ක /තක්ෂිලා මධා විදාහාලය - හොරණ

Taxila Central College – Horana

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය - 2020 - ඔක්තෝම්බර් වාර පරික්ෂණය Genaral Certificate of Education (Ad. Level) Examination, October 2020, Grade12

රසායන විදාහව I

කාලය - පැය 02

සර්වනු වායු නියකය $R=8.314\,JK^{-1}mol^{-1}$ ආවගාඩ්රෝ නියතය $N_A = 6.022 imes 10^{23} mol^{-1}$ ප්ලෑන්ගේ නියකය $h=6.626 imes 10^{-34}~Js$ ආලෝකයේ පුවේගය $C=3 imes 10^8~ms^{-1}$

- 01. පදාර්ථයේ ධන ආරෝපන ඇති බව පරීකෳණාත්මකව ඔප්පු කලේ,
 - 1. ජේ.ජේ.තොම්සන් 2. රොබට් මිලිකන් 3. ඊ. රදර්ෆර්ඩ්

- 4. ඉයුජින් ගෝල්ඩ්ස්ටයින් 5. හෙන්රි බෙකරල්
- 02. දී ඇති නියුක්ලයිඩයේ ඇති s,p සහ d ඉලෙක්ටෝන සංඛාා පිළිවෙලින්, ${}^{58}_{26}Fe^{3+}$
 - 1. 6, 12, 6

- 2. 6, 12, 5
- 3. 2, 6, 5

4. 8, 12, 6

- 5. 8, 12, 5
- සම ඉලෙක්ටොනික රසායනික සංයෝග අයත් කාණ්ඩය වන්නේ,
 - 1. O_2 , H CHO
- 2. NO, N_2

4. CH_4 , CO_2

4. CH_4 , O_2

- 5. NH_3 , CO
- තරංග ආයාමය 242nm වන විද්යුත් චුම්බක තරංගයක් මගින් වායුමය Na පරමාණුවක් අයනීකරණය කළ 04. හැක. Na වල අයනීකරණ ශක්තිය $k | mol^{-1}$ වන්නේ,
 - 1. 8.21×10^{-16} 2. 4.15×10^{4}
- 3. 494.5

4. 821.0

- $5. 4.945 \times 10^{5}$
- දී ඇති කැටායන අතරින් NaOH දාවණය සමඟ අවක්ෂේපයක් ලබා දී වැඩිපුර NaOH දාවණය හමුවේදී 05. දියවන කැටායන වනුයේ,

 - A. Pb^{2+} , Al^{3+} B. Zn^{2+} , Cu^{2+} C. Al^{3+} , Zn^{2+}

1. A පමණි.

- 2. B හා C පමණි.
- 3. A හා B පමණි.

- 4. A හා C පමණි.
- 5. A, B හා C සියල්ලම.
- A, B, C සහ D වන මූල දුවායන් හී පරමාණුක කුමාංක පිළිවෙලින් Z, Z+1, Z+2, Z+3 වේ. ඒවායේ පළමු අයනීකරණ ශක්ති චිචලනය C < D < A < B වේ. ${
 m D}$ හී පළමු ඉලෙක්ටොනය ලබා ගැනීමේ ශක්තිය ධන අගයක් වේ. A හී අවසාන කවචයේ ඉලෙක්ටෝන විනාහසය වන්නේ,
 - 1. $ns^2 np^6$

2. $ns^2 np^5$

3. $ns^2 np^4$

4. $ns^2 np^3$

5. $ns^2 np^2$

- $2.4\ g$ මැග්නීසියම් වායුගෝලීය නයිටුජන් සමඟ පුතිකියා කර නයිටුයිඩය සාදයි. මෙයට ජලය දැමීමේදී පිටවන NH_3 හි ස්කන්ධය g වලින්, $(Mg=24\,,\,N=14\,,\,H=1)$
 - 1. 3.4

