Boxbit Dense Boxbit Dense Sik (43) Sik (44) Sik (43) Sik (44) Sik (43) Sik (44) Sik (43) Sik (44) Sik (43) Sik (44) Sik (44) Sik (44) Sik (45) Sik (45			2
••••••••*****************************		B	
 g = Nms⁻¹ (1) Δού καρκάθοα d'han, Am⁻¹ Am⁻² Am⁻² Am⁻³ Am⁻³ Cs⁻¹m⁻¹ - 5) Cs⁻¹m⁻² (2) φόω a κυ κυπόθοω d g απήσωπά gloant aglent βίωκα veðacatat meðat mddi. a, v και d φπο σαθαπάλα, v²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 = Ad - B A κου B δ θασα, y²/2 + Ad - B A πο B δ θασα, y²/2 + Ad - B (3) 6, 4) 0.21 5) 0 (4) B βραν θοδο θασα θασα degn wat for an Bloave a consta bloave a stand θασα? y²/2 + Ad - B y²/2 + Ad - B (5) φωρεί κανια κεθαιο είσμο αρμαν διαθε μορμα δρασμο αρμαν y²/2 + Ad - B (5) φωρεί κανια εθασι δασα θασα degn wat for angle and for angle a			🕂 ලභාතික විදාහාව 🗌
 Am⁻¹ 2) Am⁻² 3) Am⁻³ 4) Cs⁻¹m⁻¹ (-5) Cs⁻¹m⁻² quant a use a setado a d g evalencia global agle d shuan velopecard solar and a, v use d quad allow a setado a d g evalencia global agle d shuan velopecard solar and a. v. v. a quad a use a setado a d g evalencia global agle d shuan velopecard solar and a. v. v. a d quad a use a setado a d g evalencia global agle d shuan velopecard solar and a. v. v. a d quad allow a setado a d g evalencia global agle d shuan velopecard solar and all agle and allow a setado and a global agle d agle agle agle agle agle agle agle agle	2 15	*	පුශ්න සියල්ලටම පිළිතුරු සපයන්න. g = Nms ⁻¹
d අතර සම්බන්ධය. $\frac{v}{a^2} = Ad - B$ A සං B & නාන. 1) $\frac{1}{M^2} [L^2T^-, L^-T^-1 2) \frac{ML^2T^1}{2}, LT^{-1} 3) \frac{M^{-1}LT^{-1}}{2}, L^{-1}T^{-2}$ 4) $\frac{1}{M^{-1}L^2T^{-1}}, L^{-1}T^{-1} 5) \frac{M1^{-1}L^{-2}T^{-1}}{2}, L^{-1}T^{-1}$ (3) $\frac{2}{M^2} (2\pi^2 - 1), L^{-1}T^{-1} 5) \frac{M1^{-1}L^{-2}T^{-1}}{2}, L^{-1}T^{-1}$ (3) $\frac{2}{M^2} (2\pi^2 - 1), L^{-1}T^{-1} 5) \frac{M1^{-1}L^{-2}T^{-1}}{2}, L^{-1}T^{-1}$ (4) $\frac{1}{M^2} (2\pi^2 - 1), L^{-1}T^{-1} 5) \frac{M1^{-1}L^{-2}T^{-1}}{2}, L^{-1}T^{-1}$ (5) $\frac{1}{M^2} (2\pi^2 - 1), L^{-1}T^{-1} 3) \frac{M^{-1}L^{-2}T^{-1}}{2}, L^{-1}T^{-1} 5) \frac{M^{-1}L^{-1}T^{-1}}{2}, L^{-1}T^{-1}T^{-1}}{2}, L^{-1}T^{-1}T^{-1}}{2}, L^{-1}T^$	((1)	1) Am^{-1} 2) Am^{-2} 3) Am^{-3} 4) $Cs^{-1}m^{-1}$ 5) $Cs^{-1}m^{-2}$
 N¹L²T⁻¹, L⁻¹T⁻¹ ML⁻²T¹, LT⁻¹ ML⁻²T¹, L⁻¹T⁻¹ M⁻¹L²T¹, L⁻¹T⁻¹ M⁻¹L²T¹, L⁻¹T⁻¹ M⁻¹L²T¹, L⁻¹T⁻¹ M⁻¹L²T¹, L⁻¹T¹ M⁻¹L²T¹, L⁻¹T¹ M⁻¹L²T¹, L⁻¹T¹ M⁻¹L²T¹, L⁻¹T¹ M¹L²T¹, L¹T¹ M¹L²T¹, L¹T¹ M¹L²T¹, L¹T¹ M¹L²T¹, L¹T¹ M¹L²T¹, L¹T¹ M¹L²T¹, L¹T¹	·((2)	
 බාති වන විශා කාන්තය, I) IJ - 2) 0.8J 3) 0.6J 4) 0.2J 5) 0 (4) කිවුනා මටටම 90dB වූ හඬක කිවුනාවය 40dB වූ හඬක කිවුනාවය මෙන් කී ඉණයක් වේද? I) 2.5 2) 5 3) 50 4) 10³ 5) 4/9 (5) අංශුවක් පහත සම්කරණයට අනුව සරළ අනුවර්ති වලිතයේ යෙයද්. x = 6 sin (3πt + ⁷⁷/₃) සරළ අනුවර්ති වලිතයට අදාල සංඛන්තය හා කාලාරම්භ කෝණය, I) 3Hz, ⁷⁷/₃ 2) 1.5Hz, ⁷⁷/₃ 3) 3Hz, 3π 4) 1.5Hz, 3π 5) 1.5Hz, 0 (6) අවල පරිපූර්ණ වාසු ස්කන්ධයක පීඩනය නියනව පවත්වාතෙන එහි උප්ණක්වය 27°C සිට 54°C දක්වා ඉහළ නැංචූ විට පරිමාව වැඩි වීමේ පුතිශනය වන්නේ, I) 109% 2) 100% 3) 50% 4) 18% 5) 9% (7) කෘෂ්ණ වස්තූ දෙකක උපරිම කිවුනාවයට අනුරූප තරංග ආයාම පිළිවෙලින් 1nm හා 1µm වේ. එම වස්තූ මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය විමෝචනය කරන සීලුතා අතර අනුලාපාතය, I) 10³ 2) 10⁴ 3) 10⁶ 4) 10⁸ 5) 10¹² (8) ශබධ ස්වරයක විස්තාරය දෙශුණ කර සංඛානය හාගයක් කළ විට කිවුනාවය, I) ලදගුණයකින් වැඩි වේ. 2) දෙශුණයකින් අඩු වේ. 3)හතර ගුණයකින් වැඩි වේ. 4) හතර ගුණයකින් වැඩි වේ. 2) දෙශුණයකින් අඩු වේ. 5) වෙනස් නොවේ. (9) වර්ණාවලි මානයක් හාවිකයෙන් ප්රියක අවම අපගමන කෝණය සොයන පර්ශාෂණයක දී. A) සමාන්තර ආලෝක කදමබයක් ලබා ගනීම සඳහා සමාන්තරකය සිරුමාරු කරයි. B) සමාන්තර ආලෝක කදමබයක් ලබා ගනීම සඳහා සමාන්තරකය සිරුමාරු කරයි. B) සමාන්තර ආලෝක කදමබයක් ලබා ගනීම සඳහා සමාන්තරකය සිරුමාරු කරයි. C) ප්රිකාවේ වර්තාක ශිරිකය යැම විටම ප්රිම මාලනීම සඳහා සමාන්තරකය සිරුමාරු කරයි. B) සමාන්තර ආලෝක කදමබයක් ලබා ගනීම සඳහා සමාන්තරකය සිරුමාරු කරයි. C) ප්රිකාවේ වර්තාක ශිරිකය සැම විටම පියම මෙවා සිරීම සඳහා සෝනය සර්ජා කාරකය සිරිවාරු කරයි. 	,	- - 	1) $\mathbf{M}^{1}\mathbf{L}^{2}\mathbf{T}^{-1}$, $\mathbf{L}^{-1}\mathbf{T}^{-1}$ 2) $\mathbf{M}\mathbf{L}^{-2}\mathbf{T}^{1}$, $\mathbf{L}\mathbf{T}^{-1}$ 3) $\mathbf{M}^{-1}\mathbf{L}\mathbf{T}^{-1}$, $\mathbf{L}^{-1}\mathbf{T}^{-1}$ 4) $\mathbf{M}^{-1}\mathbf{L}^{2}\mathbf{T}^{-1}$, $\mathbf{L}^{-1}\mathbf{T}^{-1}$ 5) $\mathbf{M}^{-1}\mathbf{L}^{-2}\mathbf{T}^{1}$, $\mathbf{L}^{-1}\mathbf{T}^{-1}$
 1) 2.5 2) 5 3) 50 4) 10 5) 49 (5) අංශුවක් පහත සම්කරණයට අනුව සරළ අනුවර්ති වලිතයේ යෙදේ. x = 6 sin (3πt + T/3) සරළ අනුවර්ති වලිතයට අදාල සංඛාහනය හා කාලාරම්භ කෝණය, 1) 3Hz, T/3 2) 1.5Hz, T/3 3) 3Hz, 3π 4) 1.5Hz, 3π 5) 1.5Hz, 0 (6) අවල පරිපූර්ණ වායු ස්කන්ධයක පීඩනය නියතව පවත්වාගෙන එහි උෂ්කේඩ් 27°C සිට 54°C දක්වා ඉහළ නැංචූ විට පරිමාව වැඩි වීමේ ප්රිශාතය වන්නේ, (7) කෂ්ණ වස්තු දෙකක උපරිම කිවුනාවයට අනුරුප කරංශ ආයාම පිළිවෙලින් 1nm හා 1µm වේ. එම වස්තු මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය වීමෝවනය කරන සිලුතා අතර අනුපාතය, (7) කම්ණ වස්තු දෙකක උපරිම කිවුනාවයට අනුරුප කරංශ ආයාම පිළිවෙලින් 1nm හා 1µm වේ. එම වස්තු මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය වීමෝවනය කරන සිලුතා අතර අනුපාතය, (8) ශබධ ස්වරයක විස්තාරය දෙශුණ කර සංඛාහතය භාගයක් කළ විට කිවුනාවය, (9) වර්ණාවල් මානයක් භාවිතයෙන් ප්‍රීස්මයක අවම අපගමන කෝණය සොයන පරික්ෂණයක දී, (9) වර්ණාවල් මානයක් භාවිතයෙන් ප්‍රීස්මයක අවම අපගමන කෝණය සොයන පරික්ෂණයක දී, (9) වර්ණාවල් මානයක් භාවිතයෙන් ප්‍රීස්මයක අවම අපගමන කෝණය සොයන පරික්ෂණයක දී, (6) සමාන්තර ආලෝක කදමබයක් නිරීක්ෂණය කිරීම සඳහා සමාන්තරකය සිරුමාරු කරයි. (7) ප්‍රීකාවයට අංශ්යක් කරීකාවයෙ කරන සින්ය සායන පරික්ෂණයක දී. 	((3)	හානි වන චාලක ශානිතය,
