ක / හක්ෂිලා මධා විදහාලය - තොරණ

Taxila Central College - Horana

02 S 1

අඛාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2018 - ජූනි පෙරහුරු පරිකණය General Certificate of Education (Ad. Level)Examination, 2018, July Grade 13

රසායන විදාහව I

පැය දෙකයි

උපදෙස්

- ආවර්තිතා වගුවක් සපයා ඇත.
- මෙම ප්‍රශ්න පත්‍රයේ පිටු 10 කින් යුක්ත වේ.
- සියලුම ප්‍රශ්න වලට පිළිතුරු සපයන්න.
- ගණක යන්තු භාවිතයට ඉඩදෙනු නොලැබේ.
- උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම ලියන්න.
- උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- 9 01 සිට 50 ලෙක් එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරු වලින් නිවැරදි භෝ ඉතාමත් ගැළපෙන පිළිතුර තෝරා ගෙන එය උත්තර පතුයේ පිටුපස දක්වෙන උපදෙස් පරිදි කනිරයක් (x) යෙදෙ දක්වන්න.

සර්වනු වායු නියනය $R = 8.314 J K^{-1} mol^{-1}$ ඇවගාඩරෝ නියනය $N_A = 6.022 \times 10^{23} mol^{-1}$ ප්ලෑන්ක්ගේ නියනය $h = 6.626 \times 10^{-34} J s$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 m s^{-1}$

()]. ඉලෙක්ටෝනයේ ආරෝපණය සොයා ගැනීමේ නෞරවය හිමි වන්නේ,

(I) රේ. <mark>ජේ. තොම්ස</mark>න්

(2) ජේම්ස් වැඩවික්

(3) අර්නස්ට රදර්ෆඩ

(4) ආර්. ඒ. මිලිකන්

(5) නිල් බේර්

 $m_{\rm s}=1$ වන ලෙස කිඛිය හැකි උපරිම ඉලෙක්ටෝන සංඛාාව වනුයේ,

- (1) 2
- (2) 1
- (3) 3
- (4) 6
- (5) 4

03. ආම්ලික මාධාපයකදී M nO₄ අයන සමග FeC₂O₄ සිදු කරන ප්‍රතිකියාවට අදාළ තුලින ප්‍රතිකියාව a MnO₄ + b FeC₂O₄ + cH⁺ -----> d Mn²⁺ + e Fe³⁺ + fCO₂ + gH₂O

ලෙස දක්විය හැක. මෙහි a, b හා c සඳහා අදාළ සරලම පූර්ණ සංඛාාවන් පිළිවෙළින් නිවැරදිව දක්වා ඇත්තේ,

- (1) 12, 3, 2
- (2) 3, 2, 6
- (3) 3, 5, 24

- (4) 5, 24, 3
- (5) 12, 6, 3

🖟 පහතු වගන්හි වලින් සපාව වන්නේ,

- (I) ආචර්තයක් මස්තේ ඉදිරියට යන විට ඔක්සයිඩ වල හැෂ්මික ගුණ වැඩිවේ.
- (2) කපාර ලෝහ බයිකාබනෝට සියල්ල ඝන නත්ත්වයෙන් ලබාගත හැක.
- (3) SbCl3 ජල විච්ඡේදනය වූ විට සුදු පැහැති අවක්ෂේපයක් ඇති වේ.
- (4) ක්ෂාර ලෝහ කාබතෝට සියල්ල තාප ස්ථායි වේ.
- (5) ලෝහ ඔක්සයිඩ සියල්ල භාෂ්මික වේ.

C2H5 CH3 - C≅C - C - CH3 හි නිවැරදි IUPAC භාමය වක්තේ. 05. Br (1) 25cm³, 25ct (4) 4-cthyl-4-bromopent-2-yne (3) 25cm³, 12.5 (1) 2-bromo-2- ethylpent -3-yne (5) 4-bromo-4-methyl-2-hexyne (2) 3-bromo-3- methylhex-4-ync (3) 12.5cm³, 2. (3) 2-ethyl-2-bromopent-3-yne 06. 25° C දී $ZnS_{(s)}$ හි දුාවාහා ගුණිතය K_{sp} වේ. $H_2S_{(sq)}$ හි ආමලික විකටන නියත පිළිවෙලින් K_1 හා $K_{2-\theta 0}$ A OP PEROPE agala Best $ZnS_{(s)} + 2H^{+}_{(aq)} = Zn^{2+}_{(aq)} + H_2S_{(aq)}$ र्ष वधन्त्र करी. යන පුතිතියාවේ සමතුලිතතා නියතය Kc වනුයේ (1) [Fe(H2O)s (3) [Fe(H2O)5 (2) $K_1K_2K_sp$ (1) (5) [Fe(H2O) (4) KNO3 688 07. අ**ම**ල - භා**ම**ම පුතිකිුයා කිහිපයක සම්මත එන්නැල්පි විපර්යාස පහත දක්වේ. AHO/KJmol-1 හෂ්මය අම්ලය -57 **NaOH** HCl

-68 **NaOH** P -114 වඩා වැඩිවේ. Q H₂SO₄ -51 KOH R අනුපිළිවෙලින් P, Q, R ව්ය හැක්කේ, (1) HF, Ba(OH)₂, CH₃COOH (2) HF, CH₃COOH, Mg(OH)₂ (3) HNO₃, H₂CO₃, Ca(OH)₂ (4) Ba(OH)₂, H₂SO₄, HF (5) HBr, Ba(OH)2, NaOH

08. A නම වායුවක 1 mol පුමාණයක් පරිමාව වෙනස් වන භාජනයක් තුලදී 27⁰C උෂ්ණන්වයේ දී ^{2x | 0⁹|1} <mark>පීඩනයක් ඇති කරයි. එම මඳුනට තවත් B නම A සම</mark>ඟ පුතිකියා නොකරන වායුවක 1.5mol පුමාණයන් ^{එම්} කරනු ලැබේ. උෂ්ණත්වය ඉහළ දමන විට භාජනයේ පරිමාව පදගුණයක් ද පිඩනය 4 x 10⁵Pa ද ^{විය. බල්} නව උෂ්ණත්වය කොපමණද?

