුවෙයවික වෙයි.
 - (d) පොලිවයිනයිල් ක්ලෝරයිඩ්, ටෙල්ලෝන්, පොලිස්වයිරින්, ස්වභාවික රටේ යනු ආකලන බහුණෙයවික රෙයි.
- 36. පහත පුකාශ අතරින් නිවැරදි වනුයේ,
 - (a) NaOH නිෂ්පාදකයේදී, අතුරුඵලයක් වශයෙන් Cl₂ ලබාදෙයි.
 - (b) සබන් නිෂ්පාදනයේදී, අතුරුඵලයක් ලෙස "ශ්ලිසරෝල්" ලබාදෙයි.
 - (c) Na₂CO₃ නිෂ්පාදනයේ අතුරුඵලයක් වශයෙන් CO₂ ලබාදෙයි.
 - (d) NH₅ නිෂ්පාදනයේ අතුරුඵලයක් ලෙස යූරියා ලැබෙයි.
- 37. පහත පුතාශ අතුරින් තුමන පුතාශය පුතාශ අසනාවේද?
 - (a) නයිදුොකරණ මිලුණයේ HNO; නම්මයන් ලෙස නියා කරයි.
 - (b) නයිටුාකරණ මිශුණයේ H₂SO₄ උත්පේරකයක් ලෙස කියා කරයි.
 - (c) මෙන්සින් Cl₂ සමග ආකලන පුනිකුියාවට භාජනය වේ.
 - (d) –NHCOR කාණ්ඩය බෙන්සින් නෘෂ්ටිය විකුියකාරකයකි.
- 38. $Ag_2SO_{4(s)}(K_{sp}=1.2\times 10^{-5},\ 25^{\circ}C$ දී) සංකාජන දාවණයකින් $10\ m\ell$ ක් පරිමාව $1.0\ dm^3$ නෙක් හනුන කර ඊට $0.5\times 10^{-2}\ mol\ dm^{-3}\$ වූ $BaCl_{2(aq)}$ දාවණයක් එකතු කරන ලදී.

$$K_{sp}$$
 (BaSO_{4(s)}) = 1.0 × 10⁻¹⁰ so K_{sp} (AgCl_(s)) = 1.6 × 10⁻¹⁰ ss

පහත කුමන පුකාශ/පුකාශය සත්‍රවේද?

- (a) BaSO₄ , AgCl ව පුථමව අවක්ෂේප වේ.
- (b) BaSO₄ සහ AgCl අවක්ෂේප වේ.
- (c) BaSO $_4$ පමණක් අවක්ෂේප වන අතර එවිට $\left[Ag_{(aq)}^+\right]=4.9 \times 10^{-5} \; \mathrm{mol} \; \mathrm{dm}^{-3}$ හෙ
- (d) AgCl අවක්ෂේප වන $\left[\text{Cl}_{(\mathbf{aq})}^{-} \right] = 1 \times 10^{-2} \text{ mol dm}^{-3}$ වේ.

- 39. ඉතා සතුක NaI දුාවණයක් මිතිරත් ඉලෙක්ටෝඩ යොදා ෆිනොප්තලීන් ඇතිවිට විදසුක් විච්ඡේදනය කරන විට සිදුවන කියා සම්බන්ධයෙන් පහස කුමන පුකාශ/පුකාශය සතාවේද?
 - (a) ඇතෝඩය අසල $2H_2O_{(\ell)} \longrightarrow O_{2(g)} + 4e + 4OH_{(aq)}^-$ යන කියාව සිදුවේ.
 - (b) සෑණ ඉලෙක්ටෝඩය අසලින් H₂ වායුව මුක්ත වේ.
 - (c) ඇතෝඩයේදී $l_{2(g)}$ වායුව මුක්ත වන අතර කැනෝඩය අසල රෝස පැහැවේ.
 - (d) කැතෝඩය අසල $2H^+ + 2e \longrightarrow H_2$ කියාව සිදුවේ.
- 40. තනුක NH4OH දුංචණයක් යොදා ගනිමින් හඳුනාගත නොහැකි කැටායන යුගලය වන්නේ,
 - (a) Cr^{3+} , Mn^{2+}

(b) Fe^{3+} , Cu^{2+}

(c) Co^{2+} , Ni^{2+}

(d) Ba^{2+} , Cu^{2+}

41 සිට 50 දක්වා ප්‍ශශ්න සඳහා පිළිතුරු ලකුණු කිරීම සඳහා උපදෙස් සම්පිණ්ඩනය.

අංක 41 සිට 50 තෙක් එක් එක් පුශ්න සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැයි තෝරා උත්තර පතුයෙහි උචිත ලෙස (×) ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුතාශය	දෙවැනි පුකාශය
(1)	සතාවේ.	සතාාවන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි.
(2)	සතාවේ.	සතාාවන නමුත්, පළමුවැනි පුකාශය නිවැරදිව පහදා නොදෙයි.
(3)	සතාවේ.	අසතාායවේ.
(4)	අසතාවේ.	සතාාවේ.
(5)	අසතාවේ.	අසතාායවේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	කාණ්ඩයේ පහළට යනවිට ජලය සමග ක්ෂාර ලෝහවල පුතිකිුිියාශීලීතාව වැඩිවේ.	ලෝහ පරමාණුවේ විශාල <mark>ත්වය වැඩිව</mark> න විට පුබල ලෝහක බන්ධන සැදේ.
42.	ClO ₂ සහ ක්ලෝරො ඇමීන විෂබීජ නාශකයක් ලෙස භාවිතා වේ.	C] බැක්ටීරියා ඔක්සිහරණය කිරීම මගින් විනාශ කරයි.
43.	ඇමයිඩ අම්ල ක්ලෝරයිඩවලට වඩා පුතිකිුයාශීලී වේ.	NH ₂ වැඩි සම්පුයුක්ත ව නුහ සාදමින් ස්ථායීවන නමුත් x ඉතා කුඩා ඉලෙක්ටුෝන විස්ථානගත වීමක් හෝ නැත.
44.	යකඩ ලෝනය සමග Sn ලෝනය ගැටීමට සැලැස්සූ විට යකඩ විබාදනය සීසු වේ.	ඇතෝඩීය ආරක්ෂණයේදී යකඩයෙන් තැනූ භාණ්ඩ මත Sn ලෝහය ආලේප කිරීම සිදුකෙරේ.
45.	$ m Vanadium හි ඔක්සයිඩවල ආම්ලිකතාව \ m VO < VO_2 < V_2O_5 ලෙස විචලනය වේ.$	අන්තරික ලෝහයේ ඔක්සිකරණ අවස්ථාව වැඩිවන විට අන්තරික ලෝහ වඩ වඩාත් ආම්ලික වේ.
46.	${ m XeF}_2$ හා ${ m SCl}_2$ හැඩයෙන් සමාන වේ.	ඉලෙක්ටුෝන ජ ඍමිතිය හා VSEPR යුගල් සමාන වේ.
47.	ගිබ්ස් යෝජන ශක්තිය අවස්ථා ශිුතයක් වේ.	$\Delta G = \Delta H - T \Delta S$ යන සමීකරණය අනුව එය $\Delta H, \Delta T,$ ΔS යන අවස්ථා ශුිත තුන සමගම සංයෝජනය වී ඇත.
48.	ජලය උභයපුෝටික ගුණ පෙන්වයි.	H ₂ O අම්ල සමග මෙන්ම හෂ්ම සමග ද පුතිකිුයා කරයි.
4 9.	සමතුලිත පද්ධතියක සමතුලිතතා නියතය පුතිකිුයකවල ආරම්භක සාන්දුණ මත බල නොපායි	සමතුලිතතාවේදී එක් ඵලයක සාන්දුණය මත රඳා පවතී.
50.	වායුවක විසරණ සීඝුතව වායුවේ ඝනතවය මත රඳා පවතී.	වායු අණුවල වර්ග මධානා මූල පුවේගය අණුවේ ස්කන්ධයට අනුලෝමව සමානුපාතික වේ.