 x = 6 sin (3π + ^π/₃) සරළ අනුවර්ති චලිතයට අදාල සංඛ්‍රාතය හා කාලාරම්භ කෝණය. 1) 3Hz, ^π/₃ 2) 1.5Hz, ^π/₃ 3) 3Hz, 3π 4) 1.5Hz, 3π 5) 1.5Hz, 0 (6) අවල පරිපූර්ණ වායු ස්කන්ධයක පීඩනය නියතව පවත්වාගෙන එහි උෂ්ණත්වය 27°C සිට 54°C දක්වා ඉහළ නැංඩූ විට පරිමාව වැඩි වීමේ ප්‍රතිශාය වන්නේ. (7) කෘෂ්ණ වස්තු දෙකක උපරිම කිවුතාවයට අනුරූප තරංග ආයාම පිළිවෙලින් 1nm හා 1µm වේ. එම වස්තු මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය වීමෝචනය කරන සීගුතා අතර අනුලාතය. (7) කෘෂ්ණ වස්තු දෙකක උපරිම කිවුතාවයට අනුරූප තරංග ආයාම පිළිවෙලින් 1nm හා 1µm වේ. එම වස්තු මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය වීමෝචනය කරන සීගුතා අතර අනුලාතය. (8) ශබධ ස්වරයක විස්තාරය දෙශුණ කර සංඛාාතය භාගයක් කළ විට කිවුතාවය. (9) වර්ණාවලි මානයක් භාවිතයෙන් පිස්මයක අවම අපගමන කෝණය සොයන පරීක්ෂණයක දී. A) සමාන්තර ආලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. B) සමාන්තර ආලෝක කදීම්බයක් නිරීක්ෂණය කිරීම සඳහා සමාන්තරකය සීරුමාරු කරයි. C) පීස්මයේ වර්තක ශීර්ෂය සෑම විටම පිස්ම මෙසයේ කේත්දුයේ පිහිටන පරිදි පිස්මය සතරනු ලැබේ. 	((4)	1) 2.5 2) 5 3) 50 4) 10 3) 4/3
 (6) අවල පරිපූර්ණ වායු ස්කන්ධයක පීඩනය නියනව පවත්වාගෙන එහි උෂ්ණත්වය 27°C සිට 54°C දක්වා ඉහළ නැංවූ විට පරිමාව වැඩි වීමේ පුතිශනය වන්නේ, 109% 100% 50% 18% 9% (7) කෘෂ්ණ වස්තු දෙකක උපරිම නිවුනාවයට අනුරූප තරංග ආයාම පිළිවෙලින් 1nm හා 1µm වේ. එම වස්තු මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය වීමෝචනය කරන සීගුතා අතර අනුපාතය, 103 2010⁴ 10⁶ 4010⁸ 50¹² (8) ශබ්ධ ස්වරයක විස්තාරය දෙගුණ කර සංඛානතය හාගයක් කළ විට කිවුනාවය, 1) වේදගුණයකින් වැඩි වේ. 2) දෙගුණයකින් අඩු වේ. 3) හතර ගුණයකින් වැඩි වේ. 2) දෙගුණයකින් අඩු වේ. 3) හතර ගුණයකින් වැඩි වේ. (9) වර්ණාවලි මානයක් භාවිතයෙන් ප්‍රස්ෂයක අවම අපගමන කෝණය සොයන පරික්ෂණයක දී, A) සමාන්තර ආලෝක කදීම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. B) සමාන්තර ආලෝක කදීම්බයක් නිරීක්ෂණය කිරීම සඳහා සුවැකයෙ සිරු මාරු කරයි. C) ප්‍රස්මයේ වර්තක ශීර්ෂය සැම විටම ප්‍රස්ම මේසයේ කන්දයේ පිහිටන පරිදි ප්‍රස්ත කන්දුවේ පිහිටන පරිදි ප්‍රීක්ෂය කරිදී ප්‍රස්මය කන්දුවේ පරින්වන පරිදි ප්‍රීක්ෂය පරින්වන්වේ ප්‍රීයාවය. 	(5)	x = 6 sin (3 π t + $\frac{\pi}{3}$) සරළ අනුවර්ති චලිතයට අදාල සංඛ්යාතය හා කාලාරමහ කොණිය,
 54°C දක්වා ඉහළ නැංවූ විට පරිමාව වැඩි වීමේ පතිශකය වන්නෙ. 109% 100% 100% 100% 50% 18% 9% (7) කෘෂ්ණ වස්තු දෙකක උපරිම කීවුතාවයට අනුරුප තරංග ආයාම පිළිවෙලින් 1nm හා 1µm ලෙව. එම වස්තු මගින් ඒකක වර්ගඵලයක් හරහා ශක්තිය විමෝචනය කරන සීගුතා අතර අනුපාතය. 10³ 10⁴ 10⁶ 10⁸ 5) 10¹² (8) ශබ්ධ ස්වරයක විස්තාරය දෙගුණ කර සංඛාහකය භාගයක් කළ විට කිවුතාවය. (9) වර්ණාවලි මානයක් භාවිතයෙන් පිස්මයක අවම අපගමන කෝණය සොයන පරීක්ෂණයක දී. (9) වර්ණාවලි මානයක් භාවිතයෙන් පිස්මයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. (9) වර්ණාවලි මානයක් කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. (9) පිර්ණාවලි මානයක් හාවිතයෙන් පිස්මයක අවම අපගමන කෝණය සොයන පරීක්ෂණයක දී. (8) සමාන්තර ආලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. (9) පිර්ණාවලි මානයක් හාවිතයෙන් පිස්මයක දේශ ක්රීම සඳහා සමාන්තරකය සීරුමාරු කරයි. (9) පිර්ණාවලි මානයක් හිරික්ෂණය කිරීම සඳහා සමාන්තරකය සීරුමාරු කරයි. (9) පිර්ණාවලි මානයක් හාවිතයෙන් පිස්මයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. (10) ප්රේමයේ වර්තක ශීර්ෂය සෑම විටම පීස්ම මෙසයේ කේන්දයේ පිහිටක පරිදි පීස්මය සකස් කරනු ලැබේ. 		· /	
වේ. එම වස්තු මගින් ඒකක වර්ගවලයක හටහා ශක්ඛය වමොවනය කවන සමුයා අයාව අනුපාතය, 1) 10 ³ 2) 10 ⁴ 3) 10 ⁶ 4) 10 ⁸ 5) 10 ¹² (8) ශබ්ධ ස්වරයක විස්තාරය දෙගුණ කර සංඛාහතය භාගයක් කළ විට කිවුතාවය, 1) දෙගුණයකින් වැඩි දෙවි. 2) දෙගුණයකින් අඩු වේ. 3)හතර ගුණයකින් වැඩි වේ. 4) හතර ගුණයකින් අඩු වේ. 5) වෙනස් නොවේ. (9) වර්ණාවලි මානයක් භාවිතයෙන් පිස්මයක අවම අපගමන කෝණය සොයන පරීකෂණයක දී, A) සමාන්තර අාලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. B) සමාන්තර ආලෝක කදම්බයක් නිරීකෂණය කිරීම සඳහා දූරේකෂය සීරු මාරු කරයි. C) පිස්මයේ වර්තක ශීර්ෂය සෑම විටම පිස්ම මෙසයේ කේන්දයේ පිහිටන පරිදි පිස්මය සකස් කරනු ලැබේ.	(1	6)	54°C දක්වා ඉහළ නැංවූ විට පරිමාව වැඩි වීමේ පුතිශතය වන්නේ, 1) 109% 2) 100% 3) 50% 4) 18% 5) 9%
 1) 10³ 2) 10⁴ 3) 10⁶ 4) 10 5) 10 (8) ශබ්ධ ස්වරයක විස්තාරය දෙගුණ කර සංඛාහතය භාගයක් කළ විට තිවුතාවය, 1) දෙගුණයකින් වැඩි වේ. 2) දෙගුණයකින් අඩු වේ. 3)හතර ගුණයකින් වැඩි වේ. 4) හතර ගුණයකින් අඩු වේ. 5) වෙනස් නොවේ. (9) වර්ණාවලි මානයක් භාවිතයෙන් පිස්මයක අවම අපගමන කෝණය සොයන පරිස්ෂණයක දී, A) සමාන්තර ආලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. B) සමාන්තර ආලෝක කදම්බයක් නිරීස්ෂණය කිරීම සඳහා දුරේක්ෂය සීරු මාරු කරයි. C) පිස්මයේ වර්තක ශීර්ෂය සෑම විටම පිස්ම මෙසයේ කේන්දයේ පිහිටන පරිදි පිස්මය සකස් කරනු ලැබේ. 	(°	7)	වේ. එම වස්තු මගින් ඒකක වර්ගඵලයක හරහා ශක්තය වෛරනය කරන යමුණා අයර
 දෙගුණයකින් වැඩි වේ. 2) දෙගුණයකින් අඩු වේ. 3)හතර ගුණයකන වැඩ වේ. හතර ගුණයකින් අඩු වේ. 5) වෙනස් නොවේ. වර්ණාවලි මානයක් භාවිතයෙන් පිස්මයක අවම අපගමන කෝණය සොයන පරික්ෂණයක දී, A) සමාන්තර ආලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සීරුමාරු කරයි. B) සමාන්තර ආලෝක කදම්බයක් නිරීක්ෂණය කිරීම සඳහා දුරේක්ෂය සීරු මාරු කරයි. C) පිස්මයේ වර්තක ශීර්ෂය සෑම විටම පිස්ම මෙසයේ කේන්දයේ පිහිටන පරිදි පිස්මය සකස් කරනු ලැබේ. 	•		1) 10^3 2) 10^4 3) 10^5 4) 10^5 5) 10^5
 A) සමාන්තර ආලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සරුමාරු කරය. B) සමාන්තර ආලෝක කදම්බයක් නිරිස්ෂණය කිරීම සඳහා දුරේස්ෂය සීරු මාරු කරයි. C)	(1	8)	1) දෙගුණයකින් වැඩි වේ. 2) දෙගුණයකින් අඩු වේ. 3)හතර ගුණයකන් වැඩ වේ. 4) හතර ගුණයකින් අඩු වේ. 5) වෙනස් නොවේ.
	(9)	 A) සමාන්තර ආලෝක කදම්බයක් ලබා ගැනීම සඳහා සමාන්තරකය සරුමාරු කරය. B) සමාන්තර ආලෝක කදම්බයක් නිරිසාෂණය කිරීම සඳහා දුරේසාංය සීරු මාරු කරයි. C) පිස්මයේ වර්තක ශීර්ෂය සෑම විටම පිස්ම මෙසයේ කේන්දුයේ පිහිටන පරිදි පිස්මය සකස් කරනු ලැබේ.