(1) 800°C

(2) 500° C

(3) 527°C

(4) 480°C

(5) 207⁰C

කුපවියෝජන

(1) 45.92.7

9හිතියාවක්

රවුනිංහරය

 ΔG

(1) 000 (S) 0362

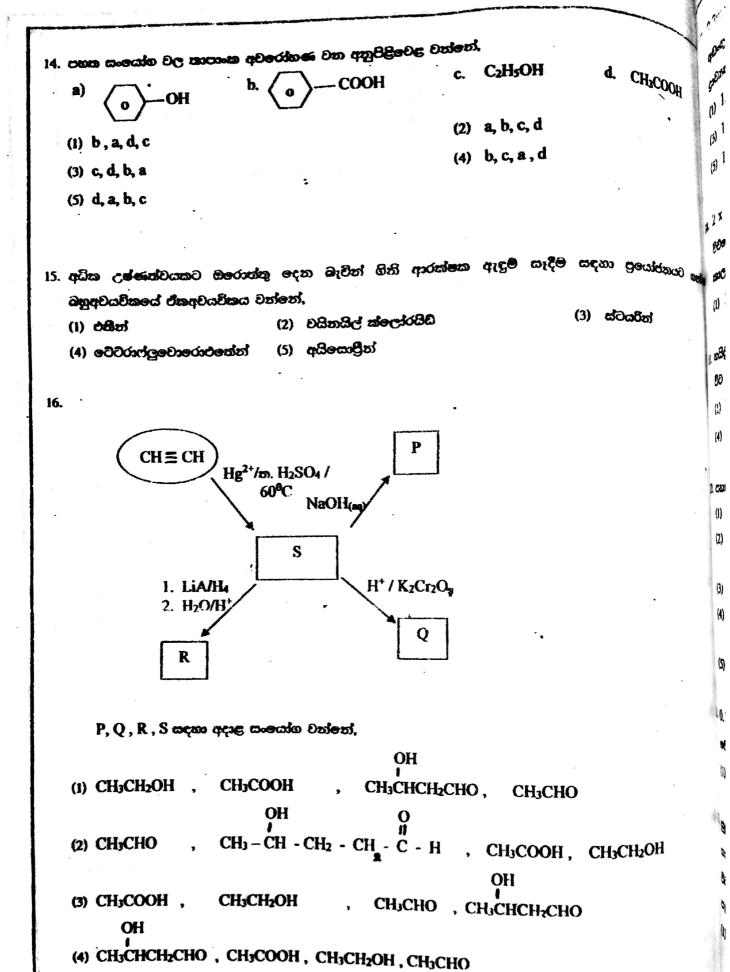
(B) Was

(I) CO85 D 000

1 00 2

Boarde

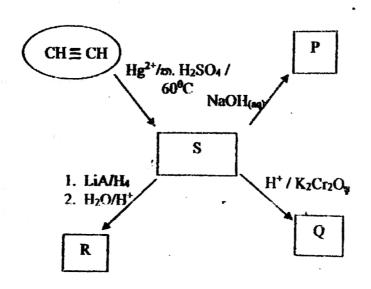
(I) X qu


(S) X 97(

60¢3

® සුලෝයෙකු විසින් කරන ලද අනුමාපන 2ක් සම්බන්ධයෙන් දී ඇති දක්ක යොදාගෙන VA හා VB වලට අදාළ තිවැරදි අගයන් වන්නෝ. THE XIELL ම්යුරෙව්වුවේ ඇසි දුවණය B 0.1M H2SO4 අනුමාපන ප්ලාස්කුවේ ඇති දුාවණය 0.1M Na₂CO₃ 0.1M Na₂CO₃ (25.00ml) 0.1M H₂SO₄ (25,00ml) පිතොප්තැලින් ම්පුරේව්ටු පාඨාංකය පිතොප්තැලින් V_{A} (i) 25cm³, 25cm³ $(2) 25 \text{cm}^3, 50 \text{cm}^3$ (3) 25cm³, 12.5cm³ (4) 50cm^3 , 25cm^3 (5) 12.5cm³, 25cm³ _{().} A යනු අ<mark>ෂ්ඨතල</mark>ීය ජාතමිනියක් ඇති සංකීර්ණ අයනයකි. A හි සංගත ඉග්ලයේ ඇති වි<mark>ශේෂයන් හි පරමාණුක</mark> සංයුතිය පිළිවෙළින් FeO₅SH₁₀NC වේ. Fe හි ඔ'කරන අංකය +3 වන අතර සංකීර්ණයේ ලිගන කාණ්ඩ වර්ග 2ක් අඩංගු වේ. සංකීර්ණ අයනයේ වනුන සුනුය වන්නේ, (I) [Fe(H₂O)₅ (SCN)]³⁺ (2) $[Fe(H_2O)_5 (SCN)]^{2+}$ (3) [Fe(H₂O)₅ (SCN)] (4) [Fe(H₂O)₅ (SCN)]⁻ (5) [Fe(H₂O)₅ (SCN)]² i. KNO3 සහ Ca(NO3)2 1:2 මවුල අනුපාතයෙන් අඩංගු වන මිශුණයක් නියන ස්කන්ධයක් ලැබෙන තුරු තාපච්ඡයප්ජනයට ලක්කළ විට අඩු වූ ස්කන්ධ පුතිශනය වනුයේ, (K= 39, N = 14, O = 16) (1) 45.92% (2) 54.08% (3) 40.32% (4) 60.642 (5) 56.02Zඉතිකියාවක් 298K හා 1 x10⁵Pa. පීඩනයේ දී ස්වයංසිද්ධ වන අතර එය පහළ උ<mark>ෂ්ණත්වයේ දී හා පීඩනයේ දී</mark> ^{ස්වයං}සිද්ධ නොවේ. මෙම පුතිකිුයාව සඳහා 298K. හිදි හා 1 x10⁵Pa. පීඩනයේ දී පහත සඳහන් කුමක් සතුළ **60**¢? ΔG ΔΗ ΔS (I) Q₂₀ ධන ධන (2) that C)a456 ത്രത്ത് (3) ධත C3 95 C32-36 (4) taes ධන ධන (5) toses ದಾರ್ ධන ^X තම කාබතික සංයෝගයක් ඇමෝනියා AgNOා සමඟ පුතිකියා කර්න අතර Ag⁺ අයන මස්සිභරණය $^{4\sigma_{
m DIRM}OCS}$. හවද X , ${
m ZnC}l_2$ / ${
m HC}l_-$ සමග සපණිකව ආව්ලතාවයක් ලබා දෙයි. X සම්බන්ධයෙන් සතා වන්නේ, (I) X ඇල්ඩිහයිඩයක් වන අතර සෘතියික කාබන් පරමාණුවක් හා බැදුණු OH කාණ්ඩයක් ඇත. (2) X ඇල්කොහොලයක් විය හැකි අතර කාබන් දාමයේ නිත්ව මන්ධනයක් ඇත. (3) X ඇල්ඩිනයිඩයක් වන අතර කාබන් දාමයේ අහුස්ථ <mark>නින්ව බන්ධනයක් ඇත.</mark> (4) X තෘතියික ඇල්කෙනෙලයක් වන අතර කාබන් දාමයේ අනුස්ථ නිත්ව බන්ධනයක් ඇත. (5) X් කෘතියික ඇල්කයිල් හේලයිඩයක් වන අතර කාබන් දාමයේ අනුස්ථ නිස්ව බන්ධයක් ඇත.

10591


004

OH

(5) CH2CH - CH2CHO , CH3CHO , CH3COOH , CH3CH2OH

16.

P, Q , R , S සඳහා අදාළ සංයෝග වන්නේ,

(4) ටේට්රාෆ්ලුචොරොඑතේන් (5) අයිසොපීන්

(1) CH₂CH₂OH , CH₃COOH , CH₃CHCH₂CHO , CH₃CHO
OH O

(2) CH₃CHO , CH₃-CH - CH₂ - CH - C - H , CH₃COOH , CH₃CH₂OH

(3) CH₃COOH , CH₃CH₂OH , CH₃CHO , CH₃CHCH₂CHO
OH
(4) CH₃CHCH₂CHO , CH₃COOH , CH₃CHO , CH₃CHO OH
(5) CH₃CH - CH₂CHO , CH₃CHO , CH₃COOH , CH₃COOH , CH₃CH₂OH

