

NEW

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2020

02 - Chemistry New Syllabus

Marking Scheme

G.C.E. (A/L) Examination - 2020

02 - Chemistry (New Syllabus)

Distribution of Marks

Paper I:

1 X 50

= 50

Paper II:

Part A

100 X 4

= 400

Part B

150 X 2

= 300

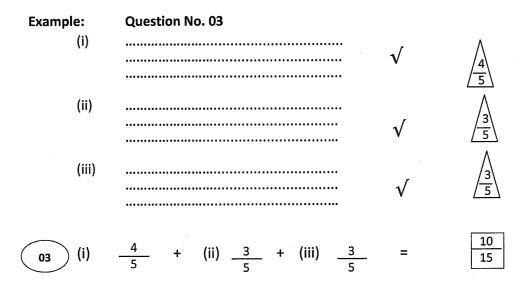
Part C:

150 X 2

300

Total

= 1000


Paper II - Final Marks

= 100

Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

- 1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)
- 2. Note down Examiner's Code Number and initials on the front page of each answer script.
- 3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner's initials.
- 4. Write down marks of each subsection in a \(\sum_{\text{and}} \) and write the final marks of each question as a rational number in a \(\sum_{\text{with}} \) with the question number. Use the column assigned for Examiners to write down marks.

MCQ answer scripts: (Template)

- 1. Marking templets for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.
- 2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
- 3. Place the template on the answer script correctly. Mark the right answers with a 'V' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.

structured essay type and assay type answer scripts:

- 1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
- 2. Use the right margin of the overland paper to write down the marks.
- 3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
- 4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation of Mark Sheets.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and wright the relevant details. For the subject 51 Art, marks for Papers 01, 02 and 03 should be entered numerically in the mark sheets.

AL/2020/02/E-I(NEW)

இதை இ குறிக்கு அத்திக்கி / முற்றப் பகிப்புநிலையுடையது / All Rights Reserved)

(නව නිඊදේශය/பුනිய பாடத்திட்டம்/New Syllabus

ன்று இ ஒடை சியம் சுறிந்திரை இ இடைகளை மற்றத்திரு இ ஒடைகளும் இ ஒடைகளும் இ ஒடைகளும் இருக்கும். இதைக்களம் இண்டை (Peparun) சற்சு இடிக்கும் இருக்கும் இது இருக்கும் இருக்கும் இருக்கும் பரி சைத் திணைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදහච இரசாயனவியல் Chemistry

පැය ඉදකයි இரண்டு மணித்தியாலம் Two hours

Instructions:

- * Periodic Table is provided.
- * This paper consists of 09 pages.
- # Answer all the auestions.
- * Use of calculators is not allowed.
- * Write your Index Number in the space provided in the answer sheet.
- * Follow the instructions given on the back of the answer sheet carefully.
- * In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordance with the instructions given on the back of the answer sheet.

Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Planek's constant $h = 6.626 \times 10^{-34} \text{ J s}$ $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Avogadro constant

Velocity of light $c = 3 \times 10^8 \text{ m s}^{-1}$

- 1. Consider the following discoveries made with regard to the atomic structure.
 - I. Positive rays inside a cathode ray tube
 - II. Radioactivity by certain types of nuclei

The two scientists who discovered the above stated I and II respectively, are,

- (1) J. J. Thomson and Henry Becquerel
- (2) Eugen Goldstein and Robert Millikan
- (3) Henry Becquerel and Eugen Goldstein
- (4) J. J. Thomson and Ernest Rutherford **
- (5) Eugen Goldstein and Henry Becquerel
- 2. The number of electrons in the manganese atom (Mn, Z = 25) that have quantum numbers l = 0 and $m_i = -1$ respectively are,
 - (1) 6 and 4
- (2) 8 and 12
- (3) 8 and 5 (4) 8 and 6
- 3. M is an element that belongs to the second period in the Periodic Table. It forms a covalent molecule MCl₃ which has a dipole moment. The group of the Periodic Table to which M belongs is,
 - (1) 2
- (2) 13
- (3) 14
- (4) 15
- (5) 16
- 4. The number of unstable Lewis dot-dash structures that can be drawn for the peroxynitric acid molecule (formula HNO4, H-Ö
 - (1) 1
- (2) 2
- (3) 3
- (4) 4

- 5. The IUPAC name of the given compound is,
 - (1) 1-bromo-4-methyl-5-hydroxypent-1-en-3-one
 - (2) 5-bromo-1-hydroxy-2-methylpent-4-en-3-one
 - (3) 1-bromo-5-hydroxy-4-methylpent-1-en-3-one
 - (4) 5-bromo-2-methyl-3-oxopent-4-en-1-ol
 - (5) 1-bromo-4-methyl-3-oxopent-1-enol