i

(10) ອຸສາມາຍປະເພດ ພາບ ອຸສາມາຍປະເພດ ພາບ $I = \sqrt{2}\sin(\omega t + \frac{\pi}{3})$ මගින් දක්වේ. ධාරාවේ r.m.s. අගය වන්නේ, 1) $\sqrt{2}A$ 2) -1A 3) $\frac{1}{\sqrt{2}}A$ 4) 2A 5) $\frac{1}{2}A$ (11)

(b)

සිලින්ඩරාකාර කුහර බටයක් තුල එහි බිත්තියට m ස්කන්ධ එකක් හෝ දෙකක් ඇදා ඇති ආකාරය රූපයේ දක්වා ඇත. ඒවා අතුරින් ස්ථායී, අස්ථායී හා උදාසීන සමතුලිත අවස්ථාවන් නිවැරදිව දක්වා ඇත්තේ,

(c)

1)	ස්ථායී	අස්ථායී	උදාසීන
1)	b	с	а
2)	а	b	С
3)	b	a	с
4)	а	C	b
5)	C	a	b

(a)

(12)

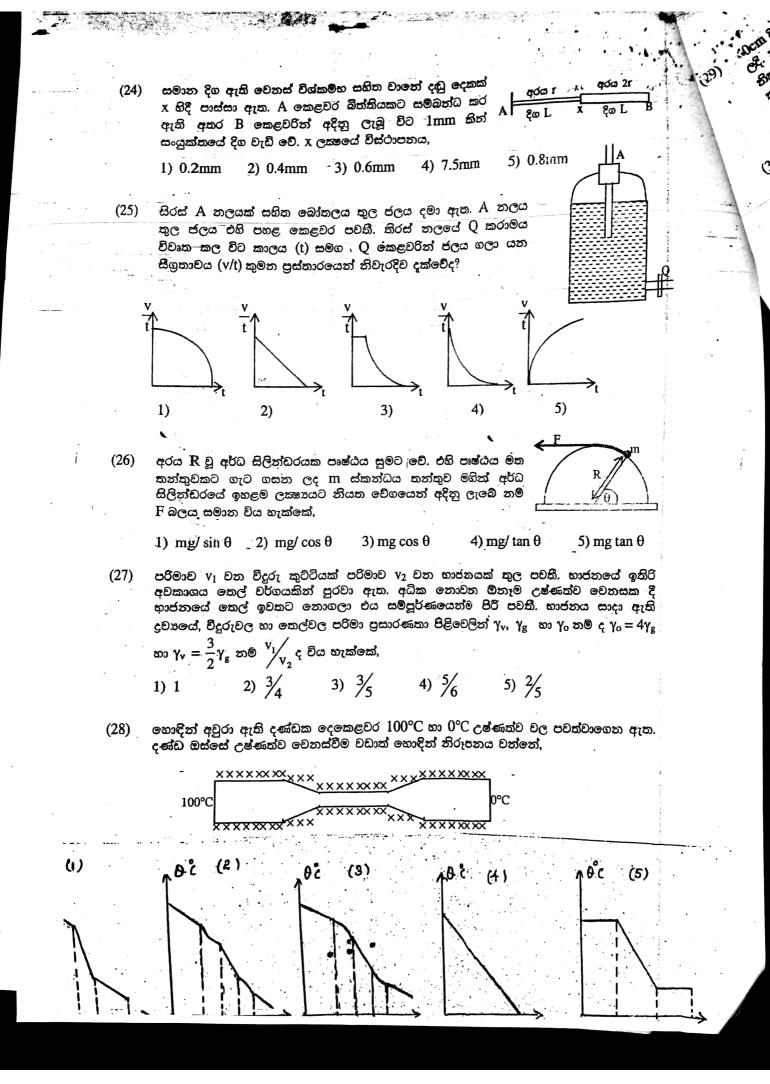
අරය 20 cm වූ පාරවිදාවුත් ගෝලයකට ඒකාකාරව වාජන වන පරිදි 24 μc ආරෝපණයක් ලබා දී ඇත. ගෝල කේන්දුයේ සිට 10 cm ඈතින් පිහටි ලසපායක ස්ථිති විදාහුත් සෙප්තු තීවුතාවය විය හැක්කේ,

1) 0	2) 2.5 x 10^6 Nc ⁻¹	3) $2.5 \times 10^5 \mathrm{Nc^{-1}}$
4) 2.7 x 10^6 Nc ⁻¹	5) $2.7 \times 10^5 \text{ Nc}^{-1}$	

(13) ෆෝටෝනයක ශක්තිය එහි ගමාතාවයට අනුලෝමව සමානුපාතික වේ. සමානුපාතික නියතයේ අගය,

1) h 2) c 3) c^2 4) $ch/2\pi$ 5) c/h

- (14) පිළිවෙලින් 10°C, 20°C හා 30°C උෂ්ණත්ව වල පවතින ජලය 1kg, 2kg සහ 3kg එකිනෙක හොඳින් මිශු කළ විට මිශුණය අයත් කර ගන්නා උපරිම උෂ්ණත්වය වන්නේ, (හාජන වල තාප ධාරිතා හා පරිසරය සමග සිදු වන තාප හුවමාරුව නොසළකා හරින්න.)
 1) 18.5 °C 2) 20 °C 3) 23.7 °C 4) 30 °C 5) 26.3°C
- (15) α, β හා γ මගින් සාදන ලද විකිරණශීලී විස්කෝතුව බැගින් ඔබට සපයා ඇතැයි සිතන්න. මෙම විස්කෝතු තුනෙන් එකක් ඔබට අනුහව කළ යුතු අතර එකක් අතේ තබා ගත යුතුව ඇත. අනෙක ඔබ ඇඳ සිටින ඇඳුමේ ඇති සාක්කුවේ දමා ගත යුතුය. අවම විකිරණ පුමාණයකට නිරාවරණය පරිදි මෙම විස්කෝතු තුනෙන් ඔබ අනුහව කරන, අතේ තබා ගන්නා හා සාක්කුවේ දමා ගන්නා විස්කෝතු පිළිවෙල වන්නේ,


1) α , β , γ 2) γ , α , β 3) β , γ , α 4) γ , β , α 5) α , γ , β

- (16) උත්තල කාචයක නාභියේ ලක්ෂීය ආලෝක පුහවයක් තැබූ විට කාචය තුලින් ප්‍රධාන අක්ෂයට සමාන්තරව ආලෝක කදම්බයක් නිකුත් වේ. ප්‍රහවය ප්‍රධාන අක්ෂයේ තිබෙන පරිදි එය කාචය දෙසට විස්ථාපනය කළ විට කාචයෙන් නිකුත් වන කිරණ පිළිබඳව පහත ප්‍රකාශ වලින් සතා වන්නේ,
 - 1) ඒවා එකිනෙකින් අපසාරී වේ.
 - 2) ඒවා එකිනෙක දෙසට අභිසාරී වේ.
 - 3) ඒවා තවදුරටත් පුධාන අසුයෙට සමාන්තර වේ.
 - 4) ඒවා එකිනෙකට සමාන්තර වන නමුත් පුධාන අසයෙට සමාන්තර නොවේ.
 - 5) පුතිබිම්බය අතාත්වික බැවින් කිසිදු කිරණයක් කාචයෙන් පිට නොවේ.

