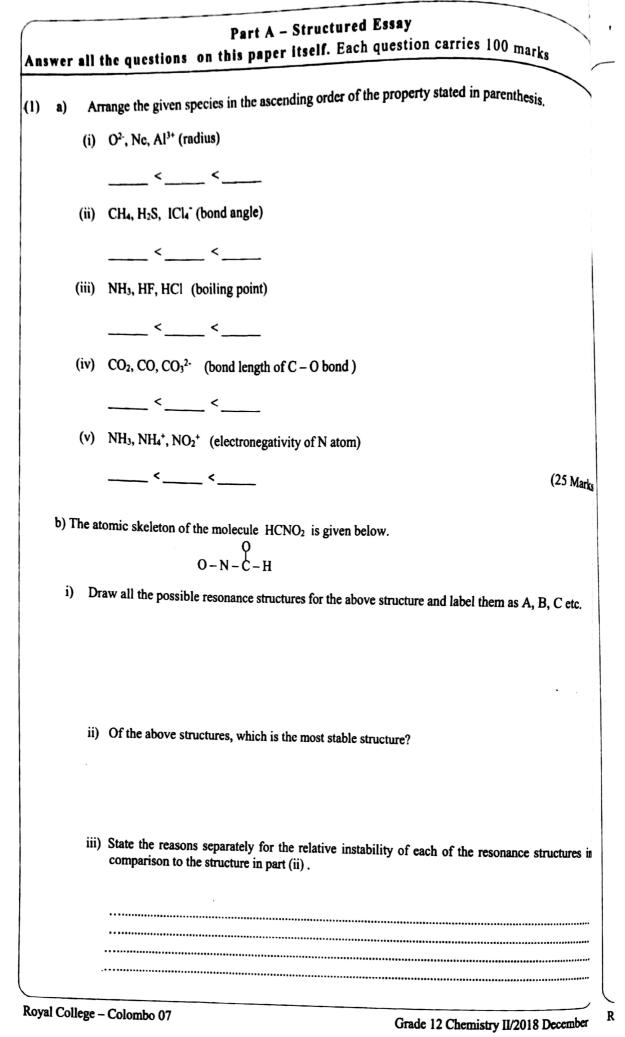

M			Royal Co First Term	n Test November 2018 Year 12			
		යන විදුහාව mistry	l I	02 E I)	ອເຜ ບໍລລິ One hour	
	in each of the correct or me accordance w Unive	e questions. ators is not al dex Number e questions 1 ost: appropria rith the instruc- ersal gas cons	lowed. in the space pro- to 25, pick or te and mark y ctions given on stant R =	the back of the ans 8.314 J K ⁻¹ mol ⁻¹	es from (1), (2), (he answer sheet swer sheet.	(3), (4), (5) which is with a cross (X) in	
	Planc	adro constant k's constant city of light		= $6.022 \times 10^{23} \text{ mol}$ = $6.626 \times 10^{-34} \text{ J s}$ = $3 \times 10^8 \text{ m s}^{-1}$			
Answ	ver all the que	estions.					
01)				(n) and the azimu rons that can exis 4) 12		mber (1) are conside with $n + l \le 3$.	
02)	Which of th 1) Radio wa 3) Infra red 5) Gamma r	aves radiation	has the longe	st wave length. 2) X - rays 4) Ultra v	s iolet radiation		
	 Radio wa Infra red Gamma n 	aves radiation rays ercentage of	f Cl in the tetr	2) X - rays 4) Ultra v	iolet radiation s 86%. The relat	ive atomic mass of	
03)	 Radio wa Infra red Gamma n Gamma n The mass p (Consider th 1) 12 	aves radiation rays ercentage of at the relativ 2) 24	f Cl in the tetr ve atomic mas 3) 36	2) X - rays 4) Ultra v rachloride of M is is of chlorine is 30	iolet radiation \$ 86%. The relat 6) 5) 60	ive atomic mass of	
03)	 Radio wa Infra red Gamma if Gamma if The mass p (Consider the 1) 12 Which of the Mg 	aves radiation rays ercentage of at the relativ 2) 24 e following 2) Al	f Cl in the tetr ve atomic mas 3) 36 has the highes 3) Be	 2) X - rays 4) Ultra v achloride of M is as of chlorine is 30 4) 48 ast second ionization 4) B 	iolet radiation 8 86%. The relat 6) 5) 60 on energy? 5) Ar	ive atomic mass of	
02) 03) 04) 05)	 Radio wa Infra red Gamma if Gamma if The mass p (Consider the 1) 12 Which of the Mg 	aves radiation rays ercentage of at the relativ 2) 24 e following 2 2) Al of MgCO ₃ .	f Cl in the tetr ve atomic mas 3) 36 has the highes 3) Be xH ₂ O is heat	 2) X - rays 4) Ultra v achloride of M is as of chlorine is 30 4) 48 ast second ionization 4) B 	iolet radiation 8 86%. The relat 6) 5) 60 on energy? 5) Ar		
03) 04)	 Radio wa Infra red Gamma if Gamma if The mass p (Consider the 1) 12 Which of the Mg When 39 g of X? 	aves radiation rays ercentage of at the relativ 2) 24 e following 2 2) Al of MgCO ₃ .	f Cl in the tetr ve atomic mas 3) 36 has the highes 3) Be xH ₂ O is heat	 2) X - rays 4) Ultra v achloride of M is as of chlorine is 30 4) 48 ast second ionization 4) B 	iolet radiation 8 86%. The relat 6) 5) 60 on energy? 5) Ar	ive atomic mass of 10 g. What is the v	
03) 04)	 Radio wa Infra red Gamma if Gamma if The mass p (Consider the 1) 12 Which of the 1) Mg When 39 g of X? (Mg = 24, 1) 2 	aves radiation rays ercentage of at the relativ 2) 24 e following 2) Al of MgCO ₃ . O = 16, C = 2) 4 concentratio	f Cl in the tetr ve atomic mas 3) 36 has the highes 3) Be xH ₂ O is heat = 12) 3) 5	 2) X - rays 4) Ultra v achloride of M is as of chlorine is 36 4) 48 ast second ionization 4) B ed the mass of M 4) 7 the 200 cm³ solution 	iolet radiation \$ 86%. The relat 5) 60 5) 60 5) Ar 1gO formed was 5) 8		