ተ

800 0 88m0 91885. தெடிய கூடிக் III அடிக்கு நெல்கு கைகும் III அடிக்கு நேற்கும். கைகும் III அடிக்கு நடிக்கும் கூறைக்கு நெல்கும் கணக்கு III அடிக்கு நடிக்கும் கணக்கு III அடிக்கும் நடிக்கும் நடிக்கு නාලන්දා විදුපාලය - කොළඹ 10 NALANDA COLLEGE - COLOMBO 10 අධ්‍යයන පොදු සහතික පතු උසස් පෙළ විභාගය 2019 දෙවන වාර පරික්ෂණය - 2019 මාර්තු රසායන විදුනව - II 13 ශේුණිය

02	5	Π	6 9
තාලය	: 870	s 3 &	Б

..... විභාග අංකය : .

උපදෙන් :

- ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- අංක 4 සහ 7 පුශ්නවලට පිළිතුරු සැපයීමේදී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරූපණය කළ හැකිය.

- 🛘 A කොටිස විසුහගත රචනා (පිටු 2 9)
- 🗦 🛱 යියලුම් පුශ්නවලට මෙම පුශ්න පතුයේම පිළිතුරු සපයන්න.
- මබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතුය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
- 🔲 B සහ C කොවස රචනා (පිටු 10 15)
- සියලුම පුශ්නවලට පිළිතුරු සපයන්න.
- ් සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු ${f A},{f B}$ සහ ${f C}$ කොටස්වලට පිළිතුරු, ${f A}$ කොටස මුලින් තිබෙන පරිදි අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- f පුශ්න පතුයෙහි ${f B}$ සහ ${f C}$ කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යා හැකිය.
 - සාර්වතු වායු නියකය, $R = 8.314 \ \mathrm{JK}^{-1} \ \mathrm{mol}^{-1}$
 - ඇවගාඩ්රෝ තියතය, $N_{\rm A}=6.022\times 10^{23}\,{
 m mol}^{-1}$
 - ප්ලාන්ක් නියතය, $h = 6.626 \times 10^{-34} \text{ Js}$

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

(02) රසායන විද <i>ක</i> ව II		
කොටස	පුශ්න අංකය	ତାରି ତକ୍ଷ
	1	
A	2	
"	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
එකතුව	9,	
පුතිශතය		

අරසාන ලක්ණි			
ඉලක්කමෙන්			
අකුරින්			

සංකේත අංක

උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ 1.	
2.	
අධීක්ෂණය	

A කොවස - වසුහගත රචනා

- (a) පහත පුතේද එහි දක්වා ඇති ගුණය අනුව ආරෝහණය වන පිළිවෙලට සකසන්න.
 - (i) : CH₂ , [⊕] CH₂ , ^{②+} CH₂ , CH₂ (C පරමාණුවේ විදවුක් කෘණකාව)
 - (ii) NH₃, PH₃, AsH₃, SbH₃ (බන්ධනවල ධුැව්ය**නාව**ය)
 - (iii) NO₂, NO, NO₂ (N-O බන්ධන දීග)
 - (iv) AlCl₃, AlF₃, NaCl, BeCl₂ (අයනික ලක්ෂණය)
 - (v) CH_3CI , CH_3COOCH_3 , C_4H_{10} , CH_3-O-CH_3 (කාපාංකය)
 - (b) පහත දක්වා ඇත්තේ එක්තරා සංයෝගයක දළ සැකැස්මයි.

(i) එය සඳහා තිබිය හැකි ස්ථායීම ලුවිස් වෘෘුහය ඇඳ දක්වන්න.

(ii) එම වාෘුහය සඳහා තිබිය හැකි සියළුම සම්පුයුක්ත වාුුහ අඳින්න.

101100	, •	 1

ඉහත සංයෝගය සැලකිල්ලට ගෙන පහත වගුව සම්පූර්ණ කරන්න.