i

-

-

(29)	්රියක් දින සහ දණ්ඩක එක් කෙළවරක් පළමුව සද පොළවක් මස ගැටෙන පරිදි අස හරින ලදි. නමුත් එහි අනෙක් කෙළවර වීම ගැටීමට පෙර එය අල්ලා ගන්නා ලදි. මෙම ගැටුමෙන් නිකුත් වන සංඛානය 3kHz බව කැතෝඩ කිරණ දෝලනේකයෙ මගින් මැන ගන්නා ලදි. නඹ තුලින් ධවනිය ගමන් කරන පුවේගය.
	1) 3000ms^{-1} 2) 2400ms^{-1} 3) 1200ms^{-1} 4) 600ms^{-1} 5) 4800ms^{-1}
(30)	3g ක ස්කන්ධයක් ඇති A අංශුවක් 3ms ⁻¹ ක නියත වේගයෙන් නිශ්චලව ඇති 7g ක B අංශුවක් වෙතට ගමන් කරයි. එක් එක් අංශුව ඒවායේ ස්කන්ධ කේන්දය දෙසට ලඟා වන පුවේග වන්නේ,
• •	1) $A = 0.7 \text{ ms}^{-1}$ $B = 0.3 \text{ ms}^{-1}$ 2) $A = 2.1 \text{ ms}^{-1}$ $B = 0.3 \text{ ms}^{-1}$ 3) $A = 0.3 \text{ ms}^{-1}$ $B = 0.7 \text{ ms}^{-1}$ 4) $A = 0.3 \text{ ms}^{-1}$ $B = 2.1 \text{ ms}^{-1}$
	5) $A - 2.1 \text{ ms}^{-1}$ - $B - 0.9 \text{ ms}^{-1}$
(31)	$4x \times 2x \times x$ වන ගණකාහයක හැඩැති වස්තුවක් රූපයේ දක්වේ. A – A, B – B හා C – C යන මුහුණත් හරහා විහව අන්තරයක් $4x$ ලබා දුන් විට 1) A – A අතර වැඩිම පුතිරෝධයක් ලැබේ. 2) B – B අතර වැඩිම පුතිරෝධයක් ලැබේ. 3) C – C අතර අඩුම පුතිරෝධයක් ලැබේ. 4) C – C අතර වැඩිම පුතිරෝධයක් ලැබේ. 5) පැති යුගල තුනෙහිම පුතිරෝධ සමානය. $eDC = c\delta c c c c c c c c c c c c c c c c c $
	1) 0 2) 200J 3) 400J 4) 800J 5) 1200J $3) 400J$ 4 4 6 $5)$ $5)$
(33)	මාළුවකු හා ළමයෙකු ජලය තුල සිටින ආකාරය රූපයේ දක්වේ. • c පහත පුකාශ සලකා බලන්න. A) ළමයාගේ ඇස් c හි තිබෙන සේ මාළුවා දකී. B) ළමයාගේ ඇස් d හි තිබෙන සේ මාළුවා දකී. C) ළමයා විසින් මාළුවා a පුදේශය ආශිතව දකී. D) ළමයා විසින් මාළුවා b පුදේශය ආශිතව දකී. මේවායින් සතා වන්නේ,
(34)	${f U}^{235}$ තාපෂ්ටිය විඛණ්ඩනයේදී එහි ස්කන්ධයෙන් 0.1 \rai ක් ශක්තිය බවට පරිවර්තනය වේ. රික්තයේදී ආලෝකයේ වේගය 3 x $10^8~{ m ms}^{-1}$ නම්, ${f U}^{235}$ $1{ m kg}$ ක් විඛණ්ඩනය වීමෙන් මුදා
	හරින ශක්තිය, 1) $9 \ge 10^{13}$ J 2) $9 \ge 10^{14}$ J 3) $9 \ge 10^{15}$ J 4) $9 \ge 10^{21}$ J 5) $9 \ge 10^{23}$ J

-1

Scanned by CamScanner

5

ගැල්වනෝමීටරයක් හරහා 120 ක උපපථයක් සම්බන්ධ කළ විට එහි උත්කුමන කොටස් 50 (35) සිට 20 දක්වා පහත වැටේ. ගැල්වනෝමීටරයේ අභාන්තර පුතිරෝධය වන්නේ, 5) 78Ω 1) 18Ω - 4) 36Ω 24Ω 3) 30Ω යම් උසක සිට A ගලක් බිමට වැටේ. මේ මොහොතේදීම වෙනත් B ගලක් පොළොවේ සිට (36) V පුවේගයෙන් සිරස්ව ඉහළට විසී කරයි. A ට සාපේකෘව B හි පුවේග කාල පුස්තාරය විය හැක්ලක්, 1) 2) 4) 5) 3) (37) අභාාන්තර පුතිරෝධ Γ_1 හා Γ_2 ($\Gamma_1 > \Gamma_2$) වන සමාන විදවුත් ගාමක බල සහිත ධාරා පුභව ඳෙකක් ${f R}$ පුතිරෝධයක් සමග ලේණිගතව සම්බන්ධ කර ඇත. එක් කෝෂයක් හරහා විහව අන්තරය ශූනාා වීමට R හි අගය විය හැක්කේ, 2) $r_2 - r_1$ 3) $\frac{r_1 + r_2}{2}$ 4) $r_1 + r_2$ 5) $\frac{r_2}{2} - r_1$ 1) $r_1 - r_2$ (38) A හා B අතර සමක පුතිරෝධය, 1) $\frac{3}{7}R$ 2) $\frac{4}{9}R$ 3) $\frac{5R}{6}$ 4) $\frac{6R}{5}$ 5) $\frac{9}{4}R$ ලේසර් කිරණ නිපදවීම සඳහා පහත සඳහන් තත්ත්වයන් අතරින් කිනම් තත්ව අවශා · (39) වන්නේද? A) ගහන අපවර්තනය B) ලේසර් මාධා‍යට ශක්ති මට්ටම් දෙකකට වඩා තිබීම. C) අවම වශයෙන් එක් මිත – ස්ථායී මට්ටමක් තිබීම. මේවායින් සතා වන්නේ 1) a පමණි 2) b පමණි 3) b හා c පමණි.. 4) a හා c පමණි 5) a, b, c සියල්ලම 1000mV දක්වා කියවිය හැකි වෝල්ට් මීටරයක් විභව මානයක් සමග කුමාංකනය කරනු (40) ලැබේ. 2.1V වන විදයුත් ගාමක බලයක් විහව මාන කම්බයේ 8.4m සමග සංතුලනය වේ. සංකූලන දිග 3.68m දී වෝල්ට් මීටර පාඨාංකය 0.9V ලෙස කියවන ලදි. වෝල්ට් මීටර පාඨාංකයේ දෝෂය, 1) 0 2) -0.02 V 3) -0.04 V 4) -0.06 V 5) +0.07 V (41) යම් තරංගයක් ධැවණයට භාජනය වේ නම් එම තරංගය, 1) විදාපුත් චුම්බක තරංගයක් විය යුතුය. 2) තීර්යක් තරංගයක් විය යුතුය. 3) අන්වායාම තරංගයක් විය යුතුය. 4) ස්ථාවර තරංගයක් විය යුතුය. 5) පුගමන තරංගයක් විය යුතුය.

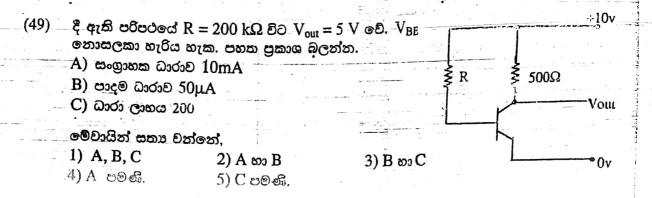
Scanned by CamScanner

(42)

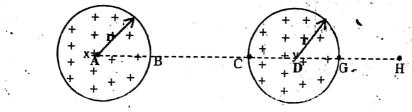
6

d පරතරයක් ඇති සමාන්තර තහඩු ධාරිතුකයක තහඩු දෙක අතරට පාර විදයුත් නියනය k1 හා k2 වන දුවා d k₂ (42) දෙකක් සමානව රූපයේ පරිදි යොද ඇත. සැකැස්මේ සමක ධාරිතාව විය හැක්කේ, A/2 A/2 1) $\frac{A\varepsilon_0(k_1+k_2)}{d}$ 2) $A\varepsilon_0\frac{(k_1+k_2)}{2d}$ 3) $\frac{A\varepsilon_0}{d}\left[\frac{1}{k_1}+\frac{1}{k_2}\right]$ 4) $\frac{A\epsilon_0}{d} \frac{k_1 k_2}{k_1 + k_2}$ 5) $\frac{A\epsilon_0}{2d} \frac{k_1 k_2}{k_1 + k_2}$ ස්කන්ධයන් m වූ අංශු දෙකක ආරෝපණ +q හා +4q වේ. එකම විභව අන්තරයක් යටතේ ඉහත අංශු දෙක නිදහසේ පහළට වැටීමට සැලැස්වු විට ආරෝපණ ලබා ගන්නා පුවේග (43) පිළිවෙලින් v1 හා v2 නම්, v1 : v2 චන්නේ, 5) 1:1 4) 4:1 3) 1:4 2) 1:2 1) 2:130ms⁻¹ ක වේගයෙන් විශාල බික්තියක් දෙසට වාහනයක් ගවත් කරයි. වාහනයේ රියැදුරු විසින් සංඛාහතය 600 Hz වන නලාව නාද කරයි. වාතයේ ධ්වනි පුවේගය 330 ms⁻¹ නම්, (44) බිත්තියෙන් පරාවර්තනය වන හඬේ සංඛාාතය, 5) 660Hz 4) 760Hz 3) 720Hz 2) 500Hz 1) 600Hz පහත දක්වා ඇති ඩයෝඩ වලින්, පසු නැඹුරු ඒවා මොනවාද? (45) **μ10**ν +5V -12V (d) -10V (c) (b) (a) 4) a x d .5) a, b, c 3) b, c, d 2) b හා c 1) a coo b පහත දී ඇති පරිපථය සඳහා සතාකො වගුව වන්නේ, (46) B Y 0 0 0 1 0 0 1 B 0 1 11 0 1 0 1 1 la 1 1 2) 1) Y B Y A Y B 0 σ σ 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

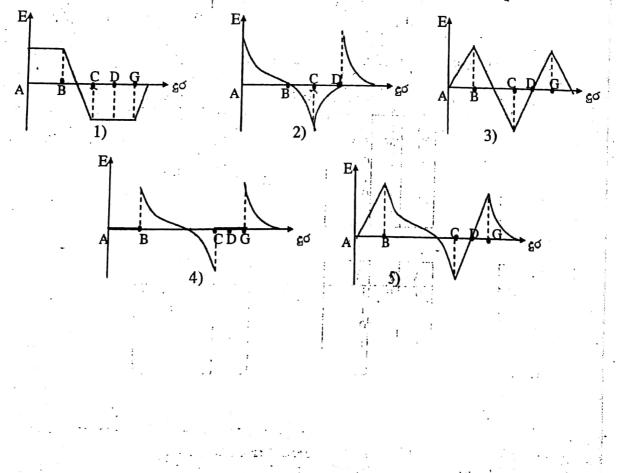
 (47) 230v වන මූලිකයෙන් 100 W හා 110 V වන ලාමපුවක් දල්වීමට පරිණාමකයක් යොදා ගෙන ඇත. මූලිකයේ ධාරාව 0.5A නම පරිණාමකයේ කාර්යකෘමතාව,
 1) 20% 2) 50% 3) 87% 4) 67% 5) 77%