0.00 (C.O. (C.	
$q \hat{\Omega}$ ංඳ $C \hat{O}_3^{2-}$ සාන්දුණය $2.5 \times 10^{-8} \; ext{moldm}^{-3}$ දාවාතා ඉණිනය වන්නේ	වූ විට අවක්ෂේප වීම ඇරුණේ. අදාළ උණ්ණේවගේ දී CaCO3 හි
(1) 1.25 x 10 ⁻⁶ mol ² dm ⁻⁶	(2) $5 \times 10^{-9} \text{ mol}^2 \text{dm}^{-6}$
(3) 1 x 10 ⁻⁹ mol ² dm ⁻⁶ (5) 1.25 x 10 ⁻¹⁷ mel ² dm ⁻⁶	(4) $5 \times 10^{-7} \text{ mol}^2 \text{dm}^{-6}$
_{18. 2 x 10⁻⁵}	5cm³ පරි⊛∵ික් ප්ලැවීනම් ඉලෙක්වෙුේඩ දෙකක් යොදා විදුසුත්
Machine man of matter of day	Cli මලස කැලකා්ඩලයහි තැන්පත් වීම සදහා අන්පර 0.65 ක
කාලයක් තුළ Q ධාරාචක් යැවිය යුතු විය. Q ධා	රාව කොපමණද? (1F = 96500cmol⁻¹)
(1) 10^{-2} A (2) 10^{-3} A (3) 10^{-1}	A (4) $10 A$ (5) $10^2 A$
	බා වර්ණාවලියේ තරංග ආයාමය වැඩිවන ආකාරයට සකස් කළ
විට නිවැරදි පුකාශය වන්නේ.	
(1) $H_a < H_\beta < H_\gamma < H_\delta$ (2) $H_\delta < H_\gamma$	$< H_{\beta} < H_{\alpha} $ (3) $H_{\beta} < H_{\alpha} < H_{\delta} < H_{\gamma}$
(4) $H_{\delta} < H_{\beta} < H_{\alpha} < H_{\gamma}$ (5) $H_{\gamma} < H_{\beta}$	$<$ H_{δ} $<$ H_{ext}
🗵 පහත පුකාශ වලින් අසතා වන්නේ.	• •
	ළට සමාන වේ.
(I) මූලික පුතිකිුයා වල අණුකතාව පුතිකිුයා පෙ	ළට සමාන වේ. ත් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්තුණය නනි පියවරකින්
(I) මූලික පුතිකිුයා වල අණුකතාව පුතිකිුයා පෙ	ළට සමාන වේ. ත් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්තුණය නනි පියවරකින්
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙළ (2) පුතිකියාවක් යම් පුතිකියකයක් අනුබද්ධයෙන සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්නැල්පි විප 	ා ශුතා පෙළ නම් එම පුතිකියාවේ යාන්තුණය නනි පියවරකින් එයාසය වෙනස් නොකරයි.
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙළ (2) පුතිකියාවක් යම් පුතිකියකයක් අනුබද්ධයෙන සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්නැල්පි විප 	ත් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්කුණය නනි පිය <mark>වරකින්</mark>
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙළ (2) පුතිකියාවක් යම් පුතිකියකයක් අනුබද්ධයෙන් සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්තැල්පි විස (4) කිසියම් රසායනික පුතිකියාවක පුතිකියක ස	ා ශුතා පෙළ නම් එම පුතිකියාවේ යාන්තුණය නනි පියවරකින් එයාසය වෙනස් නොකරයි.
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙල (2) පුතිකියාවක් යම් පුතිකියකයක් අනුබද්ධයෙන් සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්තැල්පි විස (4) කිසියම් රසායනික පුතිකියාවක පුතිකියක සවේ. (5) පුතිකියක හෝ එල වල ඒකීය කාලයක දී සිදු 	ත් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්කුණය නනි පියවරකින් ව්යාසය වෙනස් නොකරයි. හන්දුණය අර්ධයක් වීමට ගතවන කාලය අර්ධ ජීව කාලය නම් වෙන සාන්දුණයේ වෙනස් වීම සීකුතාව ලෙස හැඳින්වේ.
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙල් (2) පුතිකියාවක් යම් පුතිකියකයක් අනුබද්ධයෙන් සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්තැල්පි විස් (4) කිසියම් රසායනික පුතිකියාවක පුතිකියක සවේ. (5) පුතිකියක හෝ එල වල ඒකීය කාලයක දී සිදු (4) බාoldm⁻³ H_nAඅමලය 20.00ml ක් සම්පූර්ණමේ. n හි අගය වනුයේ, 	ත් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්කුණය නනි පියවරකින් ව්යාසය වෙනස් නොකරයි. ගත්දුණය අර්ධයක් වීමට ගතවන කාලය අර්ධ ජීව කාලය නම්
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙලි (2) පුතිකියාවක් යම් පුතිකියාකයක් අනුබද්ධයෙන් සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්තැල්පි විස් (4) කිසියම් රසායනික පුතිකියාවක පුතිකියක සවේ. (5) පුතිකියක හෝ එල වල ඒකීය කාලයක දී සිදු වේ. (4) බාල්යක හෝ එල වල ඒකීය කාලයක දී සිදු වේ. (5) පුතිකියක හෝ එල වල ඒකීය කාලයක දී සිදු වේ. (6) අගය වනුයේ. (7) n ව අගය වනුයේ. (8) n ව අගය වනුයේ. (9) n = 3 (3) 	් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්කුණය නනි පියවරකින් ව්යාසය වෙනස් නොකරයි. හන්දුණය අර්ධයක් වීමට ගතවන කාලය අර්ධ ජීව කාලය නම් වුවන සාන්දුණයේ වෙනස් වීම සීකුතාව ලෙස හැඳින්වේ. යන් උදාසීන කිරීමට 0.1moldm ⁻³ Ca(()H)2 30.00m/ ක් අවශා n=1 (4) $n=4$ (5) $n=5$
 (1) මූලික පුතිකියා වල අණුකතාව පුතිකියා පෙලි (2) පුතිකියාවක් යම් පුතිකියාකයක් අනුබද්ධයෙන් සිදු වේ. (3) උත්පේරක මගින් පුතිකියාවක එන්තැල්පි විස් (4) කිසියම් රසායනික පුතිකියාවක පුතිකියක් සවේ. (5) පුතිකියක හෝ එල වල ඒකීය කාලයක දී සිදු වේ. (4) බාග්dm⁻³ H_nAඅමලය 20.00ml ක් සම්පූර්ණමේ. n හි අගය වනුයේ, (1) n = 2 (2) n = 3 (3) 	් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්කුණය නනි පියවරකින් ව්යාසය වෙනස් නොකරයි. හන්දුණය අර්ධයක් වීමට ගතවන කාලය අර්ධ ජීව කාලය නම් වෙන සාන්දුණයේ වෙනස් වීම සීකුතාව ලෙස හැඳින්වේ. යන් උදාසීත කිරීමට 0.1moldm ⁻³ Ca(()H)2 30.00m/ ක් අවශාග n=1 (4) $n=4$ (5) $n=5$
(1) මූලික පුතිකුියා වල අණුකතාව පුතිකුියා පෙර (2) පුතිකුියාවක් යම් පුතිකුියාකයක් අනුබද්ධයෙන් සිදු වේ. (3) උත්පේරක මගින් පුතිකුියාවක එන්තැල්පි විස (4) කිසියම් රසායනික පුතිකුියාවක පුතිකුියක ස වේ. (5) පුතිකුියක හෝ එල වල ඒකීය කාලයක දී සිදු වේ. n හි අගය වනුයේ, (1) n = 2 (2) n = 3 (3)	් ශුතා පෙළ නම් එම පුතිකියාවේ යාන්කුණය නනි පියවරකින් ව්යාසය වෙනස් නොකරයි. හන්දුණය අර්ධයක් වීමට ගතවන කාලය අර්ධ ජීව කාලය නම් වෙන සාන්දුණයේ වෙනස් වීම සීකුතාව ලෙස හැඳින්වේ. යන් උදාසීන කිරීමට 0.1moldm ⁻³ Ca(QH)2 30.00m/ ක් අවශා

්\හැති අවක්ෂේපයක් ලැබීණ. මෙම ලවණය වන්නේ.

(2) AlCl₃

(1) ZnC12

5

(5) NaAIO2

(4) MgSO4

(3) ZnSO₄

23. විනාකිරි වල ඇති අමලය CH3COOH,වේ. මෙම විනාකිරි සාමපලයෙන් 6.00g ක් සාන්දුමෙය () . l moldme called NaOH සමඟ අනුමාපනය කිරීමේ දී අන්ත ලක්ෂයේ දී NaOH 38.50cm³ වැය විය. විනාකිරි සාමපලයේ ඇම CH3COOH අමලයේ ස්කන්ධ පුතිශකය වන්නේ,

(1) 38.50%

(2) 3.85%

(3) 1.925.

(4) 19.25%

(5) නිවැරදි පිළිතුරක් ද නැත.

24. ලුවිස් අම්ලයක් වන්නේ කුමක්ද?

(I) BaC'2

(2) NaCl

(3) NH₃

(4) AlCl₃

(5) CCI4

25. මින් කුමන සංයෝගය සජලනයෙන් කිටෝනයක් ලැබේද?

(1) H - CEC - H

(2) $CH_2 = CH_2$

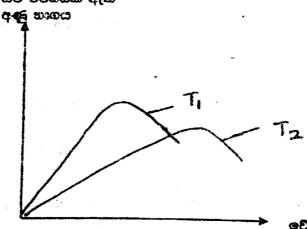
(3) $CH_3 CH = CH_2$

(4) CH₃ - C≡C-H

(5) $CH_3 - CH = CH - CH_3$

26. CC I_4 හා ජලය (H₂O) අතර X නම දුවනයේ වනාප්ති සංගුණකය 40කි. එහිනෙක ස්පර්ශ වී තියන උෂ්ණත්වසේ පවතින CC I_4 100cm 3 ක් හා H₂O 50cm 3 තුළ X හි 5gක් වනාප්ත වී ගතික සමතුලිකතාවයට එළඹ ඇත. $_{900}$ අවස්ථාවේ CC I_4 තුළ x 3.5g අඩංගු වේ නම් ජලය තුළදී වීකටනයට ලක් වී ඇති x ස්කන්ධය වනුයේ,

(1) lg


(2) 0.95g

(3) 0.05g

(4) 1.5g

(5) 0.5g

27. සුණු පානය

සියලු වායු පරිපූර්ණ ලෙස හැසිරෙන බව උපකල්පනය කළ විට ඉහත වේග වනාප්තිය සම්බන්ධව නිවැරිදි පුකාශය වන්නේ,

- (1) $T_1 > T_2$ වන විට H_2 වායුවේ ඓග වහාප්තිය විය හැකිය.
- (2) $T_1 = T_2$ වන විට පිළිවෙලින් O_2 හා N_2 වායුවල වේග වනාප්තිය විය හැකිය.
- (3) $T_1 = T_2$ වන විට පිළිවෙලින් N_2H_4 හා O_2 වායුවල වේග වනාප්තිය විය හැකිය.
- (4) $T_1 = T_2$ වන විට පිළිවෙළින් N_2 හා O_2 වල වෙග වනාප්තිය විය හැකිය.
- (5) $T_1 < T_2$ වන විට පිළිවෙළින් N_2 හා H_2 වල වේග වනාප්තිය විය නොහැක.