2. 34

3. 1.13

4. 11.3

- 5. 20
- $Ba(OH)_2$. x H_2O හි 3.15g ක් ජලය $100~cm^3$ දියකර දාවණයක් සාදාගන්නා ලදි. එයින් $10~cm^3$ ක් $0.1\ moldm^{-3}\ HCl$ සමඟ අනුමාපනය කරන ලදි. මෙම HCl දාවණයෙන් $20\ cm^3$ ක් ඒ සඳහා වැය විය. xහී අගය වන්නේ, $(Ba=137\,,\ O=16\,,\ H=1)$
 - 1. 2

2. 4

3. 6

4. 8

- 5. 10
- පහත දී ඇති කාබනික සංයෝගයේ IUPAC නාමය වන්නේ,
 - - 4. 3-bromo-4-methylhexanal
 - 5. 2-bromo-3-methylpentanal
- A නම් නිල් පැහැති දාවණයක් රත්කළ විට කොළ පැහැති ඝණය බවට පත්වී තව දුරටත් රත් කිරීමේදී දුඹුරු වායුවක් පිටකරමින් කළු අවක්ෂේපයක් ඉතිරි විය. නිල් පැහැති දාවණය A වන්නේ,
 - 1. $CuSO_{4(aq)}$

2. $Ca(NO_3)_{2(aq)}$

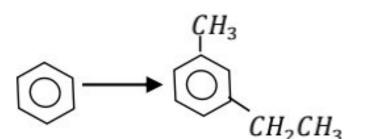
 $NaNO_{3(aq)}$

- 4. $Cu(NO_3)_{2_{(aq)}}$
- 5. $Ba(NO_3)_{2(aq)}$
- $(NH_4)_2$ CO_3 රත්කළ විට $25C^0$ දී එය වියෝජනය වේ. මෙම පුතිකිුයාව ආශිුතව $\Delta H^{ heta}$ හා $\Delta S^{ heta}$ සතා වන්නේ,

$\Delta H^{\theta} \quad \Delta S^{\theta}$

- 1.
- 2. + +

- + 0
- එතනෝල් (C_2H_5OH) , $K_2Cr_2O_7$ ඇතිවිට ආම්ලික මාධායේදී ඇසිටික් අම්ලය (CH_3COOH) බවට ඔක්සිකරණය වීමේ තුලිත පුතිකිුයාවේ $C_2H_5OH:\ K_2Cr_2O_7$ මවුල අනුපාතය වන්නේ,
 - 1. 3:2


2. 1:5

3. 4:5

4. 2:5

5. 5:4

13.

ඉහත පරිවර්තනයේ නිවැරදි පුතිකිුයක අනුපිළිවෙල වන්නේ,

- 1. CH_3Cl /නිර්ජලීය $AlCl_3$, CH_3CH_2Cl /නිර්ජලීය $AlCl_3$
- 2. $CH_3 C Cl$ / නිර්ජලීය $AlCl_3$, CH_3Cl /නිර්ජලීය $AlCl_3$, Zn[Hg], සා.HCl
- O 3. CH_3Cl /නිර්ජලීය $AlCl_3$, $CH_3-\stackrel{||}{C}-Cl$ / නිර්ජලීය $AlCl_3$, $Zn\{Hg\}$, සා.HCl
- 4. $CH_3 \overset{||}{C} Cl$ / නිර්ජලීය $AlCl_3$, CH_3Cl /නිර්ජලීය $AlCl_3$
- 5. CH_3Cl /නිර්ජලීය $AlCl_3$, CH_3Cl /නිර්ජලීය $AlCl_3$
- 14. $CH_3CH_2CH=CH_2$ \xrightarrow{HBr} $CH_3CH_2CH_2CH_2Br$ දී ඇති පුතිකිුයාවේ, පුතිකිුයා යාන්තුනය වන්නේ,
 - 1. නියුක්ලියෝෆිලික ආදේශ