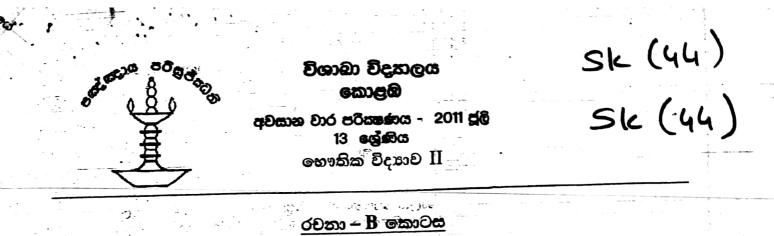

4)

.3)

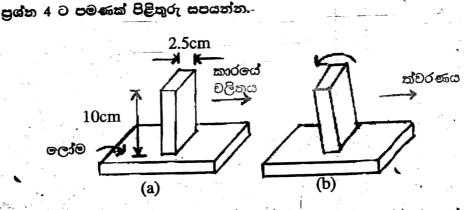

5)

(48) 220v විභව අන්තරයක් යටතේ 200w තාපන දඟරයක් හා 100w විදුලි බල්බයක් ඒවායේ උපරිම සමෙතාවයෙන් කියා කරවිය හැකිය. ඒවායේ පුතිරෝධ පිළිවෙලින් R₁ හා R₂ වේ. R හා R₂ අතර සම්බන්ධය විය හැක්කේ,

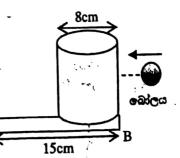

1) $R_1 = R_2$ 2) $R_2 = 2R_1$ 3) $R_1 = 2R_2$ 4) $R_1 = 3R_2$ 5) $3R_1 = R_2$



(50) පහත රූපයේ පරිදි සමාන පාරවිදයුත් ගෝල දෙකකට ඒකාකාරව වාහප්ත වන පරිදි ආරෝපණයක් ලබා දී ඇත.



A ලක්ෂායේ සිට AD අක්ෂා දිගේ විදයුත් කේෂ්තු තීවුතාවය විචලනය වන ආකාරය වඩාත් හොඳින් නිරූපනය වන්නේ,



(1)),

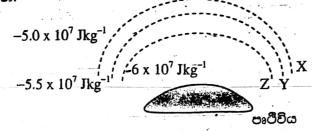
ලෝම වලින් ආවරණය කරන ලද තිරස් චේදිකාවක් මත (a) රූපයේ පරිදි තබා ඇති ලී කුට්ටියක් කාරයක් තුල තැබීමෙන් කාරයේ ත්වරණය යම් අගයකට වඩා වැඩි වන අවස්ථාව රියදුරාට දන්විය හැකිය.

- a) ලී කුට්ටියේ ස්කත්ධය 50g නම්, කාරය 1.5 ms⁻² ත්වරණයෙන් ඉදිරියට ගමන් කරන විට ලී කුට්ටිය පිටුපසට ලිස්සා යාම වැලැක්වීම සඳහා ලී කුට්ටිය හා ලෝම ආවරණය අතර තිබිය යුතු අවම ඝර්ෂණ බලය සොයන්න.
- b) කාරයේ ත්වරණය යම් අගයකට වඩා වැඩි වූ විට (b) රූපයේ පරිදි ලී කුට්ටිය එහි පසුපස දාරය වටා පිටුපසට පෙරලේ. ලී කුට්ටිය පෙරලීමට ආරම්භ වන මොහොතේදී එය පිහිටන ආකාරය රූපයක දක්වන්න. ලී කුට්ටිය මත කියා කරන බල ලකුණු කර ඒවා නම් කරන්න.
- c) i) කාරයේ කුඩා ත්වරණ සඳහා ලී කුට්ටිය පෙරලීමට නම් ලී කුට්ටියේ මිනුම් කෙසේ වෙනස් කළ යුතුදැයි ගුණාත්මකව දක්වන්න.
 - ii) ලී කුට්ටිය වේදිකාව මත සිරස්ව ඇති විට කාරය හදින් කිරිංග යෙදුවේ නම් කුමක් සිදු වේද?
- II) සැණකෙලියක ඇති එක් කුටියක බිම් මට්ටමෙන් ඉහළ පිහිටි වේදිකාවක් මත රූපයේ පරිදි බීම භාජනයක් (can) තබා ඇත. දුනු තුවක්කුවක් මගින් ලී බෝලයක් භාජනයේ බිත්තිය මත වැදීමට සැලැස්වීමෙන් භාජනයට වේදිකාව මත ලිස්සා යාමට ඉඩ හැරිය හැකිය. එසේ ලිස්සා ගොස් එය බිම පතිත වුවහොත් එම භාජනය තාාග වශයෙන් දිනා ගත හැකි වේ. A €

බෝලය භාජනයේ ගැටීමෙන් පසුව භාජනයේ වේගය 0.90 ms⁻¹ වන විට භාජනය වේදිකාව දිගේ ලිස්සා ගොස් A කෙළවරදී බිමට වැටෙයි.

- i) භාජනයේ ස්කන්ධය 0.4 kg නම් ගැටීමට මොහොකකට පසු භාජනයේ චාලක ශක්තිය සොයන්න.
- ii) භාජනය හා රාක්කය අතර සාමානාා ඝර්ෂන බලය සොයන්න.
- iii) ස්කන්ධ 0.02 kg වන බෝලය 9.5 ms⁻¹ ඉවගයෙන් හාජනය සමග මුහුණට මුහුණ ගැටීමෙන් ඉහත පරිදි භාජනය රාක්කිම්පත් බිමට වැටේ. ගැටුමෙන් පසු බෝලයේ වේගය සොයන්න.
- iv) 9.5 ms⁻¹ වේගයෙන් ගමන් කරන බෝලය භාජනයේ ගැටුනු විට එය භාජනයේ ඇලී තිබීමට සැලැස්වුවහොත් තාහග ලබා ගැනීමේ ඉඩ පස්තාව අඩු කිරීමට කුටි හිමියා විසින් අදහස් කරන ලදි. එම අදහස සාර්ථක වේදයි ගණනය කිරීමක් මගින් පෙන්වන්න.
- (2) I) නාභිය දුර f වූ විශාලන කාචයක් විෂද දෘෂ්ටියේ අවම දුර (P_n) 25cm වන ඇසක් ආසන්නයේ තබා ඇත. විශාලක කාචය මගින් සෘදන පුතිබිම්බය P_n දුරින් සිටින ලෙස වස්තුවක් තබා ඇත.
 - විශාලක කාවයේ කෝණික විශාලනය සොයන්න.
 - b) වස්තුවේ පුතිබිම්බය අනන්තයේ සෑදෙන පරිදි වස්තුවේ පිහිටීම වෙනස් කළේ නම් විශාලක කාචයේ කෝණික විශාලනය සොයන්න.
 - c) f = 10cm නම් (a) හා (b) දී කෝණික විශාලනය ගණනය කරන්න. එමගින් බොහෝ
 විට අනන්තයේ ඇති වස්තු බැලීමේදී අක්පි පේශි වලට විඩාවක් නැති අතර ළඟ ඇති වස්තු බැලීමේදී ඇස විඩාවට පත්වන බවත් පෙන්වන්න.
 - II) ඇසක කාච පද්ධතියේ නාභිය දුර 1.85cm සිට 2.00cm දක්වා වෙනස් කළ හැකි යයි සිතන්න. නමුත් කාච පද්ධතියේ සිට දෘෂ්ටිවිතානයට ඇති දුර 1.9cm වේ.
 - a) මෙම ඇස පෙලෙන්නේ දුර දෘෂ්ටිකත්වයෙන්ද, අවිදුර දෘෂ්ටිකත්වයෙන්ද යන්න පැහැදිලි කරන්න.
 - b) උපැස් නොමැතිව මෙම ඇසට දකගත හැකි පරාසය සොයන්න.

III)මිනිසෙකුට ඔහුගේ ඇස විවේකී පිහිටීමක තබාගෙන ඇසේ සිට 40 cm දුරින් ඇති පොතක් කියවීමට ⁺2D ක බලයක් ඇති කාචයක් අවශා වේ. අසේ සිට කාචයට ඇති දුර 2.00 cm බව සලකන්න.


a) දෝෂ සහිත ඇසේ විදුර ලකෂායට දුර කීයද?

ų ^į.

 $\sim \sim$

- b) දෝෂ සහිත ඇසේ අව්දුර ලක්ෂායට දුර 1m කි. ඔහුට 25cm සිට අනන්තය දක්වා වූ වස්තු පැහැදිලිව දක ගැනීම සඳහා යොදා ගත යුතු ද්විනාහීය උපැස් සඳහා කවර බල වලින් යුතු කාච යොදා ගත යුතු?
- (3) i) A යනු +q ආරෝපණයක් සහිත ස්කන්ධය m වූ අංශුවකි. P ලක්ෂායේ ගුරු බර විහවය (V_G) හා (V_E) විදයුත් විහවය සඳහා පුකාශය ලියන්න. යොදා ගත් වෙනත් සංකේත ඇතොත් හඳුන්වන්න.

ii) $\mathbf A$ අංශුවේ සිට $\mathbf P$ ට ඇති දුර (r) අනුව $\mathbf V_{\mathbf G}$ හා $\mathbf V_{\mathbf E}$ වෙනස් වන අයුරු දළ පුස්කාර මගින් දක්වන්න.