.

•

07)	(Ca – 40, N CaCC	the solid residu the mole ratio fg - 24, $C - 1D_3 (s)D_3 (s)$	2, O – 16) ► CaO(s) +	CO ₂ (g)	olid mixture con sed is,	taining CaCO ₃ (s) and (5)		
					4) 38 g			
08)	MO_4^{n-} ions moles of I^-	are reduced to ions are oxidiz	M^{2+} in acid and to I ₂ . The	medium. Whe value of n is,	en one mole of 1	MO_4^n is reduced, four		
	1) 1	2) 2		4) 4	5) 5			
09)		contains in 10 D ₂ in ppm.) m ³ of a gas	mixture having	the density of 0.	2 g cm ⁻³ . What is the		
	1) 100	2) 200	3) 300	4) 400	5) 500			
10)	F - S = (1)	O ⁼ S — H 2)I H						
	Oxidation nu	mbers of the S	atoms labelle	ed as (1) and (2)	in above structur	e are.		
	1) +2 and 0	2) +1 and	0 3)+	+3 and +4	4) +2 and +4	5) +4 and +6		
11)	Dry mass of of an aqueous	AgCl precipit s solution whi	tate formed w ch contains or	hen excess of A	AgNO3 solution v	(6) was added to 200 cm ³ olar ratio was 5.74 g. ag - 108, Cl - 35.5		
		2) 0.2			5) 0.02			
12)	20 cm ³ of 0.02 moldm ⁻³ K ₂ Cr ₂ O ₇ solution required to react completely with 50 cm ³ of acidified FeSO ₄ solution. What is the concentration of FeSO ₄ in moldm ⁻³ ?							
			$ \rightarrow Fe^{3} $ $ \rightarrow Cr^{3} $			• .		
	1) 0.001	2) 0.008	3) 0.048	4) 0.08	5) 0.48			
13)	A certain vess A is three tim pressure of B.	es that of B.	qual masses o The total pres	f two gases A a sure of the mix	and B. The relatitute is 4×10^5 F	ve molecular mass of a. What is the partial		
	1	L	2) $\frac{1}{4} \times 10^5$	Pa	3) $\frac{3}{4}$ x 10 ⁵ Pa			
	1) $\frac{1}{3}$ x 10 ⁵ Pa				4			
	1) $\frac{1}{3} \times 10^5$ Pa 4) 1 x 10 ⁵ Pa		5) 3×10^5	Pa	·			
14)	4) 1 x 10 ⁵ Pa The gas A exi	sts in a vessel	5) 3 x 10 ⁵ of volume 2V	Vat 127°Can	d 2 x 10 ⁵ Pa pres pressure. The mo	sure. The gas B exists le ratio of two gases.		