යන්දුණය 0.01moldm⁻³ වන ඒක ආමලික දුබල හමේ දුවණයක P^{II} අගය 10.25කි. මෙම සම්මයට අදහළ P^{II} _{විළිබඳ} සහාා ව**නු**ලේ (1) più = log 3.2440-6 (2) $P^{kb} = 7.5$ (3) $P^{kb} = 5.5$ (4) $P^{kb} = -\log 3.2440^{-3}$ (5) ඉණවය සඳහා පුමාණවත් දත්ත දී පතාමැත. _{සුම්මත} තත්ත්වය යටතේ නිර්මාණය කළ කෝෂයක බාහිර පරිපථය ඔස්සේ $A\longrightarrow B$ ව ධාරුවක් ගලායයි. ළදුවෙලින් A හා B ඉලෙක්ටෙුර්ඩ ලෙස යෙදිය හැකි ලෝහ 2ක වන්නේ, (2) Ag / Fe (3) Cu / Zn (4) Fe / Cu (5) ඉහත කිසිවක් නොවේ. (1) Zn / Mg _{1 ජනත} A, B, C, D කාබොකැටායන වල ස්ථසිතා වැඩිවන නිවැරදි අනුපිළිවෙළ වත්නේ.

$$(A) CH_3 - CH - CH = CH_2$$

(1)
$$D > C > A > B$$

(2)
$$C > B > D > A$$

(3)
$$D > A > C > B$$

(4)
$$A > B > C > D$$

(5)
$$B > C > A > D$$

^{8 3)} සිට 40 තෙක් පුග්ත වලට උපදෙස්ඃ

^{a 31} සිට 40 දක්වා එක් එක් පුශ්නයේ දක්වා ඇති පරිදි (a), (b),(c) සහ (d) පුතිචාර අතුරෙන් එ<mark>කක් හෝ වැඩි</mark> ^{මාවක්} නිවැරදිය. නිවැරදි පුනිචාරය/ පුනිචාර කවලර්දැයි ඉත්රාගන්න.

්^{හා (b}) පමණක් නිවැරදි නම් (1) මනද (b) සහ (c) පමණක් නිවැරදි නම් (2) මනද

^{්ත (d)} පමණක් නිවැරදි තම (3) මකද (d) සහ (a) පමණක් නිවැරදි නම (4) මතද

^{ම් ඉති}වාර සංඛාාවක් නිවැරදි නම (5) මකද උත්තර ප**නු**යේ ලකුණු කරන්න.

(1)	(2)	(3)	(4)	(5)
	(b) සහ (c) පමණක්	(c) සහ (d) පමණක්	(d) සහ (a) ප මණක්	ප වනත් පුතිවාර
^१ ०९8	තිවැරදියි	නිවැරදියි	නිවැරදියි	සංඛාාවක් නිවැරදිය

^{ම්පි විල}ග්ජනයේ දී N₂ නිදහස් කරන සංයෝග පමණක් අඩංගු ව<mark>න්න</mark>ෝ,

¹⁾ Mg₃N₂, NH₄NO₂, NaN₃

b) (NH₄)₂Cr₂O₇, Li₃N, NaN₃

NH4Cl, NaNO2, NH4NO3

d) Mg₃N₂, (NH₄)₂CO₃,HNO₂

というとは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのできた。これのできた。これのできた。これのできた。これのできた。これの	A cole housefund
32. ml = 2 හා ms = +½ ලෙස දක්වා ඇති ඉලෙක්ලේ	Opena dente signoman on y megapoani
البد_و	
a) A ආවර්තියා වගුවේ දෙවන ආවර්තයට අයක් මූ	ලදුවාගකි.
h) A අනිවාර්යයෙන්ම ආන්තරික මූලදුවායක් වය ව	gago.
c) A වර්ණවත් ජලීය දෘවණයක් සාදන මූලදුවායක්	විය හැක.
d) A අලෝහයක් වීමට ද පුළුවන.	
3, 11 4 3 3	
33. පහත කවර පුකාශය / පුකාශ සතාමෙද?	
a) C ₆ H ₅ CONH ₂ soo CH ₃ NH ₂ ජලිය NaOH ස ම ඟ	ා පුණිකියා කර NH3 නිදහස් කරයි.
b) C ₆ H ₅ CONH ₂ වලට වඩා CH ₃ NH ₂ භාෂ්මික වේ.	
c) C ₆ H ₅ CONH ₂ වල C – N බන්ධනය ආංශික ද්විෘ	ත්ව බන්ධන ස්වරූපයක් දරයි. 🦞
d) CH3NH2වල N මත ඇති එකසර යුගල C දෙසට	
34. A _(g) = B _(g) + C _(g) යන පුතිවර්තා පුතිකියාව සිදු	යුවෙමින් පවතින නමුන් ගනික සමතුලිකතාවයට එ _{මේක} ්
සංවෘත පද්ධතියට උත්ලේරකයක් යෙදූ විට චෙනස්වන	7
a) සමතුලිකකාවයට එළඹීමට ගතවන කාලය	c) සමතුලිතතා නිය ශ ය
b) ඵලදා පුනිශනය	d) පසු පුතිකියාවේ සකියන ශක්තිය
	0.4
35. පහත දී ඇති සංයෝග අතුරින් පුාථමික පුමාණිකාරකර	
a) KMnO ₄	c) H ₂ C ₂ O ₄
b) KlO ₃	d) Na ₂ S ₂ O ₃
36. CH3COOH 0.5mol ක් අඩංගු දුාවණයකට ඉන් 0.25i	mol උදාසීන වන ලෙසට KOH එකතු කරන ලදී ලැබේ
දුාවණය සම්බන්ධ යෙන් සත න වත්නේ,	
a) $P^H = P^{hb} + log [Obs]$	c) $P^{OH} = P^{ka} + 1$
[40c]	d) POH = Pkb - log [CO46]
b) $P^H = -log Ka_{(CH3COOH)}$	[නජම]
27 MU / AcNO 110 110 110 110	
37. NH3/ AgNO3 සමඟ ඔක්සි කරණ ඔක්සි හරණ පුතිකි.	යා වලට සහභාගි වන්නෝ <u>.</u>
a) CH ₃ - C ≡ CH b) CH ₃ - C ≡ C - CH ₃	с) СН ₂ СНО
o) cm - c=c - cm	ф) нсоон
38. මින් කුමන ලවණයක ජලිය දුණුණය කිය පළද	
38. මින් කු ව න ලවණයක ජලීය දුාවණය නිල් ලිව්මස් රතු a) CH3COONa	ලැනැගර <u>කරවයිද</u> ඉ
b) NH4NO ₃	c) (NH ₄) ₂ SO ₄
	d) CH3COONH4
	49

- A, B, C හා D යනු ලෝග 4කි. ඒවා පහත පරිදි පුතිකිුයාවලට භාජනය චේ.
- i. A හා C පමණක් නනුක HC/ සමඟ H2 වායුව නිදහස් කරයි.
- ji. A හි සල්ලේටය සහිත ජලීය දුාවණයකට C එකතු කළ විට A විස්ථාපනය වේ.
- iji. B හි නයිවේටය තාප වියෝජනයට ලක්කළ විට ලෝහය සැදේ.
- _{iv.} D ස්ථායි න<mark>යිල</mark>ේට නොසාදයි.