2. ඉලෙක්ටෝෆිලික ආකලනය

3. මුක්තඛණ්ඩක ආකලනය

4. නියුලියෝෆිලික ආකලනය

- 5. ඉලෙක්ටොෆිලික ආදේශය
- NaOH යම්කිසි ස්කන්ධයක්, ජලය $250~cm^3$ ක දියකර සාදා ගන්නා ලද දාවණයක සංයුතිය $5 imes 10^3~ppm$ 15. වේ. දියකළ NaOH හි ස්කන්ධය වනුයේ, $(Na=23\ ,\ O=16)$
 - 1. 4 g

2. 2 g

3. 1.25 *g*

4. 1 g

- 5. ඉහත කිසිවක් නොවේ.
- සාන්දුණය $4\ moldm^{-3}$ වන NaOH දාවනයක පරිමාව $500\ cm^3$ වන අතර එහි ඝණත්වය $1.6\ gcm^{-3}$ (දී ඇති උෂ්ණත්වයකදී). NaOH හි මවුල භාගය වන්නේ, $(Na=23\ ,\ O=16\ ,\ H=1)$
 - 1. $\frac{1}{21}$

 $2. \frac{2}{21}$

3. $\frac{20}{21}$

4. $\frac{1}{2}$

- 5. $\frac{1}{4}$
- $\mathcal{C}-H$, $\mathcal{C}-\mathcal{C}$, $\mathcal{C}=\mathcal{C}$ හා H-H යන බන්ධන වල 298K දි බන්ධන විඝටන එන්නැල්පි පිළිවෙලින් 414,347,615 හා $435\ Kjmol^{-1}$ වේ. පහත දී ඇති පුතිකිුයාවේ එන්තැල්පි විපර්යාසය වන්නේ

$$H = C + H_{2(g)} \longrightarrow H - C - C - H$$

$$H = H_{1} + H_{2(g)} + H_{2(g$$

- 1. $+250 \ kJmol^{-1}$ 2. $-250 \ kJmol^{-1}$ 3. $+125 \ kJmol^{-1}$
- 4. $-125 \, kJ \, mol^{-1}$ 5. මේ කිසිවක් නොවේ.
- ආවර්තිතා වගුවේ ඇති මූලදුවා පිළිබඳව සාවදා පුකාශය තෝරන්න. 18.
 - 1. 14 වන කාණ්ඩයේ ලෝහ, අලෝහ හා ලෝහාලෝහ ඇත.
 - 2.~~6 හා 4 වන ආවර්ත දෙකෙහිම $25^{0}C$ දී ඝන, දුව හා වායු අවස්ථාවේ ඇති මූලදුවාය ඇත.
 - 3. සියලුම ඒක සංයුජ මූලදුවා ලෝහ වේ.
 - 4. 17 වන කාණ්ඩයේ, 25^{0} C දී. සියලුම භෞතික අවස්ථාවල (ඝන, දුව, වායු) ඇති මූලදුවා ඇත.
 - 5. d –ගොනුවේ මූලදුවා වල දුවාංක, S ගොනුවේ මූලදුවා වල දුවාංක වලට වඩා වැඩිය.

- 19. ලන්ඩන් අපකිරණ බල පමණක් ඇති සංයෝග යුගල වන්නේ, 1. NO_2 , CO_2 $2. BF_3$, NH_3 3. SiF_4 , O_3 5. $BeCl_2$, SO_2 4. $SiCl_4$, C_6H_6
- Ar වායුවේ වර්ග මධානා මූල වේගය, $27^{0}C$ දී He වායුවේ වර්ග මධානා මූල වේගය හා සමාන වන්නේ කුමන උෂ්ණත්වයේ දීද ? (Ar හා He පරිපූර්ණ වායු වේ) (He=4 , Ar=40)
 - 1. 1270°C 2. 3727°C 3. 27°C 4. $4000^{\circ}C$

සන්තෘප්ත වාෂ්ප පීඩනය 26.7 torr වේ.