	C ₂	C ₃	C ₄	C ₅	C ₆
VSEPR යුගල් ගණන					
හැ ඩය	•				
ඉලෙක්ටෙු්න යුගල ජනාමිතිය					

	(d)	පහස	ා දී ඇති පු	කාශන සතාෳ නම් 🗸 ලකුණ ද, අසතෳ නම් 🗙 ලකුණ ද <i>ල</i> යාදන්න.					
		(i)							
			ශක්තියට වඩා අඩුය. (
		(ii)	රතු ආලෝ	කයේ ෆෝටෝනයක ශක්තිය, නිල් ආලෝකයේ ෆෝටෝනයක ශක්තියට වඩා වැඩි	ය. ()			
		• •	-	ත්ති ද්වීධුැව-පේරීත ද්වීධුැව අන්තර්කියා පවතී.	()			
		(iv)	25°C දී ස	හැම භාපදායක පුතිකිුයාවක් ම ස්වයංසිද්ධ වේ.	()			
		(v)	පදාර්ථවලින	ත් සැදි තරංග සඳහා තරංග ආයාමය $rac{h}{mV}$ මගින් දිය හැක.	()			
2.	(a)	Z_n , M_g හා C_u පමණක් අඩංගු මිශු ලෝහයකින් $3.0\mathrm{g}$ ක ස්කන්ධයක් $0.1\mathrm{moldm^{-3}}$ වූ N_aOH දාවණයක් සමග වැඩිපුර පුතිකියා කරවූ විට ස.උ.පි. හි දී පිට වූ වායු පරිමාව $840\mathrm{cm^3}$ ක් විය. ඉතිරි ශේෂයට HCl අම්ලයෙන් වැඩිපුර පුමාණයක් එක් කරන ලදී. එහි දී ස.උ.පි. හි දී $420\mathrm{cm^3}$ ක පරිමාවක් එකතු විය. (සා.ප.ස්. $Z_n = 65$, $M_g = 24$, $C_u = 63.5$) ස.උ.පි. හි දී වායුවක පරිමාව $22.4\mathrm{dm^3}$ වේ.)							
		(i)	මිශු ලෝහ	ලය් Zn හා Mg වල ස්කන්ධ පුතිශත සොයන්න.					
			***************************************			•••••			
			••••••						
		(ii)	_	ුණු ශේෂයට සාන්දු HNO ₃ අම්ල දාවණයකින් ස්වල්පයක් එක් කළවිට සිදුවන ද ්සිකරණ අංක පමණක් භාවිතයෙන් තුලින රසායනික සමීකරණය ලියන්න.	නි කිය	ාව			
			CIO						
	(b)	A		ා ලේබල් කර ඇති පරීක්ෂණ නලවල පහත සඳහන් දුාවණ අඩංගු වේ. (පිළිවෙලින **** * * ***	් නො	වෙ)			
				KI, AgNO ₃ , Pb(NO ₃) ₂ , NH ₄ NO ₃ , BaCl ₂					
			දුාවණය	විස්තරය					
			A	 C සමග මිශු කළවිට කහ පැහැ අවක්ෂේපයක් ලැබේ. එම අවක්ෂේපය සාන්දු NH₃ තුළ දිය නොවේ. 					
			В	• තනුක $ m H_2SO_4$ අම්ලයෙන් ස්වල්පයක් එක් කළ විට සුදු පැහැ අවක්ෂේපය තව දුරටත් ආම්ලික කළ ද එම අවක්ෂේපය දිය නොවේ.	ක් ලැ	බේ.			
			С	 D සමග මිශු කළවිට කද කහ පැහැ අවක්ෂේපයක් ලැබේ. එය උණු ජලයේ දියවන අතර සිසිල් කරන විට නැවත අවක්ෂේප වේ. 					
			D						
			Е	• රත් කිරීමේදී වායුමය ඵල පමණක් ලබාදේ.	•				

	о A	. සිට B දක්වා දාවණ හඳු	භාගන්ත.					
·		i mananananananananananananananananananan		B:	ni mataoni ilio in mataoni in ilio ilio ilio ilio ilio ilio ili			
		. managamanananananananananananananananana	sometiment of the second of th	D;	минациинальная			
	1	\$\						
((ii)	\ සිට B දක්වා දුවා හඳුප	ා ගැනීමේදී සිදුවන පුති(මුයා සඳහා කුලික	රසායනික පුතිමුයා ලියන්න,			
			annun on ann ann ann ann ann ann ann ann ann					
	•							
	`	mana manana m						
	,				amaning and a state of the stat			
	,							
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
(c)	Xn+	අයක 5,36×10 ⁻³ mol පු	මාණයක් XO₁ බවට පස	ත් කිරීම සඳහා ආර	ම්ලික මාධාජේදී MnO ් අයන			
(-9		$\times 10^{-3}$ mol ක් අවශා විය.		•				

	*******				2000			

			,		*			

3. (a)	X	නම් සංයෝගය HCl සමග	පුතිකුියාවෙන් සුදු පැහැද්	බ අවක්ෂේපයක් ස මෙස්ක්ෂේපයක් ස	ාදයි. මෙම පුතිකියාවේදී X වලට			
	සා	ජෙක්ෂව සහ HCI වලට සා : කඩළාසියක කතිර සළක	ජෙක්ෂව පෙළ සොවමෙ ව ණක් යොදා එය මත බික	ටකාෂණායක වසවාට රය තබා දුාවණා ්	්සහ පුතිඵල පහත දැක්වේ.මෙහිදී එගු කර කතිර ලකුණ නොපෙනී			
		මට ගතවන කාලය මනින						
		1.0 mol dm ⁻³ X çэ ⊘ €	1.0 mol dm ⁻³ HCl	ජලය පරිමාව	කතිර ලකුණ නොපෙනී			
		පරිමාව cm 3	දාවණ පරිමාව cm ³	om ³	යාමට ගතවන කාලය			
					තක්පර			
		5.00 10.00	10,00 10,00	25.00 20.00	40.5 20.1			
		15.00	10.00	15.00	13.1			
		20.00	10.00	10.00	10.2			
		20.00	15.00	5.00	10.3			
		20.00	20.00		10.2			

	1-40-40-40-40-40-40-40-40-40-40-40-40-40-

(ii)	සමස්ථ පෙළ කුමක් ද?
3.5	
(iii)	X වල පරිමාව 40 cm³ සහ HCl වල පරිමාව 20 cm³ යෙදූ විට කකිර ලකුණ නොපෙනී යාමට ග
	කාලය ගැන අදහස් පුකාශ කරන්න.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(in)	එකම බීකරයක් සහ එකම පුද්ගලයා කතිර ලකුණ නොපෙනී යාමට ගතවන කාලය මැනීමේ වැදග
(14)	
	කුමක ද?
	කුමක් ද?
	ajea ç:
	ajea Ç:
	ajea ç:
	-12
(v)	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
(v)	-12
(v)	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
(v)	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
(v)	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිි සමීකරණය ලියන්න.
	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
b) 2	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුයාව සංකූලිත සමීකරණය ලියන්න. $AB_{(g)} \longrightarrow A_{2(g)} + B_{2(g)} \Delta H < 0 \ \ $
b) 2	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුිිිිිිිිිිිිිිිි සමීකරණය ලියන්න.
b) 2	X වෙනුවට විදහාගාරයේදී භාවිතා කල දවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුයාව ස තුලින සමීකරණය ලියන්න. AB _(g) — A _{2(g)} + B _{2(g)} ΔH < 0 යන පුතිකිුියාව සලකන්න.
b) 2	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුයාව සංකූලිත සමීකරණය ලියන්න. $AB_{(g)} \longrightarrow A_{2(g)} + B_{2(g)} \Delta H < 0 \ \ $
b) 2	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුයාව සංකූලිත සමීකරණය ලියන්න. $AB_{(g)} \longrightarrow A_{2(g)} + B_{2(g)} \Delta H < 0 \ \ $
b) 2	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුයාව සංකූලිත සමීකරණය ලියන්න. $AB_{(g)} \longrightarrow A_{2(g)} + B_{2(g)} \Delta H < 0 \ \ $
b) 2	X වෙනුවට විදාහගාරයේදී භාවිතා කල දුවායක් නම් කර එය HCl සමග සිදුවන පුතිකිුයාව සංකූලිත සමීකරණය ලියන්න. $AB_{(g)} \longrightarrow A_{2(g)} + B_{2(g)} \Delta H < 0 \ \ $