අනුපිළිවෙලින් A, B, C, D විය හැක්කේ,

a) Zn, Fe, Ag, Au

b) Fe, Ag, Zn, Au

c) Zn, Ag, Mg,Pt

d) Fe, Zn, Ag, Au

A, හා B නම් දුව දෙකක් මිගු කළ විට පද්ධතිය රත් වෙමින් මිගුණයක් සැලද්. එම මිහුණය පිළිබඳව සතා වහත්තිය /වගත්ති වත්තෝ

- a) A A හා B B අණු අතර ආකර්ෂණ බල වලට වඩා A B අණු අතර ආකර්ෂණ බල පුබල වේ.
- b) දුව දෙක මිගු කළ විට පරිමා සංකෝචනයක් සිදු චේ.
- තතාවා(a) $A \cdot A$ හා B B අණු අතර ආකර්ෂණ බල වලට වඩා $A \cdot B$ අණු අතර ආකර්ෂණ බල දුර්වල වේ.
 - d) A හා B මිනු වී සැදෙන දාවණය රවුල් තියමයෙන් (+) අපගමතයක් දක්වයි.

🌬 4! සිට 50 තෙක් පුශ්න වලට උ/ාදෙස්

නත්තිය

්ස 41 සිට 50 දක්වා පුශ්න සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම මෙපතුයේ පහත වගුවේ දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිවාර වලින් කවර පුතිවාරය දැයි ක්රා උශ්කර පතුයෙහි උවිත ලෙස ලකුණු කරන්න.

රය පළමුවැනි පුසාශය	දෙවැනි පුකාශය
සතා වේ.	සතාය වන අතර පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි
සනා වේ.	සනාගය වන නමුත් පළමුවැනි පුකෘශය නිවැරදිව පහදා තොදේ.
කතන වේ.	අසනායි
विवयः	සනායි
Company	අසනායි

පළමුවන පුකාශය	දෙවන පුකානය
ම්ගිර ₄ චාෂ්පය සමග Mg ලෝහය පුතිකියා කර වූ විට ම් _{දි} නිදහස් නොවේ.	·
^{ද්යා} ලිවයිනයිල් ක්ලෝරයිඩ (PVC) ගිනි පුතිරෝධී මහු ^{ද්ව} යවයකි.	PVC සාප ස්ථාපන බහුඅවයවකයක් වේ.

Make Transport (Application Control of the Contro	1 V' manu wiles I' manu
43) X නම් මූලදුවනයෙන් සැඳෙන ස්ථායි) ඇතායනයේත් Y නම් මූලදුවනයෙන් සැඳෙන ස්ථා Y ³ ඇතායනයේත් සංයුජනා කවවයේ ඉලෙක්ලෙය් සංඛන Y ³⁻ > X ² ලෙස වේ.	20
44) Fe ²⁺ හා Fe ³⁺ දාවණ එකිනෙකින් වෙන්කර හඳුන ගැනීමට NHා දාවණයක් යොදා ගත [*] හැක.	නමුත් Fe ³⁺ සමඟ NH3 සංකීර්ණ නොසැදුලි
45) උෂ්ණත්වය වැඩිකරන විට ජලයේ අයනික ගුණිනය kv අඩුවේ.	ජලයේ විඝටතය නාපදායක පුතිකියාවකි
46) CH ₃ - CH - CH ₂ Cl හා ජලිය AgNO ₃ මිශු කළ CH ₃ වීට AgCl සුදු අවක්ෂේපය සෑදේ.	CH ₂ Cl හා ජලිය AgNO3 මිනු කිරිමේ දී AgO පුදු අවක්ගේපය සෑදේ.
47) SiO2 වලට ඉතා ඉහළ දුවාංක / තාපාංක පවතී.	SiO2 අණු අතර පුබල අත්තර් අණුක ආක්රියේ ඇත.
48) ස්කන්ධය 20g වන යකඩ (Fe) කැබැල්ලක් CuSO ₄ දුාවණයක් තුළ ගිල්වූ විට කුමයෙන් යකඩ කැබැල්ලේ ස්කන්ධය වැඩිවේ.	යකඩ කැබැල්ලෙහි වෙනසක් සිදු තෝවී () ඔක්සිහරණය වී යකඩ කැබැල්ල මන ගැන්නේ එ
49) නියන උෂ්කෝවයේ ඇති 0. lmoldm ⁻¹ HCl, HBr නා Hl දුවණ වල අඩංගු වන H ⁺ සාන්දුණය [H ⁺] но = [H ⁺] ню = [H ⁺]н ලෙස වේ.	HC/, HBr, HI අනුපිළිවෙළින් ඉහත අම්ල් ආම්ලික පුහලනා වැඩිවේ.
50) 10 ⁻⁸ moldm ⁻³ II ₂ SO ₄ අමල දුාවණයක P ^H අගය 7 මේ.	අම්ලයක් අපරිමිත තනුකරණයට ලක් කිරීමේ දී ව pli අගය 7 ඉක්මවා නොයයි.

	ක / තතුම්ලා මධා විදහාලය - හොරණ Taxila Control O !!
-	Taxila Central College - Horana 02 S II
	අධ්යයන ද යමු සහවන පතු (උපස් පෙර) විභාගය 2018 - ජූනි පෙරනුරු පරියන්ණය උ දෙසේ උපේරියරු of Februaries (14 දිනුපේ) පිහුලු ද 2010 වූ උද දින
	(Brugs 11)
	The state of the s
	B ලකාවස – ජවනා
	දෙකකට පමණක් පිළිතුරු සපයන්න.
	A(s) + B(g) 2C(g) + D(g) A(s) + B(g) 2C(g)
	කරන්න කරන්න
	නද්ධ. Kp හා Kc අතර සම්බන්ධය දක්වෙන පුකාශනයක් ලියන්න. i . Ti = 500K නම Kc ගණනය කරන්න.
	IV. ආරම්භක පද්ධතියේ උෂ්ණත්වය T_2 ($T_2=200$ K) දක්වා අඩු කළ විට ඉහත පරිදිම ඵල ඇති වී $C_{(g)}$
	වලින් කොටසක් දුවිකරණය වී එහි වාෂ්පය සමග සමතුලිනව පවතී. B හා D වායූන් ලෙස පවතින
	අතර ඒවා C හි දුව කලාපයෙහි දුාවා නොවේ. 200K හිදී C හි සංකෘජන වාෂ්ප පිඩනය
	5.00x10 ⁵ Pa වේ. T2 උෂ්ණත්වයේ දී B හි 0.2mol පුමාණයක් ඵල බවට පත්වූයේ නම එම
	උෂ්ණත්වයේ දී Kp අගය කොපමණද? යීස්ට් සෛල තුම ශක්ති අවශාතාවයන් සපුරා ගැනීම සඳහා පැසවීම (Fermentation) නම් කියාවලිය
	මගින් ග්ලුකෝස් (C ₆ H ₁₂ O ₆) එනනෝල් (C ₂ H ₅ OH) සහ CO ₂ බවට අස ම්පූර්ණ ව ඔක්සිකරණය කිරීම සිදු
	කරනු ලැබේ. මෙම කිුියාවලිය පහත දක්වෙන පරිදි නිරූපණය කළ හැකිය.
	$C_6H_{12}O_{6(aq)} \rightleftharpoons 2 C_2H_5OH_{(aq)} + 2CO_{2(g)}$
•	${ m sign}$ ලකෝස්(${ m S}$) සහ එකතෝල්(${\it l}$) යන ඒවායේ $25{ m ^{10}C}$ දී සම්මත දහන එන්නැල්පි පිළිවෙලින්
•	-2808kJmol ⁻¹ සහ -1368kJmol ⁻¹ වේ.
	. ග්ලුකෝස් (S) සහ එනතෝල් (/) හි දුාවණ එන්නැ. ි * * solution) නොසලකා හැරිය හැකි බව
•	ි ගලුකෝස් (S) සහ එනතෝල් (/) හි දුාවණ වන්නැ. ි උපකල්පනය කරමින් 25°C දී ග්ලුකෝස් 5 mol ක් සීස්ව මගන් පැසවීමේ දී මුදාහරින ශක්ශි පුමාණය
	C පකලපනය කරමින් 25°C දී ග්ලුකෝස ා moi ක සිසර මෙය දේශපර ද නුද්ගපර සිස්සු ඉපරිසිස්

ii. ග්ලුකෝස් යම් පුමාණයක් යිස්ව මගින් පැසවීමේ දී මුදා හැරෙන ශක්තිය සහ එම ග්ලුකෝස් ලිමාණයම මිනිසා තුළ ශ්වසනයට (respiration) ලක් වීම මගින් මුදා හැරෙන ශක්තිය අතර අනුපාසය

සටහන s න්වසනයේ දී ග්ලුකෝස් පූර්ණව දහනය වී සම්පූර්ණයෙන්ම ඔක්සිකරණය වේ.

gest

abes i

ත්පත් ඓ.