 O_2 වායුව $1.50\ dm^3$ ක් 27^0C දී හා $760\ torr$ පීඩනයකදී ජලය මතින් එක්රැස් විය. 27^0C දී ජලයේ 21.

එක් වූ O_2 වායුව මවුල වලින්,

2. 0.060 3. 0.062 1. 0.058 4. 0.054 5. 0.064

5. 3000 K

යම් අවස්ථාවකදී පහත දී ඇති පුතිකිුයාවේ C_2H_4 ට සාපේඎව පුතිකිුයා වේගය $0.2\ moldm^{-3}S^{-1}$ වේ. එම 22. පුතිකිුියාවේ $extit{O}_2$ ට සාපේඎව පුතිකිුියා වේගය වන්නේ,

$$C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(g)}$$

 $0 \ moldm^{-3}S^{-1}$ 2. $0.4 \ moldm^{-3}$ 3. $0.6 \ moldm^{-3}$

- 1. $0.20 \text{ moldm}^{-3}S^{-1}$ 4. 0.1 moldm^{-3} 5. $0.033 \text{ moldm}^{-3}S^{-1}$
- 23. පරිපූර්ණ වායුවක් ආශිුතව නිවැරදි සම්බන්ධතාවය නිරූපනය වන්නේ, (KE=මධානා චාලක ශක්තිය d =සණත්වය) 1. $C^2 = \frac{3RT}{M}$ 2. $KE = \frac{3nRT}{2N}$ 3. $KE = \frac{3PV}{2N}$
 - 4. $P = \frac{1}{2}dc^2$ 5. $PV = \frac{1}{2}nNMc^2$
- කෂාර ලෝහ පිළිබඳව අසතා පුකාශය වන්නේ**,**
 - 1. K,Rb හා Cs ඔක්සිජන් සමඟ පුතිකිුයාවෙන් සුපර් ඔක්සයිඩ සාදයි.
 - 2. Li, Li_20 පමණක් සාදයි.
 - 3. වාතයේ රත්කළ විට Li පමණක් Li_3N සාදයි.
 - 4. Na, H_2 සමඟ පුතිකියාවෙන් දුව NaH සාදයි.
 - 5. $LiHCO_3$ පමණක් දුව අවස්ථාවේ පවතින අතර අනෙක් බයිකාබනේට් ඝණ වේ.
- දී ඇති සංයෝග සලකන්න.

a)
$$HC \equiv CH$$
 b) $H_2C = CH_2$ c) $H_3C - CH_3$

ඒවායේ C වල p ලක්ෂණය වැඩිවන පිළිවෙල වනුයේ,

- 3. c < b < a1. a < b < c2. b < c < a5. b < a < c4. c < a < b
- සමාන හැඩයක් සහිත සංයෝග /අයන යුගල වන්නේ, 3. H_3O^+ , NO_3^- 1. $SOCl_2$, CH_2O 2. SO_3 , NO_2^- 4. $SOCl_2$, NCl_3 $5. SO_3, PCl_3$

4

- සාන්දුණය $6.25\ moldm^{-3}$ වන NH_3 දාවණයක $15.0cm^3$, $25.0cm^3$ දක්වා තනුක කරන ලදි. සෑදුනු නව දාවණයේ NH_3 සාන්දුණය වන්නේ, $(moldm^{-3})$
 - 1. 1.17

2. 0.375

3. 11.7

4. 3.75

- 5. 37.5
- 28. දී ඇති දත්ත භාවිතයෙන් $3\,Mg_{(g)} + Fe_2O_{3_{(s)}} o 3\,MgO_{(g)} + 2Fe_{(s)}$ වන පුතිකිුයාවේ සම්මත එන්තැල්පි විපර්යාසය වන්නේ,
 - i. $2Fe_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow Fe_2O_{3(s)}$; $\Delta H^{\theta} = -193.4 \ kJmol^{-1}$
 - ii. $Mg_{(s)} + \frac{1}{2}O_{2_{(g)}} \rightarrow MgO_{(s)}$; $\Delta H^{\theta} = -140.2 \; kJmol^{-1}$