ı		(ii)	ඉහත පුහිළියාවේ අතරමැදි සකිය සංකීර්ණය කුමක් විය හැකි ද?
		e con	
		(MI)	ඉහත පුතිකියාවේ, පුතිකියා මාර්ගය සහ ශක්තිය අතර විචලනය පුස්ථාරිකව දක්වා එහි සකිය ශක්තිය, සකිය සංකීර්ණය, ΔΗ අදාල ස්ථානවල ලකුණු කරන්න.
			,
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

		(iv)	ඉහත පුතිකිුිිියාව වීමේ ජාතිය උත්පේු්රකයක් මගින් උත්පේු්රණය වේ නම් එහිදී සිදුවන පියවර කෙටියෙන් විස්තර කරන්න.
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(c)	1	$NO_{2(g)} + CO_{(g)} \longrightarrow CO_{2(g)} + NO_{(g)}$
		යන	ත පුතිකියාවේ 500° C වඩා වැඩි උෂ්ණත්වවලදී සීකුතාවය $R=Kig[NO_{2(g)}ig]ig[CO_{(g)}ig]$ ද 500° C වඩා අඩු
			්ණත්වවලදී $R = K[NO_{2(g)}]^2$ වේ.
			ත අවස්ථා දෙක සඳහා පුතිකියා යාන්තුණ දෙකක් වෙන වෙනම යෝජනා කරන්න.
		(50	00°C අඩු උෂ්ණත්වවලදී පුතිකියාව පියවර දෙකකින් සිදුවේ.)
		,,,,,	
		,,,,,	

4.	(a)		හා B යන සංෂයා්ග $C_5H_8O_2$ යන එකම අණුක සූතුය දරන අතර $NaHCO_3$ සමග පුතිතිුයා කර CO_2
			යුව ලබාදේ. A සංයෝගය ආකාර දෙකකින් පවතින අතර ඒවා පුකාශ සකුිය නොවේ. A හා B
			යිඩුජනීකරණය කිරීමෙන් $C(C_5H_{10}O_2)$ සංයෝගය ලබාදේ. B හා C පුතිරූප අවයව සමාවයවිකතාව පන්වයි.
) A සංයෝගය පෙන්වන ආකාර දෙකෙහි වසුන අඳින්න.

		<u>සංකොගවල වඩුග අඳනන.</u>	-		
	And the second of the second	produced and construction of the construction of			
(iii)	C 850 G	්නය LiAlH4 සමග පුණිකිර	යා කරවා ජලව්ව්	•ඡ්දනය කළවිට D	සංයෝගය සාදයි.
	(f)	Liaih4			
	$C = \frac{(i)}{(ii)}$	H ⁺ /H ₂ O			
(iv)	C 200 D	සංයෝග සා. H ₂ SO ₄ ඇ		පුතිතියාවෙන් E ස	ංයෝගය ලබාදේ,
			ų.		
		E			
(v)	A සහ D	සංයෝග HBr සමග පුතිසි	ඛුයා කර පිළිවෙළිඃ	ත් X හා Y යන එ	ල සාදයි.
		A HBr		461	
			\chi	700,	
		_	exs x		
		-808Y	N.		
		D HBr	•		,
e2\	A D	m auto aum (i) amis	Y		6K
(vi)	A COO D	සංයෝග ඉහත (v) කොව	ලක්ව සිදු කරන ඉ	 පිතුනිලා ලානුනිණ	
				n	
	A			D .	
(vii)		එකිනෙකින් වෙන්කර හඳු			
		LOMBO 10.	-7-		Chemistry II - 2019 M

(i)
$$CH_3 - \overset{\text{H}}{C} - COOH \xrightarrow{\text{alc. KOH}}$$
Br

(ii)
$$O - C_2H_5$$
 $CH_3 MgBr$ O Dry Ether

(iii)
$$CH_3 - C - NH_2$$
 C_2H_5

$$\begin{array}{c}
\text{OH} & \text{CH}_{3} \\
\text{CH}_{3} - \text{CHCH}_{2}\text{CI} \\
\hline
& \text{Anhy AlCl}_{3}
\end{array}$$

(c) P නැමති පුාථමික ඇරෝමැටික ඇමීනය පහත පුතිකිුයා අනුකුමයට භාජනය වේ.

$$P(C_{6}H_{7}N) \xrightarrow{NaNO_{2}/HCI} Q(C_{6}H_{6}O) \xrightarrow{CH_{3}COCI} R(C_{8}H_{8}O_{2})$$

$$CH_{3}MgBr$$

$$Dry Ether$$

$$U(C_{9}H_{10}O) \xleftarrow{-alc \cdot KOH} \Delta T(C_{9}H_{12}O_{2}) \xleftarrow{H^{+}/H_{2}O} S(C_{9}H_{11}O_{2}MgBr)$$

 $Br_2(\ell) \longrightarrow Z(C_9H_{10}OBr)$

P- T-
Q- Z-
R-
(ii) P සංයෝගය NaNO ₂ සහ HCl සමග 0–5°C උෂ්ණත්ව තත්ත්ව යටතේ පුතිකිුයා කර K නැමති සංයෝගය සාදයි. K සංයෝගය CuCN/KCN සමග පුතිකිුියාවෙන් සාදන ඵල කවරේ ද?
(iii) Κ සංයෝගය β-napthol සමග NaOH ඇතිවිට සාදන L නැමති සංයෝගයේ වනුහය ලබාදෙන්න. එහිදී ඔබ අපේක්ෂා කරන නිරීක්ෂණය කුමක් ද්?
L තිරීක්ෂණය :

නාලන්දා-විදහලය - කොළඹ 10 —— NALANDA COLLEGE - COLOMBO 10 අධ්යයන පොදු සහනික පතු උසස් පෙළ විභාගය 2019 දෙවන වාර පරීක්ෂණය - 2019 මාර්තු රසායන විදහව - II

02 S II

13 ලේණය

ela College Criteriato 10 Naturda College, Columbio 10 Naturda College, Columbo 10 Na

븆 B හා C කොටස්වලින් පුශ්න **දෙක** බැගින් තෝරාගෙන පුශ්න **හතරකට** පිළිතුරු සපයන්න.

B කොටස - රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න.