මණ්තය කරන්න.

:63

- (c) 27⁹C දී X නැමැයි සංසිනික සංස 27°C දී X නැමැති කාබනික කාමෙන්නේ 100 කුළ අඩංගු විය. ජලය කුලදී X විසටනය විමාදු මෝ මේල් ස්ථර වෙන් වූ පසු X හි 8g ක් CCI4 ස්ථරය කුළ අඩංගු විය. ජලය කුලදී X විසටනය විමාදු මෝ මේල් CCk හා ජලය අතර X හි විභාග සංගුණකය අදාළ උෂ්ණත්වයේ දී ගණනය කරන්න. පුතිලියාවක් සිදු නොකරයි නම්

 - i. CCk(හා ජලය අතර X හි විභාග සංග්‍රියකය අදිය වරක් සිදු කළේ නම් ජලිය කලාපය වල දිරුණින් ම X හි ස්කන්ධ පුතිසෙය කොපමණද?
- X හි ස්කන්ධ පුතිගෙය කොටමකැ: 06. (a) කිසිදු බාහිර බලපැමසින් තොරව සංශුද්ධ ජලයේ සිදුවන ස්වයං විකටනය සැලසිමෙන් _{ශලී මි}ලු උෂ්ණත්වයකදී ජලයේ විසටන නියසය Kw අර්ථ දක්වනු ලැබේ.
 - ජලයේ අයනික ගුණිතය භාවිතයෙන් 25°C දී 0.2moldm⁻³ NaOH දුාවණයක P^H ගණනය _{කරන්නු}
 - ii. 0.2moldm⁻³ CH₃NH₂ දුාවණයක P^H අගය ඉහත (i) හි අගයෙන් වෙනස්වේද? ඔබේ පිළිතුර සැකෙවින් පහදන්න.
 - iii. 25°C දී 0.2moklm $^{-3}$ CH $_3$ NH $_2$ දාවණයක P^H ගණනය කරන්න. (CH $_3$ NH $_2$ වල $K_6 = 2x10^{-3}$ mokl $_3$)
 - iv. 25°C දී අනුමාපන ප්ලාස්කුවක ඇති 0.2moldm⁻³ CH₃NH₂ දාවණ 20cm³ක් බ්යුරෙව්වුව_{ම ඇති} . 0.4moldm⁻³ HC/ සමඟ අනුමාපන කරන ලදී.
 - අත්ත ලක්ෂායේ HCl පරිමාව ගණනය කරන්න.
 - 2. සමාකතා ලක්ෂායේ P^H ගණනය කර P^H අගය හා අම්ල පරිමාව අතර දළ P^H වනුය ගොඩනගත්ත (සමකතා ලකානයේ P^H අගය, සමකතා ලකානයේ HCI පරිමාව හා පුස්තාරයේ අක්ෂ තිවැණු ලකුණ කළ යුතුය.)
 - v. පොපතොයික් ඇසිඩ් (CH $_3$ CH $_2$ COOH) හා කෝඩියම් පොපතොජීව් (CH $_3$ CH $_2$ COON $_a$ †) $වලින් <math> \mid$ සමත්විත පද්ධතියේ \mathbf{P}^{H} අගය සඳහා භෙත්ඩර්සත් සමීකරණය ලියා දක්වත්න.
 - vi. 25° C දී 0.02moldm $_{_{1}}^{-3}$ CH $_{3}$ CH $_{2}$ COOH දාවණ 1dm 3 මගින් $P^{H}=4.75$ වන ස්වාරක්ෂය දාවණයක් සාදා ගැනීම සඳහා ඉහත දුාවණ පරිමාවට එකතු කළයුතු CH3CH2COO Na⁺ ස්කන්ධය කොප්රේ (Ka(CH3CH2COOH) = 1.34×10^{-5} moldm⁻³) C = 12, H = 1, O = 16, Na = 23
 - vii. ඉහත (vi) හි ස්වාරක්ෂක දාවණයට HC/ 0.01mol පුමාණයක් එකතුකර දියකළ විට දාවණයේ ^{අවසන්} \mathbf{P}^{H} අගය ගණනය කරන්න. ($\mathsf{HC}l$ එකතු කිරීමේ දී පරිමා විපර්යාසයක් සිදු නොවන බව ස $(\mathbf{p}^{\mathsf{a}})$
 - (b) KCI වලට සාපේකව සාන්දුණය 0.5moldm⁻³ ද K2CrO4 වලට සාපේකවේ සාන්දුණය 0.5moldm^{3 ද} වන දුාවණයක 50cm³ කට සහ AgNO3 ස්වල්පය බැගින් කුමයෙන් එකතු කරන ලදී. $Ksp_{(AgCI)} = 1.5 \times 10^{-10} \text{moldm}^{-3}$

Ksp $(A_{42C_{1}O4}) = 9x10^{-12} \text{moldm}^{-3}$

- පළමුව අවක්ෂේපනය වන්නේ කුමන සංයෝගයදයි ගණනය කිරීමෙන් පැහැදිලි කරන්න.
- දෙවන අවක්සේපය සැදීම ආරම්භ වන අවස්ථාවේ දුෘවණය තුළ පවතින C/ සාන්දු^{ණය ගණන්} කරන්න.
- iv. දෙවන අවක්ෂේපය සැදීම ආරම්භ වන විට පළමු අවක්ෂේපයේ සැන්පත් වී ඇති ස්කෝධ් erasco@esc? (Ag = 108, C/ = 35.5, Cr = 52, O = 16)

(g) පියුණිර 5කට තොවැඩි සංඛාහවකින් පහත පරිවර්තනය සිදු කරන්න. ----->CH₃ CH₂ - C

- CH₃ $H_2C = CH_2$ (b) උනත සඳහන් පුතිකියා දාමය සම්පූර්ණ කිරීම සඳහා R_1-R_5 සහ X_1-X_6 හඳුනා ගන්න. ඒ සඳහා සපයා ඇති පුතිකාරක ලැයික්තුව භාවිතා කරන්න. Br2, C2H5OH, KOH, HgSO4, CC14, to. H2SO4, NaBH4, HBr CH₃ $\not CH_3 - CH = CH_2$ сн-с-о-с-сн X_1 R_2 X_2 R_3 CECH X_6 X_3 R4 树 R5 X_5 CH) -i _ OH CH₃ Øi. CH₃CH₂ - C - Br හා නනුක NaOH අතර සිදුවන රසායනික පුතිකියාව සඳහා අදාළ යාන්ල රෙය CH₃ ලියා දක්වන්න. 2-chioro-2-methylbutane නියුක්ලියෝෆිලික ආදේශ පුතිකියා වලට සහභාගි වන නමුත් ක්ලෝරෝ ^{මබ}න්සින් සහ වයිනයිල් ක්ලෝරයිඩ් නියුක්ලියෝෆිලික ආදේශ පු<mark>නිකි</mark>යා වලව සහභාගි නොවන්නේ ^මත්දයි පහදන්න.

00 By

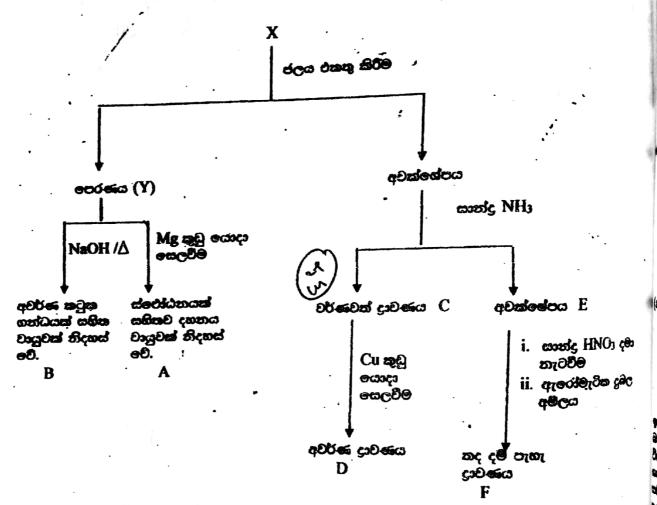
Smolder)

Boo of

)pototok

5000

1) 884


0600

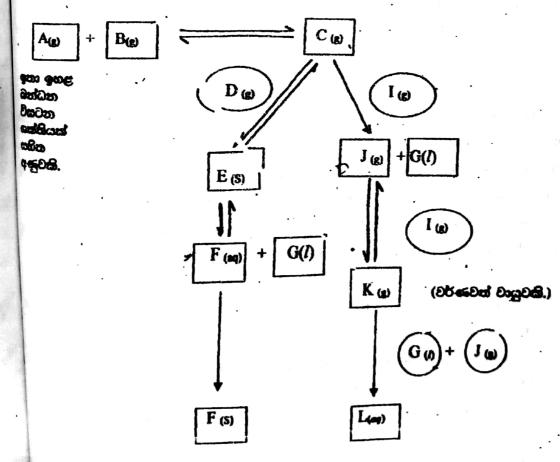
1964!