- iii) X, Y හා Z යනු සම විභව පෘෂ්ඨ වේ. පිළිතුරු පතෙහි ඉහත රූපය පිටපත් කරගෙන පෘථිවිය අවට ගුරුත්වජ බල රේඛා අඳන්න.
- iv) Z පෘෂ්ඨයෝ සිට Y පෘෂ්ඨය දක්වා 100kg ක වස්තුවක් ගෙන යාමේදී සිදුවන ශක්ති හුවමාරුව ගණනය කරන්න. එම පිළිතුර සමග ඔබට එළඹිය හැකි නිගමනය කුමක්ද?
- v) පෘථිවි පෘෂ්ඨය සමග අකුණු වළාකුළක් ඒවා අතර විදාුුත් කෙෂ්තුය $100 \ {
 m kV \ m^{-1}}$ වන අගයක පවතින විට වළාකුළ සහ පෘථිවිය අතර විදාුත් බල රේඛා අදින්න.
- vi) එම කෙෂ්තුයට යටත් වන පරිදි x සම විභව පෘෂ්ඨය මත ස්කන්ධය 0.25g ක් වන අරෝපිත අංශුවක් නිශ්චලව ඇත.
 - ආංශුවේ ආරෝපණ වර්ගය කුමක්ද?
 - ỗb) අංශුවේ ආරෝපණයේ විශාලත්වය සොයන්න.
- දිග L වූ නලයක් ඔස්සේ අනාකූලව ගලායන දුසාවී දුවයක් මහ ඇතිවන දුසාවී බලය, 4)

 $F_V=4\pi\eta LV_m$ ලෙස දෙනු ලැබේ.

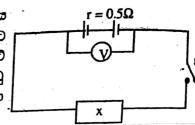
මෙහි η = දුවයේ දුසුාවිතා සංගුණකය

Vm = දුවයේ ගලා යන උපරිම වේගයයි. (එනම් අසාය ඔස්සේ දුවයේ වේගයයි)

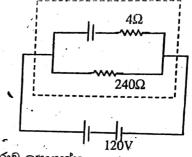
අනවරත අවස්ථාවේ පීඩන අන්තරය නිසා ඇති වන බලය මගින් දුසාවී බලය සංතුලනය කෙරේ. දුවයේ දිග L වූ තිරස් දුව කොටසක් සැලකූ විට එහි පිටුපස හා ඉදිරිපස පීඩන P_1 හා P_2 ද නලයේ අරය r ද නම්,

$$V_m = \frac{(P_1 - P_2)r^2}{4nL}$$
 බව පෙන්වන්න.

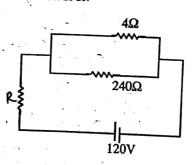
ඉහත පුතිඵලය භාවිතා කර දිග L පයිප්පය තුලින් දුවය ගලායන පරිමා සීහුතාව ii) සඳහා සමීකරණයක් ලබා ගන්න. [පයිප්පය හරහා දුවය ගලායන සාමානා පුවේගය


<u>∨ _</u> ලෙස සලකන්න].

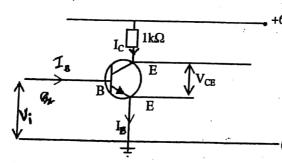
i)


- 1mm දිග අරය 2μm වන රුධිර කේශනාලිකාවක් තුලින් අකෂය ඔස්සේ රුධිරය ගලා iii) ' යන වේගය 0.66 mms⁻¹ නම් කේශනාලිකාව දෙපස පීඩන අන්තරය ඉහත සමීකරණය ඇසුරෙන් ගණනය කරන්න. (රුධිරයේ η = 4 x 10^{-3} pas)
- ඒ අනුව රුධිර කේශනාලිකාවේ පිටුපස කෙළවරින් රුධිරය කල්ලු කිරීම සඳහා iv) කොපමණ කෂමතාවයක් යෙදිය යුතුද? පිටුපස කෙළවරෙහි පීඩනය 10kPa වේ.
- අනෙකුත් සියලුම දත්ත නියතව තිබේ යැයි උපකල්පනය කරන්න. නලයේ අරය **v)**. දෙගුණ වූවහොත්,
 - 1) තත්පර 1 කදී ගලායන දුව පරිමාව කී ගුණයක් වේද?
 - 2) ඒ සඳහා අවශා කාමතාව වෙනස් වන සාධකයන් දුවා ගලා යන වේගය වෙනස්
 - වන සාධකයත් ගණනය කරන්න.

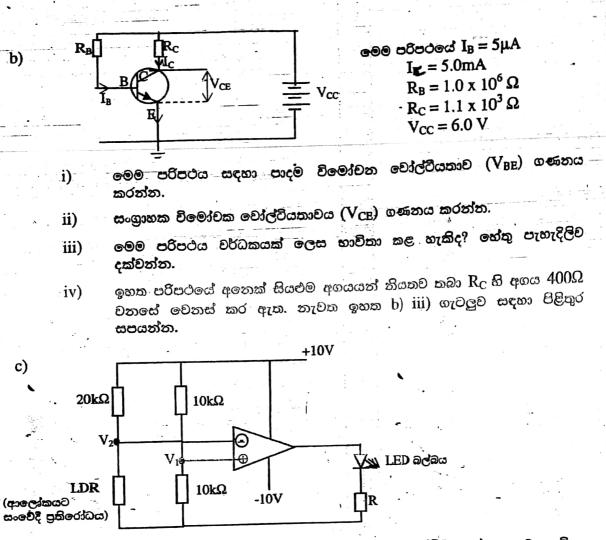
5) A) I)


ආරම්භයේදී 0°C ඇති x පුතිරෝධයක් s ස්විච්චය හරහා අභානත්තර පුතිරෝධය 0.5Ω වන කෝෂයකට සම්බන්ධ කර ඇත. s ස්විච්චය වැසූ විට වෝල්ට් මීටර පාඨාංකය 12V සිට 10V දක්වා කමණිකව අඩු විය. ඉන් පසු වෝල්ට් මීටර පාඨාංකය 10.5V දක්වා කුමයෙන් වැඩි වී 10.5V හිදී නියත විය.

- i) ඉහත නිරීකෳණ පැහැදිලි කරන්න.
- ii) a) s වැසූ විට ආරම්භක ධාරාව සොයන්න.
 - b) x හි ආරම්භක පුතිරෝධය සොයන්න.
 - c) ස්ථාවර අවස්ථාවට පත් වූ පසු x හි පුතිරෝධය සොයන්න.
 - d) x හි පුතිරෝධයේ උෂ්ණත්ව සංගුණකය 8 x 10⁻³ C⁻¹ නම් ස්ථාවර අවස්ථාවේදී x හි උෂ්ණත්වය ගණනය කරන්න.
- කඩ ඉරි වලින් සමන්විත පුදේශයේ ඇත්තේ නියත වේශයෙන් කියාත්මක වන සරළ ධාරා මෝටරයකි. මෙම මෝටරය විදයුත් ගාමක වල පුහවයක් (E) ලෙස (120V ට පුතිවිරුද්ධ වූ) කියා කරයි. එහි අභාන්තර පුතිරෝධය 4Ω කි. 120V බැටරියේ අභාන්තර පුතිරෝධය ශූනා වන අතර එයින් 5.5A ක ධාරාවක් ඇද ගනියි.


- විදයුත් ගාමක බල පුහවය (E) තුලින් ගලන ධාරාව සොයන්න.
- ii) මෝටරය කියාත්මක නොවත විට E = 0 වේ. ආරම්භක ධාරාව පාලනය කිරීම සඳහා පහත රූපයේ පරිදි අමතර ප්‍රත්රෝධයක් පරිපථයට සම්බන්ධ කර ඇත. කෝෂයෙන් ඇද ගන්නා ධාරාව 20A ලෙස පාලනය කිරීම සඳහා සම්බන්ධ කළ යුතු පතිරෝධයේ (R) අගය සොයන්න.

හෝ


5) B) a)

i)

පොදු විමෝචන විනාහසයේ ඇති ටුාන්සිස්ටරයක් ඉහත දක්වේ. එම පරිපථයේ $V_{BE} < 0.6V$ සිට ටුාන්සිස්ටරය කැපී ගිය අවස්ථාවේදී $V_{BE} > 1V$ විට ටුාන්සිස්ටරය සංහාප්ත අවස්ථාවේ පවතී.

- i) V_1 පුදානය සඳහා 0.1V සරළ ධාරා වෝල්ට්යතාවයක් සැපයූ විට V_{CE} හා I_C අගයයන් මොනවාද?
- ii) V₁ පුදානය සඳහා 2V සරළ ධාරා චෝල්ට්යකාවක් සැපයූ විට V_{CE} හා I_C අගයයන් ගණනය කරන්න.
- iii) $V_1 = 0.1V$, $V_1 = 2V$ අවස්ථා සඳහා පෙර නැඹුරු වන සන්ධි හා පසු නැඹුරු වන සන්ධි නම් කරන්න.

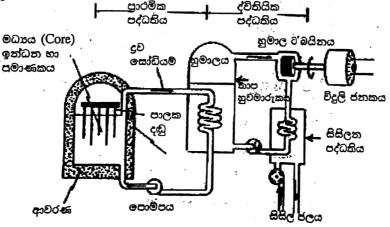
පරිපූර්ණ කාරකාත්මක වර්ධකයක් ආලෝකය සඳහා ස්විච්චයක් ලෙසට භාවිතා වන පරිපථයක් රූපයේ දක්වේ. LDR හි ආලෝකයේදී පුතිරෝධය $100~\mathrm{k}\Omega$ ද අඳුරේදී පුතිරෝධය $100~\Omega$ ද වේ.

- i) ආලෝකය ඇති විට හා අඳුරේදී V2 හි අගය කුමක්ද?
- ii) V₁ හි අගය කුමක්ද?
- iii) පරිපථය 1) අඳුරේ ඇති විට

2) ආලෝකය ඇති විට පුතිදාන චෝල්ටීයතාව ගණනය කරන්න. ඒවා ධන ද සෘණ ද යන්න සඳහන් කරන්න.