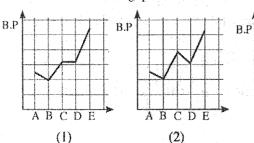
I See nage two

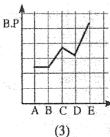
AL/2020/02/E-I(NEW

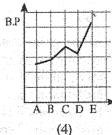
- 6. The decreasing order of radii of the species O, O^{2-} , F,
 - (1) $S^{2-} > C\Gamma > O^{2-} > F > O > F$
 - (2) $S^{2-} > CI^{-} > O^{2-} > F^{-} > F >_{\sim} O$
 - (3) $Cl^{-} > S^{2-} > O^{2-} > F^{-} > O > F$ (4) $Cl^{-} > S^{2-} > F^{-} > O^{2-} > O > F$

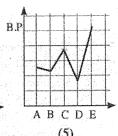
 - (5) $S^{2-} > C\Gamma > O^{2-} > O > F > F$
- 7. A rigid-closed container contains n_1 moles of an ideal gas at temperature $T_1(K)$ and pressure $P_1(Pa)$. When an additional amount of the gas was inserted into the container, the new temperature and pressure were T_2 and P_2 , respectively. The total number of moles of the gas now in the container is,
- (2) $\frac{n_1 T_1 P_2}{T_1 P_2}$ (3) $\frac{T_2 P_2}{n_1 T_1 P_2}$ (4) $\frac{n_1 T_2 P_2}{T_1 P_2}$

- 8. The total number of electrons exchanged in the reaction of the oxidation of ethanol (C₂H₅OH) to acetic acid (CH₂COOH) using acidic K₂Cr₂O₂ solution is,
 - (1) 6


- (3) 10 (4) 12 (5) 14
- 9. Which compound of the following, can undergo aldol condensation, when reacted with aqueous NaOH? O O O O O O (2) CH₃C-OCH₃ (3) H-C-OCH₃ (4) CH₃CH₂C-H (5) (CH₃)₃CC-H


- 10. AX(s), $A_2Y(s)$ and AZ(s) are sparingly soluble salts in water having K_{sp} values of 1.6×10^{-9} , 3.2×10^{-11} and 9.0×10^{-12} , respectively at 25 °C. Which of the following shows the order of the three saturated solutions of these salts in decreasing concentration of cation A+(aq), at 25 °C?
 - (1) $AX(s) > A_2Y(s) > AZ(s)$
 - (2) $A_2Y(s) > AX(s) > AZ(s)$
 - (3) $AX(s) > AZ(s) > A_2Y(s)$
 - (4) $A_2Y(s) > AZ(s) > AX(s)$
 - (5) $AZ(s) > A_{2}Y(s) > AX(s)$
- 11. Consider the following compounds.


CH,CH,CH,CH,CH,CH, CH,CCH,CH, CH,CH,CH,CH,CHO CH,CCHO


Relative molecular

Variation of boiling points of these compounds is best shown by,

See page three

AL/2020/02/E-I(NEW)

- 12. The increasing order of covalent character of the chemical species NaCl, Na,S, KF and KCl is,
 - < NaCl < KCl < Na,S
 - < NaCl < KF (2) KCl
 - < KCl < NaCl < Na₂S
 - (4) Na,S < NaCl < KCl < KF
 - < Na,S < NaCl < KCl (5) KF
- 13. Standard combustion enthalpies of H₂(g), C(s) and CH₃OH(l) at 298 K are -286 kJ mol⁻¹, -393 kJ mol⁻¹ and -726 kJ mol⁻¹, respectively. Enthalpy of vaporization of CH₃OH(I) is +37 kJ mol⁻¹. Enthalpy of formation (kJ mol⁻¹) of one mole of gaseous CH₃OH at 298 K is,
 - (1) -276
- (2) -239
- (3) -202
- (4) + 84
- 14. Phosphorous can be prepared in an electric furnace as given by the following balanced chemical

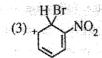
 $2 \text{ Ca}_2(PO_4)_2 + 6 \text{ SiO}_2 + 10 \text{ C} \rightarrow 6 \text{ CaSiO}_3 + 10 \text{ CO} + P_4$

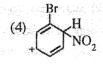
When 620 g of Ca₂(PO₄)₂, 180 g of SiO₂, and 96 g of C were reacted, 50 g of P₄ were obtained. Under these conditions, the limiting reagent (reagent that is completely consumed) and percentage yield of P4 respectively are, (C = 12, O = 16, Si = 28, P = 31, Ca = 40)

- (1) $Ca_3(PO_4)_2$ and 80.7% (2) SiO_2 and 80.7% (4) SiO_2 and 40.3% (5) C and 25.2%
- (3) C and 50.4%

- 15. Consider the following two equilibria occurring in two separate rigid-closed containers under the same conditions.