අවසන්

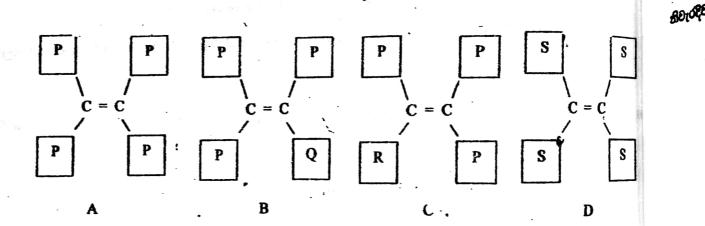
න්න.)

පුත්ත දෙනකට පමණක් පිළිතුරු සපයන්න. කිසිවයක් හා අයනික හැ. යි. X හි අඩැම සිය වී සජල භික්සයිඩයක් සාද සටහන් සිය සටහන් දී කරන ලද සිය කරන ලද සිය හි පුතිඵල පහත සියායෙකු විසින් සිදු කරන ලද සි

- i. X මිනුණයේ අඩංභු අයනික සංයෝග 03 නිවැරදිව හඳුනා ගන්න.
- ii. A, B, C, D ,E සහ F යන පුභේද හඳුනාගෙන රසායනික සූතුය ලියන්න.


(b) M යනු P ගොනුවට අයත් සහ මූලදවායකි. M බහුරුපිතාව දක්වයි. M හි වායුමය ඔක්සයිට 2කි. ඉත් එක් ඔස්සයිඩයක ඔන්ධන ඉලෙක්වෝහ යුගල සංඛනව හා එකසර ඉලෙක්වෝහ යුගල සංඛනව එකිනෙකට

M හි එක්ආයිඩ 2න් එකක් ජලයේ දියව් විජලකාරක ගුණ සහිත අම්ලයක් සාදයි.


- M හි ඉලෙක්ටුෝන විනාහසය ලියා වායුමය ඔක්සයිඩ 2හි අණුක සූතු ලියන්න. iii. ඉන් අඩු ඔක්සිකරණ අවස්ථාව සහිත ඔක්සයිඩයේ රසායනික ඉණ නම්කර ඒ එක් එක් ඉණය විදහා දක්වීමට උදාහරණයක් මැතින් දෙන්න. (අවශා තුලිත සමීකරණ ලිව්ය යුතුය.)
- (c) පොකුණක ජලයේ අඩංගු O2 වල සංයුතිය නිර්ණය කිරීම සඳහා සිසු කණ්ඩායමක් පහත ලියාකාරකම සිදු
 - වෘතය ඇතුළු නොවන මක් පොකුණු ජලයෙන් පුතිකාරක බෝහල් 2ක් පුරවා ඒවාට එම ස්ථානයේදීම MnSO4 දාවණ lcm³ හා Kl දාවණ 2cm³එකතු කර මූඩිය වසා භොදින් සොලවා රසායනාගාරයට
 - 2. විනාඩ් 10 කට පසු බෝහල් 2වම වෙන වෙනම සාන්දු H₂SO₄ 2 cm³බැතින් එකතු කර හොඳින්
 - තවත් විතාඩි 10 කට පසු එම දුාවණවලින් 50.00cm³ බැගින් පිපෙට්ටුවකින් මැන අනුමාපන ු ප්ලාස්කුවකට දමා ලා කහ පාට වනතුරු 0.01moldm⁻³ Na₂S₂O₃ දුාවණයක් සමඟ අනුමාපනය කිරීම.
 - 4. ඉහත (3) හි ලා කහ දුාවණයට පිෂ්ට දුාවණය 3cm³පමණ එකතු කර අන්ත ලස්ෂායේ වර්ණ විපර්යාසය දක්වා ඉහත Na₂S₂O₃ සමඟ අනුමාපනය කිරීම.

තිදී අන්ත ලසාකයේ බ්යුරෙව් පාඨාංක 4.50cm³ හා 4.70cm³ බැගින් විය.

- ඉහත කියාවලිය තුළ සිදුවන සියලු පුතිකියා සඳහා තුළින සමීකරණ ලියන්න.
- MnSO4 හා KI පොකුණ අසලදීම බෝතුල තුළට එකතු කරන්නේ ඇයි? අන්ත ලක්ෂායේ වර්ණ විපර්යාසය කුමක්ද?
- අනුමාපන කියාවලියේ දී මිශුණය ලා කහ පැහැ වනතෙක් NagS2O3 සමඟ අනුමාපනය කර පසුව ළ[ී]ෂ්ටය එකතු කරන්නේ ඇයි?
- පො. 'ශුණු ජලයේ දියවී ඇති Oz සංයුතිය ppm වලින් ගණනය කරන්න. 5.
- (a) රසායනික ක^{, ර්මා}න්ත කිහිපයක සංකෂිප්ත භොරතුරු ඇතුළත් පහත ගැලීම් සටහන ඇ**සුරෙන් අසා ඇති** ලශ්න සඳහා පිළ^{ිතුරු} සපයන්න.

- C භාෂ්මක වායුවක් වන අතර කාර්මික ඕපාකරණ පද්ධති වල ඕපාකාරකයක් ලෙස භාවිතා දේ
- F තාප ස්ථාපන බහු අවයවිකයක් නිෂ්පාදනයේ දී භාවිතා කරයි. F කාප ස්ථාපන පසු අප L පොහොර හා පුපුරන දුවා නිපදවීමට අවශා අමුදුවා නිෂ්පාදනයට භාවිතා වන ඉබල මිස්ලේ
- අම්ලයයි.
- A --- L දක්වා වන සංයෝග හඳුනාගන්න.
- ඉහස තැලීම සටහන පුළ අන්සර්ගත වන රසායනික කර්මාන්ත 03ක් සඳහන් කරන්_{න,}
- පුතිලියා සත්ස්ව දක්වමින් ඉහස ගැලීම සටහන ආශිත රසායනික කර්මාන්ත වලදී සිදුවතු iii. **රසායනික පුතිතියා සඳහා කුලිත රසායනික කුමිකරණ** ලියන්න.
- F භාවිතා කරමින් නිපදවන තාප ස්ථාපන ඔහු අවයවිකය කුමක්ද? iv.
- C වායුව හඳුනා ගැනීමට භාවිතා කළ හැකි රසායනික පරිකෂාවක් සඳහන් කරන්න.
- (5) ඔහු අවයවික කිහිපයක් නිපදවීමට අදාළ ඒක අවයවික කිහිපයක වනුන සූතු පහත දක්වේ.

 ${f A}$ මහින් සාදන ඔහු අවයවකය හා ${f B}$ මගින් සාදන ඔහු අවයවකය ආසන ආචරණ නිපැවීම ${f property}$ භාවිතයට ගැනේ.

A මහින් ලැබෙන ඔහු අවයවිකයට සාපේකවෙ B මගින් ලැබෙන ඔහු අවයවිකය වඩාත් හක්සිමත් වීම තේතුවෙන් ඉහළ දඩි බවකින් යුතු අතර ගිනි ගැනීම් වලට ලක්වීමද ඉතා අඩුය.

 ${f C}$ මහින් ලැබෙන බහු අවයවිතය පරිවාරක දුවා සැදීමට යොදා ගන්නා අතර ${f D}$ මගින් සැදෙ ${f p}$ අවයවිෂය රසායනික ලියාසාර්ත්වයෙන් අඩු අධික උෂ්ණත්වයට ඕරෙනේකු දෙන බහු අවයවිකයකි.