 - 1. $-227.2 \ kJmol^{-1}$ 2. $-272.3 \ kJmol^{-1}$ 3. $227.2 \ kJmol^{-1}$
- - 4. $272.3 \ kJmol^{-1}$ 5. $277.2 \ kJmol^{-1}$
- 800K හී ඇති O_2 වායුවේ හා 50K දී ඇති H_2 වායුවේ වර්ග මධානා මුළු වේගය අතර අනුපාතය වන්නේ,
 - 1. 4

2. 2

3. 1

- 30. දී ඇති හයිඩුයිඩවල තාපාංකය ආරෝහණය වන පිළිවෙල වන්නේ,
 - 1. $NH_3 < H_2Te < H_2O < HF$
- 2. $NH_3 < H_2Te < HF < H_2O$
- 3. $H_2Te < NH_3 < HF < H_2O$
- 4. $H_2Te < NH_3 < H_2O < HF$
- 5. $H_2Te < HF < NH_3 < H_2O$

පුශ්න අංක 31 සිට 40 දක්වා වගුවේ දී ඇති උපදෙස් අනුව පිළිතුර තෝරන්න.

එක් එක් පුශ්නයේ දක්වා ඇති (a),(b),(c),(d) පුතිචාර 4 අතරෙන් එකක් හෝ වැඩි සංඛ්‍යාවක් හෝ නිවැරදිය. නිවැරදි පුතිචාරය / පුතිචාර කවරේදයි තෝරාගන්න.

උපදෙස් සම්පිණ්ඩනය

1	2	3	4	5
a හා b පමණක් නිවැරදිය	b හා c පමණක් නිවැරදිය	c හා d පමණක් නිවැරදිය	d හා a පමණක් නිවැරදිය	වෙනත් පුතිචාර සංඛ්‍යාවක් හෝ සංයෝජනයක් හෝ නිවැරදිය.

- දී ඇති නිවැරදි සූතුය හා නාමකරණය වන්නේ, 31.
 - a. $NaClO_2$: sodium hypochlorite
 - b. $K_2S_4O_6$: potassium tetrathionate
 - c. $MgZnO_2$: magnesium zincate
 - d. P_4O_6 : phosphorous hexoxide
- d ගොනුවේ මූලදුවා කැටායන සාදන සංකීර්ණ සංයෝග විවිධ වර්ණ ගනී. පහත දී ඇති සංකීර්ණ සංයෝග අතරින් වර්ණයන් සමාන සංකීර්ණ සංයෝග ඇත්තේ,

 - a. $[Co(H_2O)_6]^{2+}$, $[Cu(H_2O)_6]^{2+}$ b. $[Ni(H_2O)_6]^{2+}$, $[Fe(H_2O)_6]^{2+}$
 - c. $[Cu(NH_3)_4]^{2+}$, $[Ni(NH_3)_6]^{2+}$ d. $[FeCl_4]^-$, $[CuCl_4]^{2-}$
- පහත දී ඇති සංයෝග/සංයෝගය තුල අයනික බන්ධන, සහසංයුජ බන්ධන, දායක සහසංයුජ බන්ධන 33. සියල්ලට ඇත්තේ,
 - a. Al_2Cl_6
- b. NH₄Cl
- c. $NaNO_3$
- 4. Na_2CO_3