5. (a) I. සංවෘත දෘඪ භාජනයක A වායුව මවුල 0.5 බැගින් අන්තර්ගතය. මෙම භාජනයේ පරිමාව $16,628\,\mathrm{dm}^3$ වන අතර උෂ්ණත්වය $600~\mathrm{K}$ තෙක් රත් කරන විට $A_{(g)}$ පහත පරිදි වියෝජනය වී සමතුලිකතාවයට පත්වේ. එවිට භාජනයේ සමතුලික පීඩනය $3\times10^5~\mathrm{Pa}$ විය.

$$A_{(g)} \rightleftharpoons 2B_{(g)} + C_{(g)}$$

- (i) සමතුලික අවස්ථාවේදී එක් එක් වායුවේ මවුල සංඛාා වෙන වෙනම ගණනය කරන්න.
- (ii) 600 K දී K_p ගණනය කරන්න.
- (iii) K_p ඇසුරින් K_c ගණනය කරන්න. (600 K දී $RT = 5000 \, \mathrm{J} \, \mathrm{mol}^{-1}$ ලෙස සලකන්න)
- II. ඉහත සමතුලිත පද්ධතියේ උෂ්ණත්වය 1000 K තෙක් වැඩිකළ විට ඉහත පළමු සමතුලිතතාවයට අමතරව පහත දෙවන සමතුලිතතාවයක්ද පෙන්නුම් කරයි.

 $A_{(g)}$ හි ආරම්භක පුමාණයෙන් 50% $D_{(g)}$ හා $E_{(g)}$ බවට පත්ව ඇති අතර $A_{(g)}$ හි ආරම්භක පුමාණයෙන් 25% $B_{(g)}$ හා $C_{(g)}$ බවට පත්ව ඇත.

- · (i) 1000 K දී සමතුරිිත පද්ධතියේ සමස්ථ පීඩනය ගණනය කරන්න.
- (ii) $1000~{
 m K}$ දී ඉහත පළමු සමතුලිතතාවයට අදාළ ${
 m K}_{
 m p}$ ගණනය කරන්න.
- (iii) $1000~{
 m K}$ දී දෙවන සමතුලිකතාවයට අදාළ ${
 m K_p}$ හා ${
 m K_c}$ ගණනය කරන්න.
- (iv) $A_{(g)} \rightleftarrows 2 B_{(g)} + C_{(g)}$ බවට පත්වන සමතුලික පුතිකිුයාව තාපදායක ද? තාප අවශෝෂකද යන්න සඳහන් කර, ඔබේ පිළිතුරට හේතුව පැහැදිලි කරන්න.
- (b) පහත දී ඇති දත්ත භාවිතයෙන් එන්තැල්පි සටහන් මගින් පහත පුශ්නවලට පිළිතුරු සපයන්න.

 $\mathrm{Br}_{2(\mathrm{g})}$ වල සම්මත බන්ධන විඝටන එන්තැල්පිය = $193\,\mathrm{k}\,\mathrm{J}\,\mathrm{mol}^{-1}$

 $\operatorname{Br}_{2(\ell)}$ වල සම්මත වාෂ්පීකරණ එන්තැල්පිය = $30 \, \mathrm{k \, J \, mol}^{-1}$

 $\mathrm{Br}_{(\mathbf{g})}$ වල සම්මක ඉලෙක්ටෝන බන්දුතා එන්තැල්පිය $=-344\,\mathrm{kJ}\,\mathrm{mol}^{-1}$

 $X_{(s)}$ වල සම්මත පරමාණුකරන එන්තැල්පිය = 417.5 kJ mol^{-1}

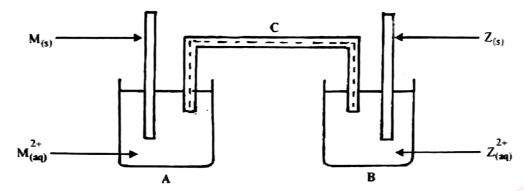
 $X_{(g)}$ වල සම්මත පුථම හා දෙවන අයනීකරණ එන්කැල්පිවල එකතුව $= 2322 \, {
m kJ \ mol}^{-1}$

 $X_{(g)}$ වල සම්මත තෙවන අයනීකරණ එන්තැල්පිය $= 2960 \ kJ \ mol^{-1}$

 $XBr_{2(s)}$ වල සම්මක දැළිස් එන්කැල්පිය = $-4200 \, \mathrm{kJ \, mol}^{-1}$

 $XBr_{3(s)}$ වල සම්මත උත්පාදන එන්තැල්පිය = $-3200 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$

- (i) $XBr_{2(s)}$ වල සම්මත උත්පාදන එන්තැල්පිය කොපමණ ද?
- (ii) $XBr_{3(s)}$ වල සම්මත දැලිස් එන්තැල්පිය කොපමණ ද?
- (iii) $XBr_{2(s)}$ \longrightarrow $XBr_{3(s)}$ බවට පත්වීමේ කියාවලිය 25 °C දී ස්වයංසිද්ධ වේදැයි පහදන්න.


රන්ටොයි අගයන් පහත දැක්වේ.