- A, B, C, D යන එක අවයවික වල P, Q, R , S යන මූලදුවා හෝ කාණේඩ හඳුනා ගනිමින් එම Ĺ **රිකඅවයවික** වල වනුන ඇඳ දක්වන්න.
- එක් එක් ඒක අවයවිකය මගින් සැදෙන ඔහු අවයවිකවල පුනරුවර්තන ඒකකයේ වනු^{හට හා ඔමු} ä. අවය**විකයේ** වනුනය හා නම සඳහන් කරන්න,
- සංස්ලේෂණ කරනු ලබන සුමය හා කාපජ ගුණය අනුව ඉහස (ii) කොටසෙහි සඳහන් බහු අවයරිය йĹ

SE .

ji.

ij.

00B 90

orog 4

2000 ·

යම්මන

2000i

iy. 9000

y. 900 (

AF EO VAC

(p)

Ĺ

90

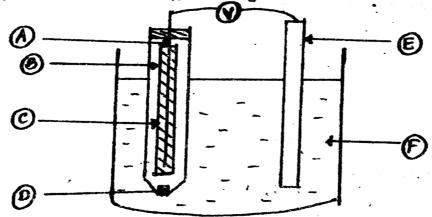
*6*006

M &

. [M(x)

ර්තිම

OSE


0.1 m

0.1 m

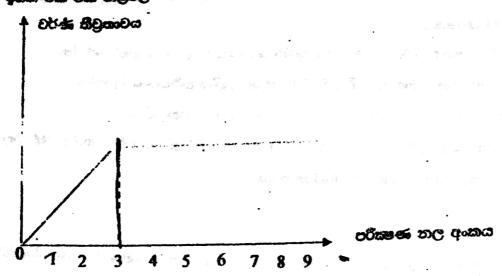
ac o

15

- (c) i. මහෝක් ස්ථරය පැවසීමෙන් ඇතිවන වාසියක් හා එය කාය විශේක් ඇති විය හැකි අපමේෂ හැඩම දෙකක් සඳහන් කරන්න.
 - ii. මසෝන් ස්ථරය විනාශ වීමට දායක වන මුක්ත බණ්ඩක දෙකක් සඳහන් කරන්න.
 - iii. ස්වභාවික වායුකෝලයේ ඕසෝන් බිද වැටීමට අදාළ කුලිය සමීකරණ ලියන්න.
 - iv. මහෝන් ස්ථරය කයෙ වීම කෙරෙහි CFC බලපාන ආකාරය පහදන්න.
 - v. ඕසෝන් ස්ථරය සහය වීමට අමහරව CFC දායක වන නවත් පාරිසරික ගැවලුවක් සඳහන් කර ඒ සඳහා CFC දායක වන ආකාරය විස්තුර කරන්න.
- 10. (4)
 - j. වායු ඉලෙක්ටෝඩයක් නිර්මාණයේ දී පැන නඟින ගැටලු 2ක් ලියා සම්මත H ඉලෙක්ඩෝඩයේ දී එම ගැටලු අවම කරගන්නා ආකාරය සැකෙවින් පහදන්න.
 - ii. සම්මත H ඉලෙක්ටුන්ඩයක කොටස් නම් කරන ලද රූප සටහනක් ඇඳ එහි එක් පුයෝජනයක් ලියන්න.
 - iii. සම්මත $Ag_{(S)}$ / $AgCl_{(S)}$ / $Cl^*_{(aq)}$ ඉලෙක්ටෝඩයක් හා සම්මත $Al_{(S)}$ / $Al^{3+}_{(aq)}$ ඉලෙක්ටෝඩයක් එකිනෙක සම්බන්ධ කිරීමෙන් සාදා ගන්නා කෝසෙක හරස්කඩ රූප සටහනක් පහත දක්වා ඇත. එහි කොටස් නිවැරදිව නම්කර කැතෝඩය හා ඇනෝඩය හඳුනා ගන්න.

- iv. ඉහත කෝෂයේ කැතෝඩ පුතිකියාව හා ඇතෝඩ පුතිකියාව ලියා කෝෂ පුතිකියාව ගොඩනගන්න. කෝෂය IUPAC කුමයට අංකනය කරන්න.
- y. ඉහත කෝයෙ කියාන්මක වීමේ දී ඉලෙක්ටෝඩ 2හි දාවණ තුළ සිදුවන චෙන<mark>ස්කම ගුණාන්මකව පහදන්න.</mark>
- $Vic~E^0_{Ag(s)/AgCI(s)/Ci}(\omega_i)=0.2415V$ ද $E^0_{AI(3+(\omega_i))/AI(5)}=-1.66V$ ද නම් ඉහත කෝෂයේ සම්මත විදුපුත් ගාමක බලය ගණනය කරන්න.

(b)


28

8

I. M නම ලෝනයක ද්විසංයුජ කැටායනය X නම ඇල්කිල් ඩයි ඇම්නයක් සමඟ $[x=R\ (NH_2)_2]$ $[M(x)_n]^{2+}$ නම වර්ණවන් සංකීර්ණයක් සාදයි. n හි අගය නිර්ණය කිරීම සඳහා සැලසුම්කරන ලද පරීකෘණයක භෞරතුරු ඇතුළත් වගුවක් පහත දී ඇත.

පරිකෘත නල ආකය	1	2	3	14	5	6	7	8	9
0.1 moldm ⁻³ M ²⁺ (ne) පරිමාව / cm ³	5	5	5	5	5	5	5	5	5.
0.1 moldm ⁻³ X _(aq) පරිමාව / cm ³	5	10	15	20	25	30	35	40	45
ජල පරිමාව/cm³	40	35	30	25	20	15	10	5	- -

ඉහත එක් එක් නළවල වර්ණ කිවුතාවය චෙනස් වන ආකාරය පහත පුස්තැරය මගින් දක්වා ඇතු

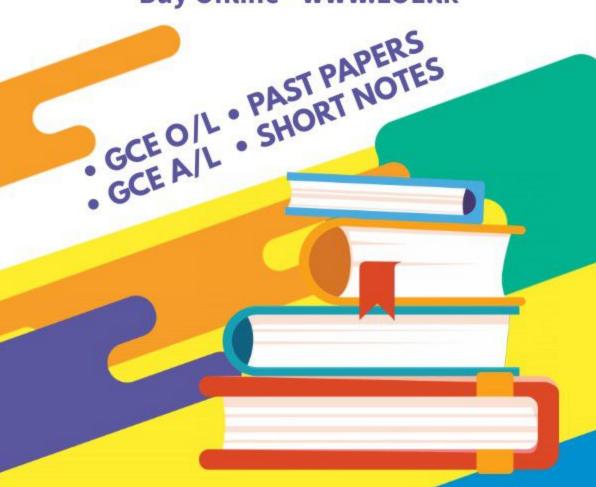
 $\pmb{\mathcal{X}}$. සම්පූර්ණයෙන් පුතිතියාවන \mathbf{M}^{2+} හා \mathbf{X} අතර මවුල අනුපාතය ගණනය කරත්න.

Significant and the proper will stand they be a first for the

- ii. X වෙනුවට R(NH2)2 යොදා ගනිමින් සැදෙන සංකීර්ණයේ වවුහය ඇඳ ආරෝපණය නිවැණුම (Pl
- iii. සංකීර්ණය තුළ M²⁺ වල සංගත අංකය කුමක්ද?
- ් 12 $[M(x)_n]^{2^4}$ සංකීර්ණය ජලයෙන් නනුක කිරීමේ දී එක් $R(NH_2)_2$ අණුවක් ඉවත් වෙමින් ඒ වෙනුව

ముమ్ 11 , ముందులో 11 కేస్ అండికి తెక్కివి కథ్యుత్తినే కథ్యుత్తి కథ్యుత్తి కథ్యుత్తి కథ్యుత్తిన్ని <u>ఆత్రికల్లో</u>

the March of Californian golden and referenced College to the first file of the file of the file of the file of


🤞 අවක්ගේපයක් සාදයි.

- i ්ම පුඟියන්නිල් අවක්ලශ්පලේ රසායනික සූළ ු ල්යන්න.
- ii. එම සංකීර්ණයේ නිවැරදි TUPAC නම ලියන්න.

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500 \$

More than 1000+ Papers For all major Subjects and mediums (24)

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

රු **350.00**

ADD TO CART

GCE O/L EXAM, MATHEMATICS

O/L Mathematics Past Paper Book

රු 350.00

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL... O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

GCE O/L EXAM, HISTORY

රු 350.00

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძე 350.00