- 34. කැතෝඩ කිරණ සම්බන්ධව නිවැරදි පුකාශ/පුකාශය වන්නේ,
 - a. සරල රේඛියව ගමන් කරයි.
 - b. අංශුමය ස්වභාවය ඇත.
 - c. බාහිර විදාූත් කෂ්තුයේ සෘණ අගුය වෙතට ආකර්ෂණය වේ.
 - d. ඒවායේ අංශුවලට තුනී රත්රන් තහඩුවන් තුලින් යා නොහැක.
- 35. දී ඇති අණුව හා සම්බන්ධව නිවැරදි වගන්තිය/වගන්ති තෝරන්න.

$$H \quad H$$

$$H - C = C - C \equiv N$$

- a. සියළුම මධා පරමාණු sp^2 මුහුම්කරණය දක්වයි.
- \mathbf{b} . සියළුම C එකම ඔක්සිකරණ අංකයේ ඇත.
- c. සියළුම පරමාණු එකම තලයක ඇත.
- C-C-N බන්ධන කෝණය 180^{0} ක් වේ.
- 36. ද්විධුැව සූර්ණයක් ඇති අණු / අයන වන්නේ,
 - a. $H \subset C$ Cl = C

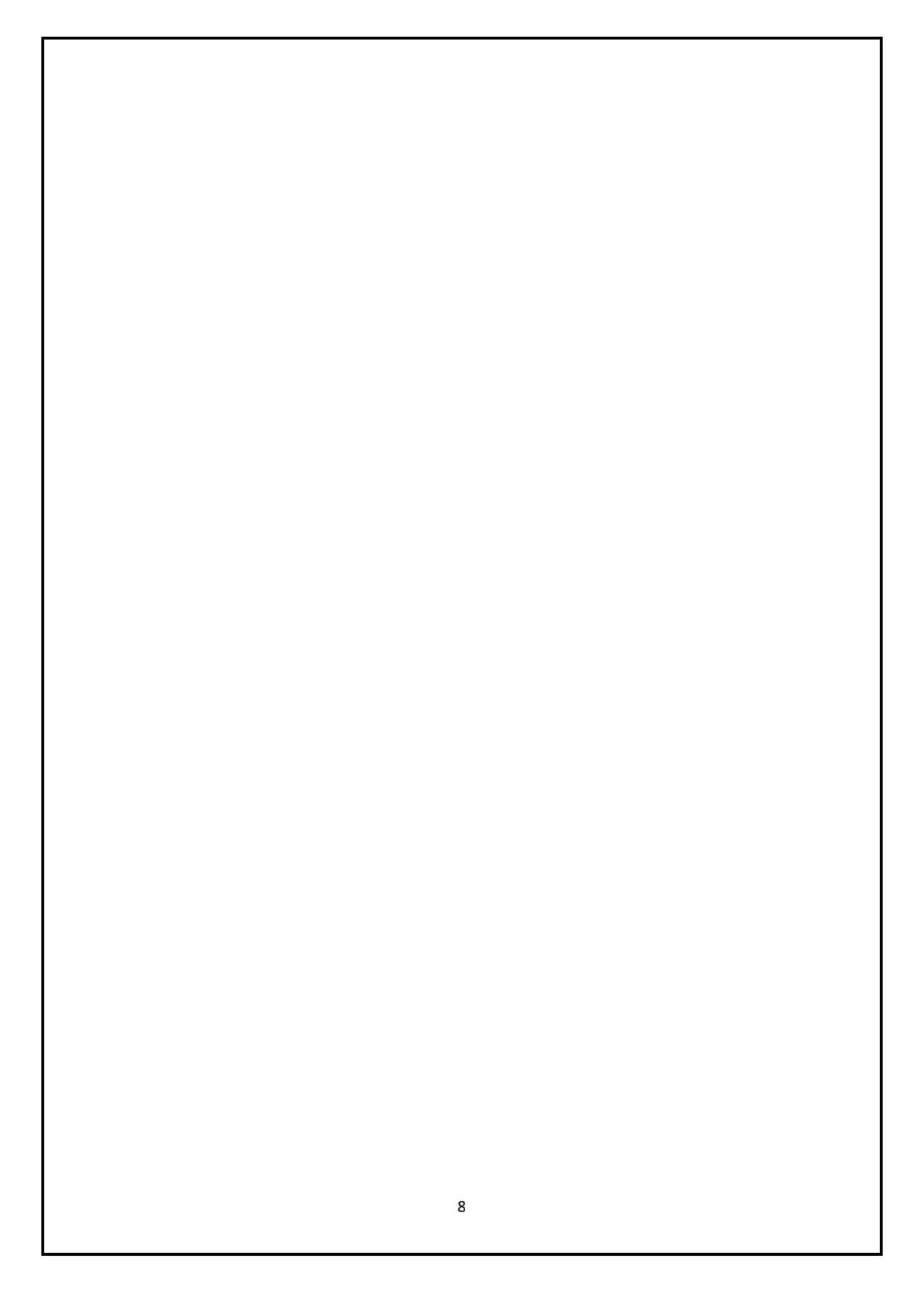
b. $\int_{Cl}^{H} C = C \int_{Cl}^{H}$

c. $H \subset Cl$ $H \subset Cl$

- d. NO_2
- 37. පුත්කුයාවක වෙගය රඳා පවතින සාධක වන්නේ,
 - a. උෂ්ණත්වය

- b. උත්පේුරක
- c. පුතිකිුයාව සිදුවන දාවකය
- d. පුතිඵල වල සාන්දුණය
- 38. ගැමා කිරණ (γ කිරණ) ආශිතව සතා පුකාශ/පුකාශය වන්නේ,
 - a. එය ආලෝකයේ වේගය මෙන් 90% වේගයකින් ගමන් කරයි.