Chemistry-2018 November Grade 12

18)	A particular 250 cm ³ aqueous solution of NH ₄ NO ₃ contains 100 g of NH ₄ NO ₃ dissolved in it. Which of the following is/are true about this solution? Density of the solution is $1.2 g c_{Th^3}$								
	it. Which	of the following is/	are true about	this solution? Dens	sity of the containing 1,4	2 g cm			
	(N - 14, O - 16, H - 1) a) The molarity of NH ₄ NO ₃ is 5 mol dm ⁻³								
	a) The molarity of NH_4NO_3 is 5 mol and b) The molality of NH_4NO_3 is 6.25 mol kg ⁻¹ .								
	c) Percentage of NH4NO3 by mass is 40%								
	d) Percentage of oxygen by mass is is 20%								
19)	Which of t	he following speci	es exists /exist	as a lattice at room	temperature?				
	a) Hg	b) K ₂ C		c) SiO ₂	d) coke				
20)	Which of t	he following is true	regarding the	$^{208}_{82}$ Pb ²⁺ ion?					
		ins equal number o							
		ins an equal numbe							
	c) the no	of neutrons if it is,	126	•					
	d) the no c	of electrons in it is,	80						
			00						
•]	In question no	21 to 30 two stat		in respect of and	hauestion				
1	From the tabl	. 21 to 30, two stat	ements are giv	en in respect of each	(1) (2) (4) = 1				
1	from the table	e given below, sele	ect the response	e out of the response	ses (1), (2), (3), (4) and	(5) tł			
C	best fits the tw	o statements and n	nark appropriat	tely on your answer	sheet.				
	Response	first statement	second stater			1			
	(1)	True			statement				
	(2)	True		ectly explain the first					
	(3)		true, but does	s not explain the first	statement correctly				
		The	E 1		statement concerty				
		True	False						
	(4)	False	True						
	(4)	False	True						
1)	(4) (5)	False False First statement	True False	Se	cond statement				
1)	(4) (5) Always, wł	False False First statement then the absolute ter	True False	Se The pressure of a	cond statement fixed mass of an ideal g	gas is			
1)	(4) (5) Always, wh fixed mass	False False First statement then the absolute ter of an ideal gas is	True False	Se	cond statement fixed mass of an ideal g	-			
1)	(4) (5) Always, wh fixed mass	False False First statement then the absolute ter	True False	Se The pressure of a	cond statement fixed mass of an ideal g	-			
	(4) (5) Always, wh fixed mass pressure is a	False False First statement then the absolute ter of an ideal gas is also doubled.	True False	Se The pressure of a directly propor	cond statement fixed mass of an ideal g	-			
	(4) (5) Always, wh fixed mass pressure is a	False False First statement then the absolute ter of an ideal gas is	True False	Se The pressure of a directly propor temperature.	fixed mass of an ideal g tional to its abs	olute			
	(4) (5) Always, wh fixed mass pressure is a	False False First statement then the absolute ter of an ideal gas is also doubled.	True False	Se The pressure of a directly propor temperature.	cond statement fixed mass of an ideal g	olute			
	(4) (5) Always, wh fixed mass pressure is a The boiling	False False First statement nen the absolute ter of an ideal gas is also doubled. point of HF is greated	True False mperature of a s doubled, its ater than HCl.	Se The pressure of a directly propor temperature. The H – F bond	fixed mass of an ideal g tional to its abs	olute			
2)	(4) (5) Always, wh fixed mass pressure is a The boiling	False False First statement nen the absolute ter of an ideal gas is also doubled. point of HF is greated	True False mperature of a s doubled, its ater than HCl.	Se The pressure of a directly propor temperature. The H – F bond bond.	fixed mass of an ideal g tional to its abs is stronger than the H	– C			
2)	(4) (5) Always, wh fixed mass pressure is a The boiling The 2 nd ion	False False First statement First statement ten the absolute ter of an ideal gas is also doubled. point of HF is great tization energy of	True False nperature of a s doubled, its ater than HCl. Na is greater	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g	– C			
2)	(4) (5) Always, wh fixed mass pressure is a The boiling The 2 nd ion	False False First statement nen the absolute ter of an ideal gas is also doubled. point of HF is greated	True False nperature of a s doubled, its ater than HCl. Na is greater	Se The pressure of a directly propor temperature. The H – F bond bond.	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g	– Cl			
2)	 (4) (5) Always, wh fixed mass pressure is a pressure is a The boiling The 2nd ion than the 2nd 	False False First statement Then the absolute terr of an ideal gas is also doubled. point of HF is great nization energy of ionization energy of	True False mperature of a s doubled, its ater than HCl. Na is greater of Mg.	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc than that of Mg ²⁺ .	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g	– Cl			
2) 3)	 (4) (5) Always, wh fixed mass pressure is a pressure is a The boiling The 2nd ion than the 2nd 	False False First statement First statement ten the absolute ter of an ideal gas is also doubled. point of HF is great tization energy of	True False mperature of a s doubled, its ater than HCl. Na is greater of Mg.	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc than that of Mg ²⁺ .	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g	– C			
 22) 33) 44) 55) 	 (4) (5) Always, wh fixed mass pressure is a pressure is a The boiling The 2nd ion than the 2nd The NH⁺₄ ion that the 2nd 	False False First statement First statement ten the absolute ter of an ideal gas is also doubled. point of HF is great fization energy of ionization energy of on has a dipole more	True False mperature of a s doubled, its ater than HCl. Na is greater of Mg. ment.	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc than that of Mg ²⁺ . One bond of NH;	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g	- Cl reater			
2) 3) 4)	 (4) (5) Always, wh fixed mass pressure is a The boiling The 2nd ion than the 2nd The NH⁺₄ ion The gap bet 	False False First statement First statement nen the absolute ter of an ideal gas is also doubled. point of HF is greated ization energy of ionization energy of on has a dipole more tween first line (lear	True False mperature of a s doubled, its ater than HCl. Na is greater of Mg. ment.	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc than that of Mg ²⁺ . One bond of NH; The gap between	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g t should be a dative bond first and second energy	- C reater d. levels			
2)	 (4) (5) Always, wh fixed mass pressure is a p	False False First statement First statement Iten the absolute terring of an ideal gas is also doubled. point of HF is great fization energy of ionization energy of on has a dipole more tween first line (lead ond line in Lyman	True False mperature of a s doubled, its ater than HCl. Na is greater of Mg. ment. st frequency) series of the	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc than that of Mg ²⁺ . One bond of NH The gap between of hydrogen atom	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g t should be a dative bond first and second energy in is greater than that be	- C reater d. levels			
2) 3) 4)	 (4) (5) Always, wh fixed mass pressure is a p	False False First statement First statement nen the absolute ter of an ideal gas is also doubled. point of HF is greated ization energy of ionization energy of on has a dipole more tween first line (lear	True False mperature of a s doubled, its ater than HCl. Na is greater of Mg. ment. st frequency) series of the	Se The pressure of a directly propor temperature. The H – F bond bond. The effective nuc than that of Mg ²⁺ . One bond of NH; The gap between	cond statement fixed mass of an ideal g tional to its abs is stronger than the H clear charge of Na ⁺ is g t should be a dative bond first and second energy in is greater than that be	- C rreate d.			