$$S_{xBr_{2(a)}}^{o} = 250 \text{ J k}^{-1} \text{ mol}^{-1}$$

 $S_{xBr_{3(a)}}^{o} = 400 \text{ J k}^{-1} \text{ mol}^{-1}$

- 6. (a) භාත්රණය $0.1 \, \mathrm{mol \, dm^{-3}}$ වූ ද්විභාෂ්මික භික්තැලික් ($C_2 H_2 O_4$) අමලයේ අයතිකරණ තියන K_{a_2} හා $K_{a_2} = 25 \, ^{\circ} \mathrm{C}$ දී පිළිවෙළින් $6.5 \times 10^{-2} \, \mathrm{mol \, dm^{-3}}$ හන $6.0 \times 10^{-5} \, \mathrm{mol \, dm^{-3}}$
 - (i) සමතුලිකකාවේදී H^{*} අයන සාන්දණය ගණනය කරන්න.
 - (ii) සමතුලික දාවණයේ p^{OH} අගය ගණනය කරන්න.
 - (b) පරිමාව $250\,\mathrm{m}\ell$ ක අයන මිශුණයක $\mathrm{Ba}_{(\mathrm{aq})}^{2+}$ හා $\mathrm{Pb}_{(\mathrm{aq})}^{2+}$ අයන අඩංගු වේ. දාවණය තුළ $\mathrm{Ba}_{(\mathrm{aq})}^{2+}$ අයන හා $\mathrm{Pb}_{(\mathrm{aq})}^{2+}$ අයන සාන්දුණ $25\,^{\circ}\mathrm{C}$ දී පිළිවෙළින් $2.8\times10^{-3}\,\mathrm{mol\,dm^{-3}}$ හා $6.0\times10^{-3}\,\mathrm{mol\,dm^{-3}}$ වේ. සාන්දුණය $0.14\,\mathrm{mol\,dm^{-3}}$ වූ $\mathrm{Na}_2\mathrm{CrO}_4$ දාවණයකින් $100\,\mathrm{m}\ell$ ක් අයන මිශුණයට එකතු කරන ලදී.
 - (i) පළමුව අවක්ෂේප වන්නේ කවර සංශෝගය ද? සුදුසු ගණනය කිරීමක් ඇසුරින් තහවුරු කරන්න. $\left(K_{sp(BaCrO_4)} = 1.2 \times 10^{-10} \mathrm{mol}^2 \ \mathrm{dm}^{-6} - K_{sp(PbCrO_4)} = 1.8 \times 10^{-14} \mathrm{mol}^2 \ \mathrm{dm}^{-6} \right)$
 - (ii) දෙවන සංයෝගය අවක්ෂේප වීම ඇරමෙන විට මුල් සංයෝගයෙන් අවක්ෂේප වී ඇති ස්කන්ධය කොපමණ ද? (Ba - 137 , Cr - 52 , Pb - 207)
 - (c) A සහ B පරිපූර්ණ දාවණයක් සාදයි. 298 K දී සංශූද්ධ A සහ සංශූද්ධ B හි වාෂ්ප පීඩන පිළිවෙළින් $3.6 \times 10^5 \text{ Pa}$ සහ $2.4 \times 10^5 \text{ Pa}$ වේ. 298 K දී මේ දාවණ සමග සමතුලිකව පවකින වාෂ්ප කලාපයේ A හි මවුල භාගය 0.3 වේ.
 - (i) දාවණයේ A සහ B හි මවුල භාග ගණනය කරන්න.
 - (ii) මුළු පීඩනය ගණනය කරන්න.
- 7. (a) A, B සහ C යනු M හි සංගත සංකීර්ණ සංයෝග වේ. ඒවාට අෂ්ටකලිය ජනම්තියක් ඇත. සියලුම සංයෝග M හි එක අයනයකින් සහසංයුජ හෝ අයනික විය හැකි බෝම්න් පරමාණු දෙකකින් සහ ජල අණුවලින් සමන්විත වේ. මෙම සංයෝගවල ජල අණු සංඛනාව විචලන වේ. සියලුම සංයෝගවල M හි අයනයේ ඔක්සිකරණ අවස්ථාව එකම වේ. A, B හා C යන සංයෝගවල සංකීර්ණ අයන කොටසෙහි ආරෝපණ පිළිවෙලින් +2, +1 හා ශුනා වේ. M හි අයනය ඉහත සංගත අංකයෙන්ම සාන්දු NH₃ සමග සාදන සංකීර්ණය තද නිල් පැහැතිය.
 - (i) සංගත සංයෝගවල M හි ඔක්සිකරණ අවස්ථාව දෙන්න.
 - (ii) M හි අයනය හඳුනාගෙන එහි ඉලෙක්ටුෝන විනාහසය ලියන්න.
 - (iii) A, B හා C හි වනුහ සූතු ලියන්න.
 - (iv) A, B හා C හි IUPAC නම් ලියන්න.
 - (v) A හා C එකිනෙකින් චෙන්කර හඳුනාගන්නේ කෙසේ ද? පරීක්ෂාව සමග නිරීක්ෂණ ද සඳහන් කරන්න.
 - (vi) M හි අයනය ඉහත සංගත අංකයෙන්ම පහත දී ඇති ඇතායනය සමග සංගත වී සාදන සංයෝගයට අෂ්ටතලීය ජ‍‍රාමිතියක් ඇත. එම සංයෝගයේ වනුහ සුනුය ලියන්න.

- (b) I. (i) බොහොමයක් ලෝහ විබාදනයෙන් ආරක්ෂා කරගැනීමට ඒවා මත විද්‍යූත් විච්ඡේදනයෙන් ආලේපන යොදයි. යකඩ ලෝහය විබාදනය අවම කරගැනීමට යොදාගත හැකි ඇටයුමක් ඇඳ එහි සියළු කොටස් නම් කරන්න. පහත දුවා හා දුාවණ භාවිතා කරන්න. Zn තහඩුව, යකඩ තහඩුව, ZnSO_{4(aq)} දුාවණය, FeSO₄ දුාවණය, වියළි කෝෂ, වයර් කැබලි, බීකරය.
 - (ii) ඉහත රූප සටහනේ ඇනෝඩය නම් කර ඇනෝඩ කිුිියාවක්, කැනෝඩය නම් කර කැනෝඩ කිුිියාවත් සඳහන් කරන්න,

- (iii) මෙහිදී යනව ලෝකය විබාදන්ෂයන් ආරක්ෂා වන්නේ කෙසේදැයි ඔබගේ විදසුත් විච්ඡේදන දැනුම භාවිතයෙන් පහදන්න.
- II. 0.5 mol dm 3 CuSO₄ දාවණයක් pt ඉලෙක්ටෝඩ යොදා විදයුන් විච්ඡේදනය කරන ලදී.
 - (i) දාවණයේ ආරම්භක වර්ණය කුමක් ද?
 - (ii) දාවණය තුලින් 9.65 mA ධාරාවක් මිනින්තු 30 ක් තුළ යවන ලද්දේ නම්
 - A ඉලෙක්ටෝඩ අතල කැන්පත් වූ ලෝන ස්කන්ධය කුමක් ද? (Cu = 63.5 , පැරඩේ නියනය $96500 \, C \, mol^{-1}$)
 - B එවිට දුාවණයේ පැහැය හා සාන්දුණය වැඩිවේ ද? අඩුවේ ද?
 - C ඇතෝවය හා කැතෝඩය අසල සිදුවන වෙනස්කම මොනවා ද? ඇතෝඩ කි්යාවත්, කැතෝඩ කි්යාවත් වෙන වෙනම ලියන්න.
- III. පහත කෝෂ රූප සටහන සළකන්න.

ඉලෙක්ටුෝඩ M හා Z සන්නායක කම්බියකින් සම්බන්ධ කළවිට Z සිට M දක්වා ධාරාවක් ගලායයි.

- (i) ඇතෝඩය කුමක් ද?
- (ii) කැලෙන්ඩය කුමක් ද?
- (iii) ඇතෝඩ කි්යාව සමීකරණයකින් දක්වන්න.
- (iv) කැතෝඩ කිුිිියාව සමීකරණයකින් දක්වන්න.
- (v) සම්පූර්ණ කෝෂ පුතිකුියාව සඳහන් කරන්න.
- (vi) කෝෂය IUPAC කුමයට නම් කරන්න.