 - \mathbf{b} . සණ Pb තහඩුවක් මගින් විනිවිදයාමේ බලය නවත්වයි.
 - c. ∝ කිරණ වල ගමන් මාර්ගය චුම්බක කෙෂ්තුයක් ඇතිවිට වෙනස් නොවේ.
 - d. γ කිරණ වල අයනීකරණ ශක්තිය ඉතා විශාලය.
- 39. ඉලෙක්ටුෝන විනාහසය සම්බන්ධව නිවැරදි පුකාශය /පුකාශ තෝරන්න.
 - a. Cr හා Cu වල කවචයේ ඉලේකටුෝන විනාsසය 4s' වේ.
 - b. Nb හී අවසාන කවචයේ යුගලනය නොවූ ඉලෙක්ටුෝන 5 ක් ඇත.
 - c. Ru හී සංයුජතා කවචයේ ඉලෙක්ටෝන විනාහසය $4d^65s^2$ වේ.
 - d. Pd හි 5s කවචයේ ඉලෙක්ටෝනයක් පමණක් ඇත.
- 40. මධා පරමාණුව මත ඔත්තේ ඉලෙක්ටුෝන සංඛ්‍යාව ඇත්තේ,
 - a. $N_2 O_4$

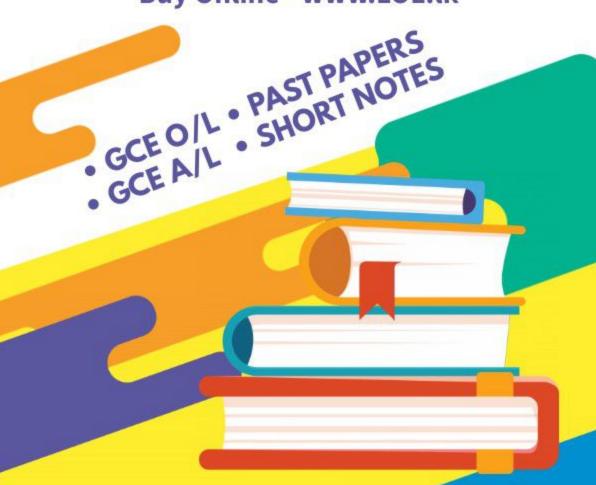
b. N_2O_3


c. NO_2

d. ClO_2

අංක 41 සිට 50 තෙක් එක් එක් පුශ්තය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දයි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය	
(1)	සතා වේ	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි.	
(2)	සතා වේ	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා නොදෙයි.	
(3)	සතා වේ	අසතා වේ.	
(4)	අසතා වේ	සතා වේ.	
(5)	අසතා වේ	අසතා වේ.	