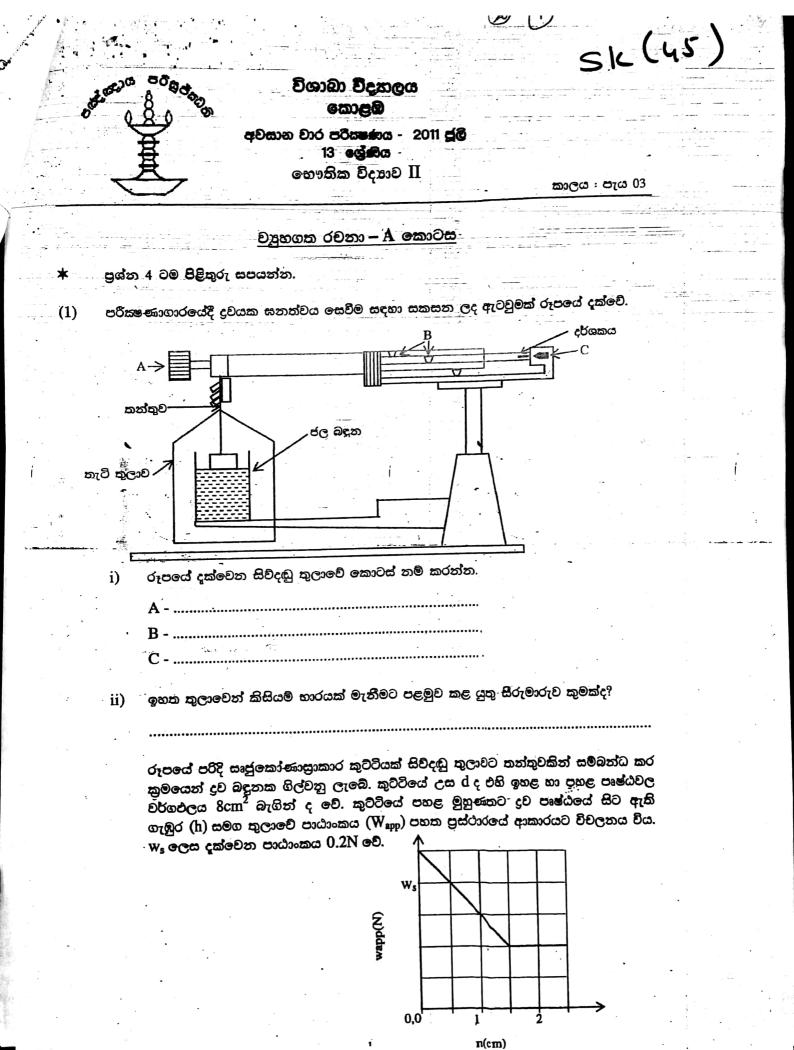
- iv) බල්බය දැල්වෙන්නේ අඳුරේද? ආලෝකයේද?
- 6) A) අවට පරිසරය උෂ්ණත්වය 20°C වන දිනක වසා ඇති කාමරයක පරිමාව 60m³ වන අතර ඒ තුල උෂ්ණත්වය 30°C වේ. උපැස් යුවලක් පැළඳ සිටින පුද්ගලයෙකු කාමරයෙන් පිටත සිට කාමරයට ඇතුලු වූ විට ඔහුගේ උපැස් වල ජලය ස්වල්පයක් බැඳී තිබෙන බව දක ගත හැකි විය.
 - එසේ ජල පටලයක් බැඳීමට හේතුව පැහැදිලි කරන්න.
 - ii) කාමරය තුල සාපේඤ ආර්දුතාව 74% නම් කාමරය තුල වාතයේ තුෂාර අංකය සොයන්න.
 - iii) කාමර උෂ්ණත්වය 26°C දක්වා අඩු වුනි නම් සාපේකෂ ආර්දුතාව සොයන්න.

- iv) දන් කාමරයේ ඇති කුඩා කවුළුවක් විවෘත කර පිටත වාතය කාමරය තුලට ඇතුල් වීමට සලස් වන ලදි. කාමරයේ උෂ්ණත්මය 30°C හි නියතව පැවතුනි නම්, කාමරය තුල වාතයේ නව සාපේඤ ආර්දුතාව සොයන්ත.
- v) කාමරයේ උෂ්ණත්වය 30°C සිට කුමයෙන් අඩු කරගෙන යාමේදී උෂ්ණත්වය සමග කාමරයේ සාපේඤ ආර්දුතාව හා නිරපේඤ ආර්දුතාව කාලය සමග විචලනය එකම පුස්තාරයක දක්වන්න.
- vi) කාමරයේ උෂ්ණත්වය 30°C හි නියතව තබා කාමරයේ සාපේකෂ ආර්දුතාව 100% ලෙස සකස් කිරීම සඳහා කළ හැකි සරළ උපකුමයක් දක්වන්න.


ු ඉහත ගණනය කිරීම් සඳහා අවශා අවස්ථා වලදී පහත වගුව භාවිතා කරන්න.

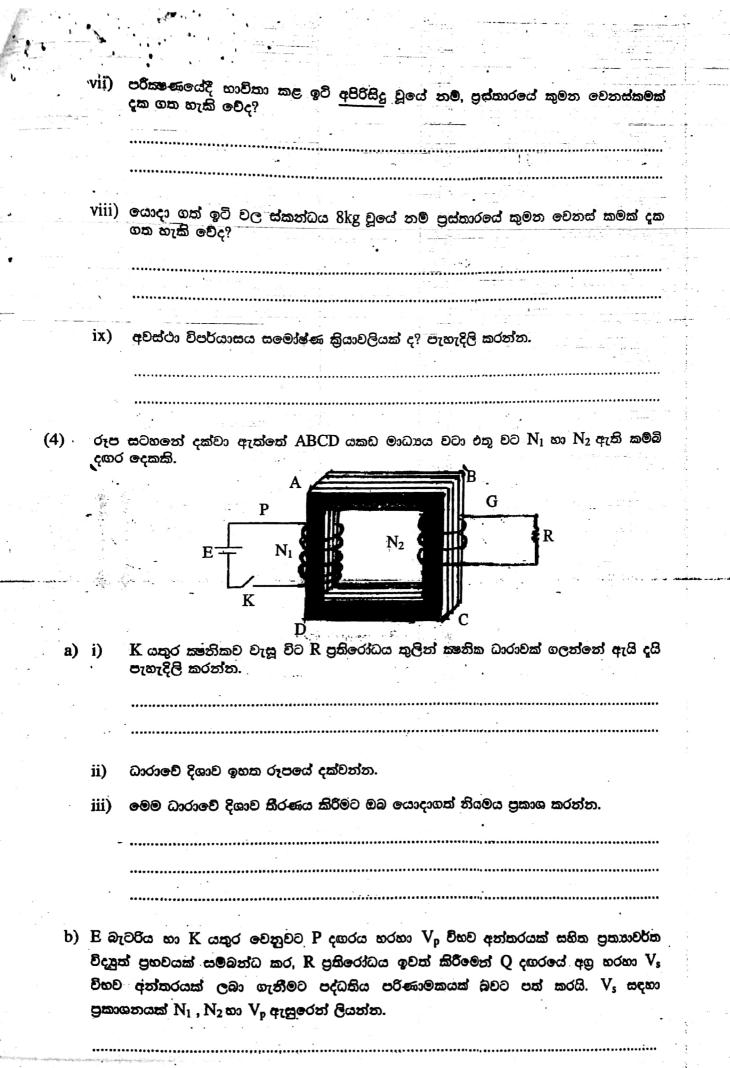
උෂ්ණත්වය	සංඛාහතය Hgmm	සංතෘප්ත වාෂ්ප ඝතත්වය (gm ^{–3})
20	17.50	17.30
25	23.58	23.42
26	25.10	24.10
28	28.30	26.90
30	31.87	30.00

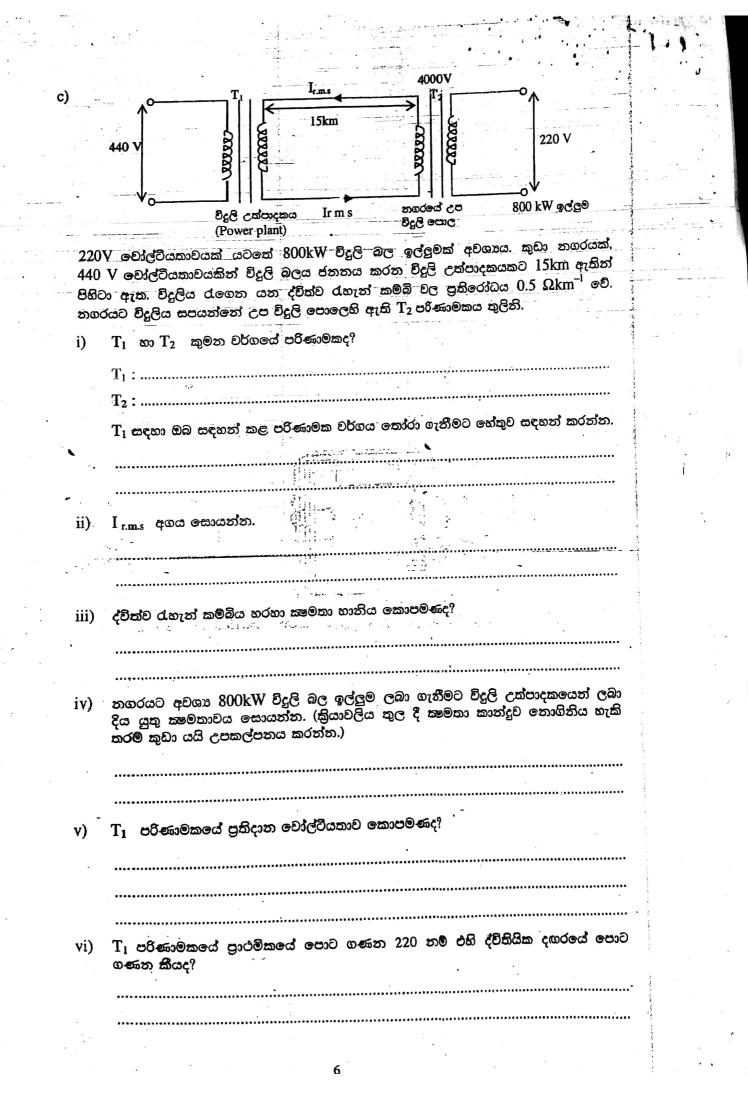
හෝ


පහත ජේදය හොඳින් කියවා අසා ඇති පුශ්නවලට පිළිතුරු සපයන්න.

6) B) පාලනයට යටත් කරනු ලබන නාාෂ්ටික විබන්ඩන දාම ප්‍රතික්‍රියාවක් මගින් විදසුත් බල ශක්තිය උත්පාදනය කිරීම නාාෂ්ටික සමෙතා ප්‍රතිකාරකයක් (Nuclear Power Reactor) තුල නාාෂ්ටික බලාගාරවලදී සිදු වේ. එවැනි නාාෂ්ටික සමෙතා ප්‍රතිකාරකයක දළ සැකැස්මක් පහත දක්වේ.