(vii)
$$E_{M_{(aq)}^{2+}/M_{(s)}}^{0} = -1.76 \text{ V}$$

 $E_{Z_{(aq)}^{2+}/Z_{(s)}}^{0} = 0.40 \text{ V} \text{ sp}$

කෝෂය තුළ වීදාූූත් ගාමක බලය කොපමණ ද?

- (viii) "C" නම් කර එහි කාර්යභාරය සඳහන් කරන්න.
 - (x) "C" සඳහා යොදාගත හැකි දුාවණ මොතවා ද?
 - (x) සිල්වර් සිල්වර් ක්ලෝරයිඩ් ඉලෙක්ටෝඩයේ දළ රූපසටහනක් ඇඳ එහි සියළු කොටස් නම් කරන්න.

C කොටස - රචනා

පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න.

8. (a) ◯ CH₂ −C − NH − CH₂ ◯ යන කාබනික සංයෝගය පමණක් භාවිතා කොට

(යෝජනා කරන කුමය පියවර අවකට නොවැඩි විය යුතුයි) (අකාබනික පුතිකාරක භාවිතා කළ හැකිය.)

- (b) එකම කාබනික සංයෝග ලෙස $CH_3 CH CH_3$ යොදාගෙන $CH_3 CH = CH CH_2 CH_3$ බවට පරිවර්තනය කරන අයුරු දක්වන්න.
- (c) පහත සංයෝග හතර සලකන්න.

© CH₃CI

O-CH₃

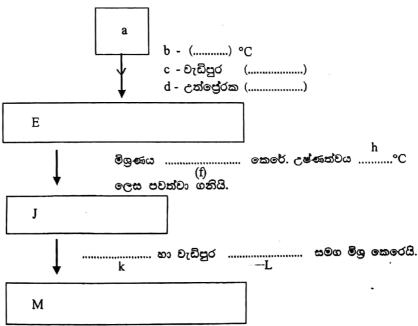
CH₃ – CH – CH₃ නිපදවීම සඳහා ඉහත P, Q, R සහ S වලින් නැවත යුගල් දෙක බැගින් භාවිතා කළ හැකියි. එම යුගල් හඳුන්වන්න. X_(g) මින් එක් යුගලක් වඩා සුදුසු වන අතර අනෙක් යුගල වඩා සුදුසු නොවේ. එයට හේතු පහදන්න.

- (d) (i) ධැවීය තත්ත්ව යටතේ දී CH₃ CH = CH CH₃– වලට HBr ආකලනය වීම සඳහා යාන්තුණයක් ඉදිරිපත් කරන්න.
 - (ii) ඉහත දී ලැබෙන ඵලයට ජලීය NaOH යෙදූවිට සිදුවන පුතිකිුිියා සඳහා යාන්තුණ ඉදිරිපත් කරන්න.
- 9. (a) X යනු ආම්ලික වායුවකි. X පහත වගුවෙහි දැක්වෙන ආකාරයට පුතිකිුයා කරමින් අදාළ නිරීක්ෂණ ලබාදෙයි.

	පරික්ෂණය	නිරීක්ෂණය
i	H ⁺ /K ₂ Cr ₂ O ₇ සමග X පුතිකිුයා කළවිට	$\mathrm{K_2Cr_2O_7}$ තැඹිලි $ ightarrow$ කොල විය.
ii	$X,\;\; H_2O_2$ සමග රත් කර, සිසිල් කොට BaCl_2 එක්කරන ලදී.	සුදු පාට අවක්ෂේපය (HCl වල අදුාවා)
iii	$X_{(g)} \ X$ හි හයිඩුයිඩය සමග ජලීය දුාවණයකදී පුතිකිුිිිිිිිිිිි කරවීම.	ලා කහ අවක්ෂේපය ලැබීම.

- (i) X වායුව නම් කරන්න.
- (ii) a i, a- ii, a iii ට අදාළ තුලිත සමීකරණ හෝ තුලිත අයනික සමීකරණ ලියන්න.
- (b) A හා B සංයෝගවල ජලීය දුාවණ එකට මිශු කිරීමෙන් පසුව, C නම ජලයේ අදුාවා සංයෝගයක් හා ජලයේ දාවා D සංයෝග සාදයි. A සංයෝගය තාපයේ රත් කිරීමේදී දුඹුරු වායුවක් පිටවිය. A ගේ ජලීය දාවණයකට H_2S එකතු කළවිට කළු අවක්ෂේපයක් ලැබුණි. A දාවණය ත. HCl සමඟද සුදු අවක්ෂේපයක් ලද අතර, එය උණු ජලයෙහි දාවා වී. සිසිල් වූ විට නැවත සුදු අවක්ෂේපය ලබාදුනි. A ගේ වෙනත් ජලීය දාවණයක් K_2CrO_4 සමග කහ පැහැති අවක්ෂේපයක් ද ලබාදෙයි. B සංයෝගය $BaCl_2$ සමග සුදු අවක්ෂේපයක් ලබාදෙන අතර එය ත. HCl හි අදාවා වෙයි. D සංයෝගයෙහි ජලීය දාවණය $K_3[Fe(CN)]_6$ සමග තද නිල් දාවණයක් ලබාදෙයි. D, \rightarrow දුඹුරු වලයේ පරීක්ෂණයට භාවිතය කළවිට ද පිළිතුරු දෙයි.

ඉහත තොරතුරු වලව අනුව පහත සාරාංශය ඉදිරිපත් කළ හැකිය.


- (i) $A_{(aq)} + B_{(aq)} \rightarrow C_{qgaSB} \downarrow + D_{gaSB}$
- $(ii) \quad A \xrightarrow{\Lambda} C \& \mathfrak{A} \subset (g)$
- (iii) $A_{(aq)} + H_2S$ → කළු ↓
- (iv) $A_{(aq)} + a$. $HCl o සුදු අවක්ෂේපය<math>\epsilon$ ුණු ජලයේ දියවන අතර සිසිල් කරන විට නැවත අවක්ෂේප වෙ
- (v) $A_{(aq)} + K_2 CrO_4 \rightarrow$ කහ අවක්ෂේපය
- (vi) $B_{(aq)} + BaCl_2 \rightarrow$ සුදු අවක්ෂේපය
- (vii) D+ K₃[Fe(CN)]₆ → කද නිල් දාවණය
- (vii) $D + දුඹුරු වලයේ පරීක්ෂණය <math>\rightarrow$ දුඹුරු වලය.

ඒ අනුව (i) \rightarrow (viii) දක්වා A, B, C, D හා අදාළ ඵලයයන් ද නිවැරදිව ඉදිරිපත් කරන්න.