	පළමු පුකාශය	දෙවන පුකාශය
41	$LiF_{(s)}$ හි දැලිස් එන්තැල්පිය $NaF_{(s)}$ ට වඩා වැඩිය.	Li හි අයනයේ අරය Na හි අයනයේ අරයට වඩා අඩුය.
42	තාත්වික වායුවක් සඳහා වැන්ඩවාල් සමීකරණය ඉතා ඉහළ පීඩනවලදී හා පහල උෂ්ණත්වයේදී	වැන්ඩවාල් නියතය " a " හි SI ඒකකය $m^3 mol^{-1}$ වේ.
43	$Mg(NO_3)_2$ තාප වියෝජනයෙන් සංයුජතා ඉලෙක්ටුෝන 17 ක් සහිත වායුවක් පිටවේ.	$Mg(OH)_2$ හි දාවාතාවය $Ba(OH)_2$ ට වඩා වැඩිය.
44	සමස්ථානිකවල රසායනික ගුණ මෙන්ම භෞතික ගුණද සමානය.	සමස්ථානිකවල සමාන පෝටෝන සංඛාාවක් ඇති නමුත් වෙනස් නියුටෝන සංඛාාවක් ඇත.
45	වරණීය අවකෙෂ්පන කුමයේදී 4 වන කාණ්ඩයේදී Zn^{2+} සුදු අවකෙෂ්පයක් ලබාදේ.	වරණීය අවකේපනයේදී අවක්කෙෂ සාදන 4 වන කාණ්ඩයේ කැටායන සියල්ලම ආන්තරික මූලදුවාවේ.
46	අයනික සංයෝග වල සහසංයුජ ගුණය ධැවීකරණය මගින් නිර්ණය කළ හැක. එය කැටායනවල ධැවිකාරක බලය හා ඇනායනවල ධැවනය වීම මගින් නිරීකුණය කළ හැක.	අයනික සංයෝගවල ධැවීකරණය වැඩිවන විට සහසංයුජ ගුණයද වැඩි වේ.
47	කාමර උෂ්ණත්වයේදී H_2 හා O_2 අතර පුතිකිුියාව ඉතා වේගයෙන් සිදු වේ.	අයනික පුතිකිුයා, පුතිකිුයක මිශු කළ වහාම සිදු වේ.
48	සංයෝගය ඉතා පිරිසිදුව හමුවීම හා දාවණය සාදා තිබීමේදි කාලයත් සමඟ සාන්දුනය වෙනස් නොවීම පුාථමික පුමාණිකාරක වල ගුණ වේ.	KMnO4 පුාථමික සම්මත දාවණයක් වේ.
49	පුතිකිුයාව වේග නියතය පුතිකිුයාවේ සමස්ත පෙළ පෙන්වා දේ.	පළමු පෙල පුතිකිුියාවක වේගය එහි වේග නියතයට සමාන වේ.
50	$NaHCO_3$ තාපස්ථායී වේ.	$NaHCO_3$ තනුක අම්ල සමඟ CO_2 ලබා නොදේ.

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500 \$

More than 1000+ Papers For all major Subjects and mediums (24)

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

රු **350.00**

ADD TO CART

GCE O/L EXAM, MATHEMATICS

O/L Mathematics Past Paper Book

රු 350.00

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL... O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

GCE O/L EXAM, HISTORY

රු 350.00

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძდ 350.00