²³⁵ U නාාෂ්ටිය විබන්ඩනයෙන් නිපදවන අධිවේගී නියුටෝන වල වේගය අඩු කර ඒවා වෙනත් යුරේනියම් නාාෂ්ටි හා ගැටීමට සලස්වා ඇති කරනු ලබන දාම පුතිකිුයාව පාලනයට යටත්ව පවත්වාගෙන යනු ලබයි. නාාෂ්ටික විබන්ඩන පුතිකිුයාවේදී විබන්ඩන කොටස් වල චාලක ශක්තිය ලෙස මුදා හැරෙන ශක්තිය පුතිකිුයාකාරක මධාය (Core) තුලදී තාපය බවට පරිවර්තනය වේ.


තාෂේටික පුතිකියාකාරකයේ මධාය ඉන්ධන (²³⁵U) හා නියුවෝන එහි වේගය පාලනය කිරීමට යොදන ජලය හෝ ගුැෆයිට් වැනි පුමාණකයකින් සමන්විත වේ. දුව Na අධික පීඩනයක් යටතේ මධාය හරහා ගලායාමට සලස්වයි. යුරේනියම් විබන්ඩන පුතිකියාවෙන්



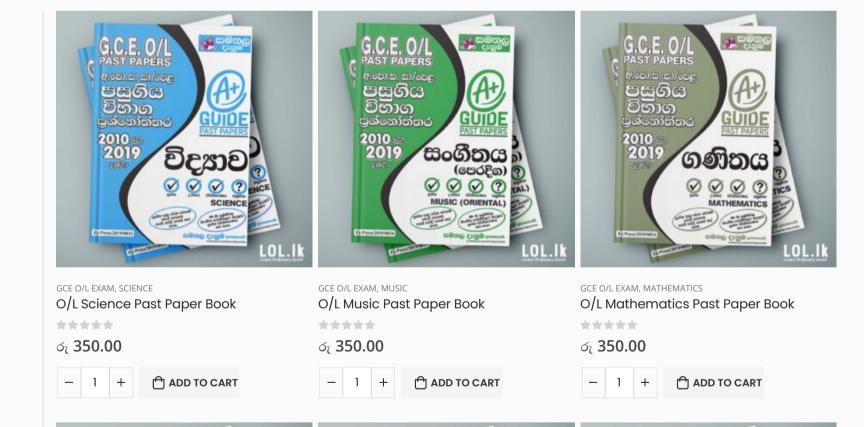

කුට්ටියේ සතා බර කොපමණද? 111) iv) දුවයේ ඝනත්වය සඳහා පුකාශනයක් ලියා සංකෝත හඳුන්වන්න. V) දුවයේ ඝනත්වය ගණනය කරන්න. vi) d හි අගය කුමක්ද? vii) කුට්ටිය සාදා ඇති දුවායේ ඝනත්වය සොයන්න. viii) තිරස් මුහුණත් සිරස් වන ලෙස කුට්ටියේ දුවයේ ගිල්ටුවහොත් ඇති වන වාසිය කුමක්ද? ූ (2) ආන්ත ශෝධනය e වූ සංවෘත නලයක මූලික කෘනය වන සංඛාහතය f සඳහා **i**) පුකාශනයක් ලියන්න. යොදා ගත් සංකේත හඳුන්වන්ත. ව්වෘත අනුනාද නලයක්, මීටර් කෝදුවක්, සරසුල් කට්ටලයක්, කම්පන කොට්ටයක්, ii) ආධාරක හා ජලය සහිත උස සරාවක් ඔබට සපයා ඇත. වාතයේ ධ්වති පුවේගය සෙවීම සඳහා පුස්තාරික කුමයක් අනුගමනය කිරීමට උපදෙස් දී ඇත. ඒ සඳහා යොදා ු ගන්නා ඇටවුම නම් කරන ලද රූප සටහනක දක්වන්න.

•	iii)	සරාවේ පතුලට පුඑන් දුමිය යුතු බව සිසුවෙකු විසින් යෝජනා කරන ලදි. එයට
	/	හේතුව කුමක්ද?
	· .	
•	:>	සරසුල් කට්ටලයම සඳහා මූලික තානයෙන් අනුනාද වන අවස්ථා ලබා ගන්නා
	iv)	ආකාරය පැහැදිලි කරන්න.
		ලබා ගත් පාඨාංක ඇසුරින් වාතයේ ධිවනි පුවේගයක්, ආන්ත ශෝධනයක් සොයා
	v)	ලබා ගත් පාඨාංක ඇසුරින් වාතයේ ධවනා පුල්පරිගය, ආපතය තම් කරන්න.
		ලබා ගත් පාඨාංක ඇසුරන් වාත්යේ ගිපිවා පුරිදේසයන්න. ගැනීම සඳහා අඳිනු ලබන පුස්කාරයක දළ සටහන අඳින්න. අසුෂ නම් කරන්න.
•		
•		
· ·		
and the second		ඉහත පරීකෂණය සිදු කළ දින උෂ්ණත්වයම ඇති එහෙත් සාපේකෂ ආර්දුතාවය එදිනට
	vi)	ඉහත පරීකෂණය සිදු කළ දන උෂණයාවය අදය වෛයය හැකි පුස්තාරය ඉහත සටහනෝම වඩා වැඩි දිනයක දී පරීකෂණය සිදු කළ විට ලැබීය හැකි පුස්තාරය ඉහත සටහනෝම
•	· Boltie S	ඇඳ එය x ලෙස නම් කරන්න.
		තලයේ ආන්ත ශෝධනය රදා පවතින තලයේ භෞතික රාශිය කුමක්ද?
	V11)	
ć.	ji nen en ki V	
) එම රාශිය මැන ගැනීමට යොදා ගන්නා මිනුම් උපකරණය කුමක්ද?
	VIII	
	• •	40cm දිග දෙකෙළවරම වැසූ තලයක මූලික තානය සඳහා වන සංඛාාතය සොයන්න.
e - 1 1 1 4	1X)	ට කයේ බවති සඳවනය 340 ms් ආත්ත දෝෂය නොසලකා හටනන.
· · · · · · ·	1X)	40cm දග දෙසොළපීම වැසූ වෙරයා වූම වාතයේ ධ්වති පුවේගය 340 ms ⁻¹ ආත්ත දෝෂය නොසලකා හරින්න.
	1X)	වාතයේ ධිවනි පුවේගය 340 ms් ආත්ත දෝෂය නොසලකා හටනන.
	- 1X)	වාතයේ ධිවනි පුවේගය 340 ms් ආත්ත දෝෂය තොසලකා හටනන.
	- 1X)	වාතයේ ධිවනි පුවේගය 340 ms ් ආත්ත දෝෂය නොසලකා හටනත.
	1X)	වාතයේ ධවනි පුවේගය 340 ms ් ආත්ත දෝෂය නොසලකා හටනත.
	1X)	වාතයේ ධිවනි පුවේගය 340 ms ් ආත්ත දෝෂය නොසලකා හටතත.
		වාතයේ ධවනි පුවේගය 340 ms ් ආත්ත දෝෂය නොසලකා හටතත.
	1x)	වාතයේ ධවති පුවේගය 340 ms ් ආත්ත දෝෂය තොසලකා හටතත.
	1x)	වාතයේ ධවති පුවේගය 340 ms ් ආත්ත දෝෂය තොසලකා හටතත.
		වාතයේ ධවති පුවේගය 340 ms ⁻¹ ආත්ත දෝෂය තොසලකා හටතත.
	1x)	වාතයේ ධවනි පුවෙගය 340 ms ⁻¹ ආන්ත දෝෂය නොසලකා හටනන.
	1x)	වාතයේ ධ්වති පුවේගය 340 ms ⁻¹ ආත්ත දෝෂය නොසලකා හටතත.
	1x)	වාතයේ ධවනි පුවේගය 340 ms ් ආත්ත දෝෂය නොසලකා හටනත.

(3) ඉටිවල විලයනයේ ගුප්ත තාපය සොයන පරීක්ෂණයක දී ▲ උෂ්ණත්වය ඉටි 0.8 kg ක් එහි දුවාංකයට වඩා මදක් වැඩි උෂ්ණත්වයකට රත් කර ඉන් පසු පද්ධතිය සිසිල් වීමට ඉඩ හැර 30 s ත් 30 ට උ**ප්ණ**ත්වය සටහන් කර ගන්නා ලදි. එවිට ලැබුණු පුස්ථාරය පහත දක්වේ. (ඉටිවල විශිෂ්ඨ කාප ධාරිකාව = $2400 \, \mathrm{J \, kg^{-1} \, K^{-1}}$) ඉට් එහි දුවාංකයට වඩා වැඩි උෂ්ණත්වයට රත් කළ යුත්තේ ඇයි? i) දුව ඉටි ඝන වීමට ඉතා ආසන්න විට පුස්තාරයේ අනුකුමණය 0.48 °cs⁻¹ වේ. එම ii) මොහොතේ ඉටි වලින් තාපය හානි වන සීගුතාවය කොපමණද? ඉටි ඝන වීම අවසන් වූ විගසම පුස්තාරයේ අනුකුමණය $0.34~^\circ$ cs $^{-1}$ ඉව්. එම iii) මොහොතේ ඉටි වලින් තාපය හානි වන සීගුතාවය කොපමණද? අනෙකුත් තත්ත්වයන් නියතව තිබුණද ඉහත අවස්ථා දෙකේදී ඉටි වල සිසිලන iv) සීගුතාවයන් සමාන නොවීමට හේතුව කුමක්ද? අවස්ථා විපර්යාසය සිදු වන කාලය තුලදී ඉටිවල මධානාා තාපය හානි වන සීගුතාවය v) සොයන්න. vi) ඉටිවල විලයනයේ විශිෂ්ට ඉප්ත තාපය සොයන්න.

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500

More than 1000+ Papers For all major Subjects and mediums



ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

GCE O/L Exam

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P... ★★★★★

*σ*₁ 350.00