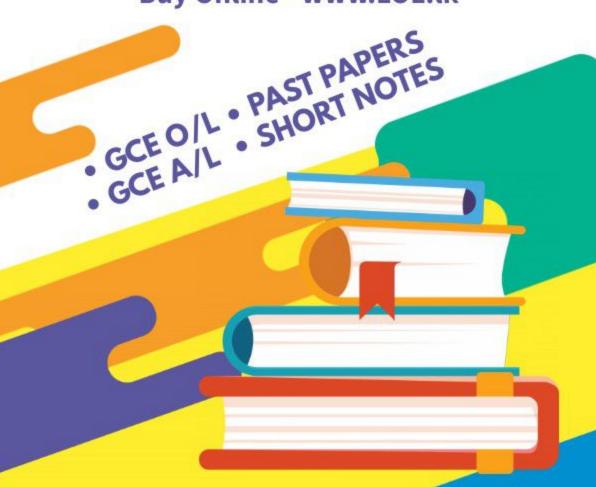
(c) පෑස්සුම් (solder) සඳහා යොදාගන්නා ලෝහ මිශුණයක පවතින Pb පුතිශතය සෙවීමට එම මිශුණයෙන් $0.8\,\mathrm{g}$ ක් යොදාගන්නා ලදී. පළමුව පෑස්සුම් ලෝහ මිශුණයෙන් $0.8\,\mathrm{g}$ ගෙන, හොඳින් අම්ලයක දිය කරවන ලදී. එවිට $\mathrm{Pb} \to \mathrm{Pb}^{2+}(\mathrm{aq})$ බවට පත්විය. (සම්පූර්ණයෙන් ම). එයට වැඩිපුර $\mathrm{K}_2\mathrm{CrO}_4$ එක්කරන ලදී. ලද කහ අවක්ෂේපය වෙන් කරගන්නා ලදී. මෙම වෙන්කර ගත් සණය නැවත, අම්ලයක් යොදා ගනිමින් හොඳින් දියකර ගන්නා ලදී. එය $\underline{\mathrm{X}}$ දාවණය වීය.

X දාවණයට වැඩිපුර KI එකතු කරන ලදී. එවිට නිදහස් වූ I_2 සමග $0.05\,\mathrm{mol\,dm^{-3}}$ $Na_2S_2O_3$ පුතිකිුයා කරවිය. ඒ සඳහා වැය වූ එම, $Na_2S_2O_3$ පරිමාව $11\,\mathrm{m}\ell$ Pb (207).

- (i) ඉහත ආරම්භක දාවණයට $K_2 CrO_4$ එක් කළවිට ලද කහ ඝනය කුමක් ද?
- (ii) කහ පැහැති ඝනය අම්ලයේ දිය වූ පසු ලද X දාවණයේ පවතින අයන මොනවා ද?
- (iii) X දාවණයට වැඩිපුර KI එකතු කළ පසුව සිදුවන පුතිකිුයාව සඳහා තුලිත අයනික සමීකරණය ලියන්න.
- (iv) (iii) පුතිකුියාවෙන් නිදහස් වූ I_2 සමග $Na_2S_2O_3$ පුතිකිුයාව සඳහා තුලිත සමීකරණ ලියන්න.
- (v) පැස්සුම් ලෝහ මිශුණ නිදර්ශකයේ 0.8 g තුළ වූ Pb ස්කනධය හා ස්කන්ධ පුතිශකය කොපමණ ද?
- 10. (a) (i) (COD) රසායනික ඔක්සිජන් ඉල්ලුම යන්න හඳුන්වන්න.
 - (ii) ජලයේ ගුණාත්මක බව මතින භෞතික පරාමිති තුන දක්වන්න.
 - (iii) අපදුවා කළමනාකරණයට අදාල (3R) කුම දක්වන්න.
 - (b) (i) නයිටුික් අම්ලය නිෂ්පාදනය (ඔස්වල්ඩ් කුමය) යටතේ භාවිතා වන පුධාන අමුදුවා මොනවාද? ඔස්වල්ඩ් කුමය භාවිතය සඳහා පහත දක්වා ඇති සටහන අධ්‍යයනය කොට අසා ඇති පුශ්නවලට පිළිතුරු සපයන්න.

NALANDA COLLEGE-COLOMBO 10.

- 14 - Grade 13 - Chemistry II - 2019 March


- (ii) ඉහත a, b, c, d, f, h, k, L මගින් දැක්වෙන්නේ මොනවා ද යන්න ඉදිරිපත් කරන්න.
- (iii) E, J හා M ව අදාල තුලික පුකිකියා දක්වන්න.
- (iv) ඉහත E පුතිකිුියාව තාපදායකද, තාප අවශෝෂකද බව දක්වන්න.
- (v) ඉහත කියාවලිය සඳහා යොදාගන්නා පීඩනය කොපමණ ද?
- (vi) ඉහත කියාවලිය සඳහා වැඩිපුර වාතය යොදාගත්තේ ඇයි?
- (vii) ඉහත කියාවලියෙහිදී, f හා h අවස්ථාවල ඇති තන්ත්වයන් සඳහා හේතු කවරේ ද?
- (c) (i) තාප ස්ථාපන බහු අවයවක යන්න කෙටියෙන් හඳුන්වන්න.
 - (ii) ඉහත (i) සඳහා උදාහරණ දෙකක් දක්වන්න.
 - (iii) "පොලිස්ටයිරින්" ආකලන බහුඅවයවිකය සඳහා, වන ඒකාවයවිකය දක්වන්න.
 - (iv) "පොලිස්ටයිරින්" සෑදෙන අයුරු දල ලෙස දක්වන්න. (අදාළ පුකිකියා කත්ත්වය ද සමග)
 - (v) "පොලිස්ටයිරින්" සඳහා පුනරාවර්තන ඒකකය ද දක්වන්න.
- (d) (i) 'පුකාශ රසායනික ධූමිකාව' යන්න කෙටියෙන් හඳුන්වන්න.
 - (ii) පුකාශ රසායනික ධූමිකාව සැදීමේ ආරම්භක පුතිකියාව ලියන්න.
 - (iii) හරිකාගාර වායු 05 නම් කරන්න.
 - (iv) අම්ල වැසි කෙරෙහි බලපාන වායු මොනවා ද?

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500 \$

More than 1000+ Papers For all major Subjects and mediums (24)

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

පසුගිය විහාග

2010 as 2019

රු **350.00**

ADD TO CART

GCE O/L EXAM, MATHEMATICS

O/L Mathematics Past Paper Book

රු 350.00

පසුගිය විපාග විපාග

2010 2019

සෞඛ්යය හා

ශාර්රික අධහපනය Ø Ø Ø ?

LOL.Ik

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL... O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

GCE O/L EXAM, HISTORY

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძდ 350.00

LOL.Ik

රු 350.00