1

MIDI T 191					1	1 _ 00	10	
			_Fii	st Term	est No	vember 20	18	
					Grade I	2		
٣	<mark>රසායන වැ</mark> Chemistry	-			2 E			87.03 1 ½ 1 ½ hours
Name:					Index	K No	Class :	
 Avogadr Plank co Velocity t A – Structu Answe Write v 	of light ured Essay (p r all the quest	NA h C pages 2 – tions on t	= = = 5)	8.314 JK 6.022 x 1 6.626×1 3.0×10^{8}	0 ²³ mol ⁻¹ 0 ⁻³⁴ Js ms ⁻¹		ote that the space	e provided is
rt B Essay (* Answe * At the	the the the transformation of the time $(1 - 7)$	ons ne allotted	that end	tiensive ans	e the ans	wers to the tw	vo Parts A, B to	ogether so that
rt B Essay (* Answe * At the	the the the transformation of the time $(1 - 7)$	ons ne allotted	that end	his paper, ti the Supervi Parts B of t	the the ans sor. he question	wers to the two		ogether so that
rt B Essay (* Answe * At the	the the the transformation of the time $(1 - 7)$	ons ne allotted	that end	tiensive ans	the the ans sor. he question	wers to the two	vo Parts A, B to	ogether so that
rt B Essay (* Answe * At the	ent for the ans (pages 6 – 7) er both questic end of the tim n top and han re permitted to r I	ons ne allotted	that end for t	his paper, ti the Supervi Parts B of t	the the ans sor. he question	wers to the two on paper from Only	vo Parts A, B to a the Examination	ogether so that on Hall.
rt B Essay (* Answe * At the A is on * You an Pape	ent for the ans (pages 6 - 7) or both questic end of the tim n top and hand re permitted to r I er II	ons ne allotted	that end for t	his paper, ti the Supervi Parts B of t	the the ans sor. he question	wers to the two on paper from Only Part	vo Parts A, B to a the Examination Question NO	ogether so that on Hall.
rt B Essay (* Answe * At the A is or * You ar Pape Pape	ent for the ans (pages 6 – 7) or both question end of the time top and han- re permitted to r I or II l	ons ne allotted	that end for t	his paper, ti the Supervi Parts B of t	the the ans sor. he question	wers to the two on paper from Only Part	vo Parts A, B to a the Examination Question NO 1 2	ogether so that on Hall.
rt B Essay (* Answe * At the A is or * You ar Pape Pape	ent for the ans pages 6 – 7) or both questic end of the tim n top and han- re permitted to re I er II	ons ne allotted	that end for t	his paper, ti the Supervi Parts B of t	the the ans sor. he question	wers to the two on paper from Only Part A	vo Parts A, B to a the Examination Question NO 1 2 3	ogether so that on Hall.
rt B Essay (* Answe * At the A is or * You ar Pape Pape	ent for the ans (pages 6 – 7) or both question end of the time top and han- re permitted to r I or II l	ons ne allotted	that end for t	his paper, ti the Supervi Parts B of t	the the ans sor. he question	wers to the two on paper from Only Part A B	vo Parts A, B to a the Examination Question NO 1 2 3	ogether so that on Hall.

Scanned by CamScanner

	Atom	e following table consider The electron pair	Hybridization	Shape	Oxidation
		geometry around the atom		Shape	number
	N				
	с				
L					
v)	Sketch the sl	hape of the above molecule	e giving the approxim	nate bond angles	
					-
		×			(45 Ma
Othe (Re	er terms that lative molec	mpounds CCl ₄ , NH ₃ , NaCl must be used. ular mass, C - Cl, N-H	, surface area, H bo	onds, London fo	
Othe (Re larg	er terms that lative molec ve, smaller , p	must be used. ular mass, C – Cl, N–H polarizability, polarizing po	, surface area, H bo ower, ion – dipole, in	onds, London fo teractions)	rces, ionic latt
Othe (Re larg	er terms that lative molec e, smaller, p of the abov	must be used. ular mass, C – Cl, N–H polarizability, polarizing pe ve compounds,	, surface area, H be ower, ion – dipole, in and NH ₃ ex	onds, London fo teractions) ist as molecules	rces, ionic latt
Othe (Re larg	er terms that lative molecter, smaller, p of the abov	must be used. ular mass, C – Cl, N–H polarizability, polarizing po re compounds, is a polar molecule and	, surface area, H be ower, ion – dipole, in and NH ₃ ex there are	onds, London fo teractions) ist as molecules betwee	orces, ionic latt a. Out of those on those molect
Othe (Rel larg Out 	er terms that lative molecter, smaller, p of the above n though	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing po</i> <i>re</i> compounds, is a polar molecule and 	, surface area, H be ower, ion – dipole, in and NH ₃ ex there are covalent bond,	onds, London fo teractions) ist as molecules betwee is a no	orces, ionic latt a. Out of those on those molect
Othe (Rel larg Out 	er terms that lative molecter, smaller, p of the above n though	must be used. ular mass, C – Cl, N–H polarizability, polarizing po re compounds, is a polar molecule and	, surface area, H be ower, ion – dipole, in and NH ₃ ex there are covalent bond,	onds, London fo teractions) ist as molecules betwee is a no	orces, ionic latt a. Out of those on those molect
Othe (Re larg Out Eve The	er terms that lative molect re, smaller, p of the above n though refore only .	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing po</i> <i>re</i> compounds, is a polar molecule and 	, surface area, H bo ower, ion – dipole, in and NH ₃ ex there are covalent bond,	onds, London fo ateractions) ist as molecules betwee is a no molecules.	orces, ionic latt a. Out of those an those molect n – polar molect
Othe (Re larg Out Eve The	er terms that lative molect re, smaller, p of the above n though refore only .	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing po</i> <i>re</i> compounds, is a polar molecule and 	, surface area, H bo ower, ion – dipole, in and NH ₃ ex there are covalent bond, are there between the	onds, London fo teractions) ist as molecules betwee is a no molecules.	orces, ionic latt a. Out of those on those molect n – polar molect f CCl4 molecul
Othe (Re larg Out Eve The The	er terms that lative molect e, smaller, p of the above n though refore only .	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing polarizability, polarizing polar</i> <i>re</i> compounds, <i>is</i> a polar molecule and 	, surface area, H bo ower, ion – dipole, in and NH ₃ ex there are covalent bond, are there between the lar attractive forces	onds, London fo teractions) ist as molecules betwee is a no molecules. o to be more stron	orces, ionic latt a. Out of those on those molect n – polar molect of CCl4 molecul nger. As a resul
Othe (Re larg Out Eve The The relai	er terms that lative molect e, smaller, p of the abov n though refore only .	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing polarizing polarizability, polarizing polar</i> <i>re</i> compounds, <i>is a polar molecule and</i> <i></i>	, surface area, H be ower, ion – dipole, in and NH ₃ ex there are covalent bond, are there between the llar attractive forces n temperature while	onds, London fo iteractions) ist as molecules betwee is a no molecules. o to be more stron	orces, ionic latt a. Out of those on those molect n – polar molect of CCl4 molecul nger. As a resul is a gas.
Othe (Rel larg Out Eve The The rela this NaC	er terms that lative molect e, smaller, p of the above n though refore only . tively large of Cl and NaF of	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing polarizing polarizability, polarizing polar</i> <i>is a polar molecule and</i> <i>is a polar molecule and</i> <i>is a polar molecule and</i> <i>and</i> <i>causing the inter – molecule</i> <i>is a liquid at roor</i>	, surface area, H be ower, ion – dipole, in and NH ₃ ex there are covalent bond, are there between the llar attractive forces n temperature while Since race	onds, London fo iteractions) ist as molecules betwee is a no molecules. o to be more stron dius of Cl ⁻ is	f CCl4 molecul nger. As a resul is a gas.
Othe (Re larg Out Eve The The rela this, NaC	er terms that lative molect re, smaller, p of the above n though refore only . tively large cl and NaF of cof F,	must be used. <i>ular mass, C – Cl, N–H</i> <i>polarizability, polarizing polarizability, polarizing polar</i> <i>re</i> compounds, <i>is a polar molecule and</i> <i>is a polar molecule and</i> <i>is a polar molecule and</i> <i>is a polar molecule and</i> <i>and</i> <i>causing the inter – molecule</i> <i>is a liquid at roor</i> <i>exist as</i>	, surface area, H be ower, ion – dipole, in and NH ₃ ex there are covalent bond, are there between the llar attractive forces in temperature while 	onds, London fo iteractions) ist as molecules betwee is a no molecules. o to be more stron dius of Cl ⁻ is Therefore, the i	f CCl4 molecul nger. As a resul is a gas.

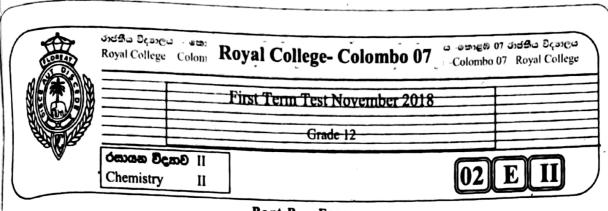
Royal College – Colombo 07

S

Grade 12 Chemistry II/2018 December

.

Scanned by CamScanner


	 Na₂C₂O₄ is considered as a "primary standard" i) State two main characteristics of a "primary standard" 							
	ii) A 250 cm ³ of 0.1 moldm ⁻³ Na ₂ C ₂ O ₄ solution to be prepared using pure Na ₂ C ₂ O ₄ powder.							
	I. Underline the glassware and equipment needed to prepare the above solution from the list given bellow.							
	• Four beam balance • 250cm ³ measuring cylinder							
	 250 cm³ volumetric flask watch glass 250 cm³ titrimetric flask. 							
	• wash bottle							
	(Note : marks will be deducted for each wrong selection)							
	II. Calculate the mass of pure $Na_2C_2O_4$ needed to prepare the above solution. (Na - 23, C - 12, O - 16)							
	· · · · · · · · · · · · · · · · · · ·							
	(35 Mark							
b)								
	 25.00 cm³ of the Na₂C₂O₄ solution was acidified with dill H₂SO₄ acid and warmed. Then it w titrated with the given KmnO₄ solution. 							
	titrated with the given KmnO ₄ solution.							
	 titrated with the given KmnO₄ solution. State the glassware / apparatuses that must be used to measure each of the following the following state that must be used to measure each of the followin							
	 titrated with the given KmnO₄ solution. i) State the glassware / apparatuses that must be used to measure each of the following solutions. I. dil. H₂SO₄ solution- 							
	 titrated with the given KmnO₄ solution. i) State the glassware / apparatuses that must be used to measure each of the following solutions. I. dil. H₂SO₄ solution- 							
	 titrated with the given KmnO₄ solution. i) State the glassware / apparatuses that must be used to measure each of the followin solutions. I. dil. H₂SO₄ solution- II. Na₂C₂O₄ solution - 							
	 titrated with the given KmnO₄ solution. i) State the glassware / apparatuses that must be used to measure each of the followin solutions. I. dil. H₂SO₄ solution- II. Na₂C₂O₄ solution - III. KmnO₄ solution - 							
	 i) State the glassware / apparatuses that must be used to measure each of the followin solutions. i) dil. H₂SO₄ solution- II. Na₂C₂O₄ solution - III. KmnO₄ solution - III. KmnO₄ solution - 							

,

Grade 12 Chemistry II/2018 December

•

	5
iii	Write the balanced chemical equations for the following reactions related to the above titrat. I. Oxidation half reaction.
	II. Reduction half reaction.
	III. Overall ionic reaction.
	(40 M
pre	g of a solid mixture which is only consisted of Na_2CO_3 and $Na_2C_2O_4$ was dissolved in was pare a 250 cm ³ solution . 25.00 cm ³ of 0.025 moldm ⁻³ KmnO ₄ solution was required to mpletely with 25.00 cm ³ of the above solution mixture in an acidic medium. (Na - 23, O - 16, C - 12)
i	What is the number of moles of MnO_4^- moles reacted?
ii)	What is the mass of Na ₂ C ₂ O ₄ in the initial mixture?
ii)	Calculate the number of moles of Na ₂ CO ₃ in the initial mixture?
	(25 N

Part B – Essay Answer all the question. Each question carries 150 marks

(3) a) i) Complete the table given below after copying it into your answer script.

	Species	Electron pair geometry (A)	Shape (B)	Mark whether presence (✓) or absence (X) of a net dipole moment (C)
I	SF₄			
II	CI F ₄			
Ш	NH ₂			
IV	NO ₃			
v	ICl ₂			

- ii) Explain reasons for the following observations.
 - I. The melting point of Ca is greater than that of K.
 - The melting points of the compounds NaF, NaCl and NaBr varies in the order of NaF > NaCl > NaBr.
 - II) First ionization energy of Be is greater than that of B.
 - III) The ionic radius of N^{3-} is greater than the atomic radius of Ne.


(70 Marks)

b) Balance the chemical equations that are given below.

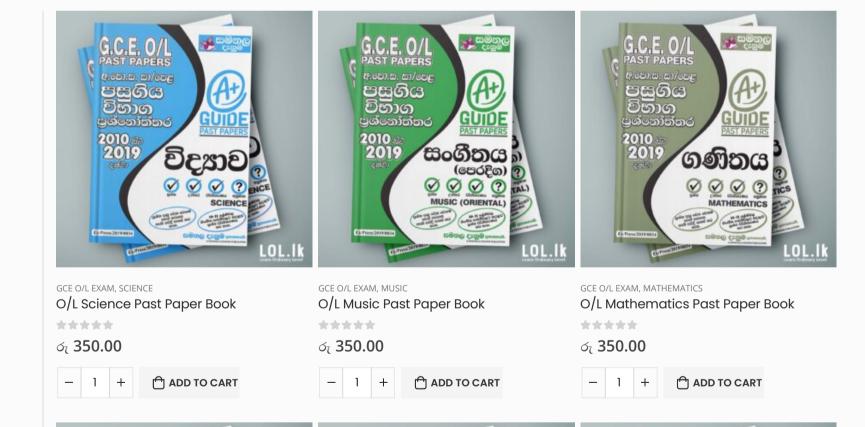
i) $C + H_2SO_4$ \longrightarrow $CO_2 + SO_2 + H_2O$ ii) $SnO_2 + HI$ \longrightarrow $SnI_2 + I_2 + H_2O$ iii) $KOH + KNO_3 + Zn$ \longrightarrow $K_2ZnO_2 + NH_3 + H_2O$ iv) $H_2SO_4 + Na_2Cr_2O_7 + NaBr$ \longrightarrow $Cr_2(SO_4)_3 + Br_2 + Na_2SO_4 + H_2O$

 (NH₄)₂Cr₂O₇(s) → Cr₂O₃(s) + N₂(g) + 4 H₂O (g) (NH₄)₂CO₃(s) → 2NH₃(g) + CO₂(g) + H₂O(g) iii) Calculate the number of moles of each component in the initial mixture. iv) · Calculate the total mass of H₂O evolved. (40 M₄) (41) a) i) State Charles's law in words. ii) Starting from the ideal gas equation, derive an expression for the Charles's law. iii) Volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calcupressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume total pressure of the gas mixture at 27°C temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) 		7
 (NH₄)₂Cr₂O₇(s) → Cr₂O₃(s) + N₂(g) + 4 H₂O (g) (NH₄)₂CO₃(s) → 2NH₃(g) + CO₂(g) + H₂O(g) iii) Calculate the number of moles of each component in the initial mixture. iv) · Calculate the total mass of H₂O evolved. (40 M₁ 4) a) i) State Charles's law in words. ii) Starting from the ideal gas equation, derive an expression for the Charles's law. iii) Volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calcupressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume total pressure of the gas mixture at 27°C temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x10⁵ Pa. 	c)	When 6.36 g of a solid mixture of $(NH_4)_2Cr_2O_7$ and $(NH_4)_2CO_3$ only, was subjected decomposition by heat, the mass loss was 4.84 g. $(N - 14, Cr - 52, O - 16, H - 1)$
 iii) Calculate the number of moles of each component in the initial mixture. iv) · Calculate the total mass of H₂O evolved. (40 M₁ 4) a) i) State Charles's law in words. ii) Starting from the ideal gas equation, derive an expression for the Charles's law. iii) Volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calculate of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume of the gas mixture at 27°C temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x 10⁵ Pa. 		
 (40 M₁ (41 M₁ (4		$(NH_4)_2CO_3(s) \longrightarrow 2NH_3(g) + CO_2(g) + H_2O(g)$
 iv) Calculate the total mass of H₂O evolved. (40 M₄) a) i) State Charles's law in words. ii) Starting from the ideal gas equation, derive an expression for the Charles's law. iii) Volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calcupressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Valter total pressure of the gas mixture at 27°C temperature was 1.5 x 10⁵ Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x 10⁵ Pa. 		iii) Calculate the number of moles of each component in the initial mixture.
 (4) a) i) State Charles's law in words. ii) Starting from the ideal gas equation, derive an expression for the Charles's law. iii) Volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calcurpressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Va The total pressure of the gas mixture at 27°C temperature was 1.5 x 10° Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x10° Pa. 		
 ii) State Charles's law in words. iii) Starting from the ideal gas equation, derive an expression for the Charles's law. iii) Volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calcurpressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume to the total pressure of the gas mixture at 27°C temperature was 1.5 x 10⁵ Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x10⁵ Pa.) a) i)	(40 Marky
 volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calcurpressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume to tal pressure of the gas mixture at 27°C temperature was 1.5 x 10⁵ Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x 10⁵ Pa. 	-, ,	
 volume of a constant mass of a gas at 127°C temperature was increased by 20% under compressure. What is the new temperature of the gas in degree Celsius? iv) At 27°C, 0.25 mol of a certain gas is in a closed vessel having a volume of 4.157dm³. Calculate pressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume of the total pressure of the gas mixture at 27°C temperature was 1.5 x 10⁵ Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x 10⁵ Pa. 		Starting from the ideal gas equation, derive an expression for the Charles's law.
 pressure of the gas. v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Va The total pressure of the gas mixture at 27°C temperature was 1.5 x 10⁵ Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x10⁵ Pa. 		pressure. What is the new temperature of the gas in degree Q to be a
 v) A mixture of gases containing Ne and N₂ only are in a vessel having a fixed volume of Volume to total pressure of the gas mixture at 27°C temperature was 1.5 x 10⁵ Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then following reaction took place inside the vessel. 3Mg(s) + N₂(g) → Mg₃N₂(s) The mass of the Mg₃N₂(s) formed (negligible volume) was 20 g. The new pressure inside vessel at 227°C temperature remained at 1.5 x10⁵ Pa. 	,	pressure of the gas.
	v)	A mixture of gases containing Ne and N ₂ only are in a vessel having a fixed volume of Vdm ³ . The total pressure of the gas mixture at 27°C temperature was 1.5×10^5 Pa. After adding excess of heated Mg, the temperature was increased up to 227°C. Then the following reaction took place inside the vessel. $3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s)$ The mass of the Mg ₃ N ₂ (s) formed (negligible volume) was 20 g. The new pressure inside the vessel at 227°C temperature remained at 1.5×10^5 Pa.
i) Calculate the number of moles of Mg_3N_2 formed.		in mores of mores of megny formed.
 ii) What is the number of moles of N₂ in the initial mixture? iii) Calculate the partial pressures of Ne and N₂ gasses at 27°C temperature separately. 		
iv) What is the total mass of the initial gas mixture at the beginning?		I provide of the and the Busies at 27 C temperature separately.
(100 M		(100 Marks)
 cm³ solution of 0.01 moldm⁻³ I₂ (in KI). (SO₃²⁻ + I₂ → SO₄²⁻ + I⁻) A 40cm³ volume of Na₂SO₃ solution having a concentration of 0.02 moldm⁻³ was require react completely with the remaining I₂. Calculate the number of moles of each components initial solid mixture. (Na - 23, S - 32, O - 16) 	b)	$(SO_3^{2^2} + I_2 \longrightarrow SO_4^{2^2} + I^2)$ A 40cm ³ volume of Na ₂ SO ₃ solution having a concentration of 0.02 moldm ⁻³ was required a react completely with the remaining I ₂ . Calculate the number of moles of each components in the initial solid mixture. (Na - 23, S - 32, O - 16)
$(S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + I^-)$		
(50 M		(50 Marks)

.

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500

More than 1000+ Papers For all major Subjects and mediums



ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

GCE O/L Exam

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P... ★★★★★

*σ*₁ 350.00