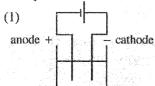
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) ; K_{P_1} = 3.0 \times 10^{-4}$$

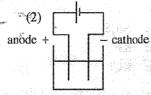

 $NH_3(g) + H_2S(g) \implies NH_4HS(g); K_{P_2} = 8.0 \times 10^{-4}$

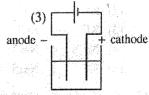

Under these conditions K_p for the equilibrium $2H_2S(g) + N_2(g) + 3H_2(g) \rightleftharpoons 2NH_4HS(g)$ is,

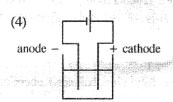
- (1) 5.76×10^{-12}

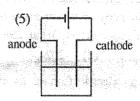
- (2) 7.2×10^{-10} (3) 1.92×10^{-8} (4) 3.40×10^{-6} (5) 3.75×10^{-2}
- 16. Consider the nitration reaction of bromobenzene. Resonance stabilized carbocation intermediates are formed during this reaction. Which of the following is not a resonance structure of these intermediates?




- 17. A reaction which is non-spontaneous at room temperature and 1 atm pressure becomes spontaneous at high temperature at the same pressure. Which of the following is correct for this reaction at room temperature? (Assume that ΔH and ΔS do not change with temperature and pressure.)
 - ΔG
- ΔH
- DS.


- (1) Positive
- Positive
- Positive
- (2) Positive (3) Positive
- Negative Negative
- Negative Positive
- (4) Negative
- Positive
- Negative
- (5) Negative
- Negative
- Negative
- 18. The de Broglie wavelength of a neutron travelling with a velocity ν is λ . If the kinetic energy $E(E = \frac{1}{2}mv^2)$ of this neutron is increased four times, the new de Broglie wavelength would be,
- (3) 2λ
- (4) 4λ
- (5) 16λ


AL/2020/02/E-I(NEW)


19. Which of the following correctly shows the electrolytic cell constructed for the electrolysis of an aqueous solution of the salt MX?

- 20. Which of the following statements is correct regarding the reaction between a carboxylic acid and an alcohol to give an ester?
 - (1) The overall reaction is a nucleophilic addition reaction of a carbonyl compound.
 - (2) It is a reaction in which the alcohol acts as a nucleophile.
 - (3) It is a reaction which occurs with the cleavage of the O-H bond of the carboxylic acid.
 - (4) It is a reaction which occurs with the cleavage of the C-O bond of the alcohol.
 - (5) It is an acid-base reaction.
- 21. Decomposition of 1 mol of $CH_3OH(l)$ occurs at high temperatures as follows.

$$CH_2OH(I) \rightarrow CO(g) + 2H_2(g); \Delta H = +128 \text{ kJ}$$

Which of the following is incorrect for the above reaction? (H=1, C=12, O=16)

- (1) The heat absorbed when 1 mol of CH₃OH(g) is decomposed is less than 128 kJ.
- (2) Enthalpy of $CO(g) + 2H_2(g)$ is higher than the enthalpy of $CH_3OH(l)$.
- (3) 128 kJ of heat is released when 1 mol of CO(g) is formed.
- (4) 128 kJ of heat is absorbed during the decomposition of a mole of reactant.
- (5) 128 kJ of heat is absorbed when 32 g of products are formed.
- 22. Identify the incorrect statement from the following.
 - (1) Electron gain energy of nitrogen [N(g)] is positive.
 - (2) Dilution of BiCl₂(aq) solution with water gives a white precipitate.
 - (3) H₂S gas can act both as an oxidizing agent and a reducing agent.
 - (4) The effective nuclear charge (Z*) felt by a valence electron in He is less than 2.
 - (5) Aluminium is inert towards N₂ gas even when heated to a high temperature.
- 23. The concentration of a dilute aqueous solution of a weak acid HA is C mol dm⁻³ and its acid dissociation constant is K_a at 298 K. Which of the following expressions gives the pH of the solution at 298 K?

(1)
$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log C$$

(2)
$$pH = -\frac{1}{2}pK_a - \frac{1}{2}\log C$$

(3)
$$pH = -\frac{1}{2}pK_a + \frac{1}{2}\log C$$

(4)
$$pH = -\frac{1}{2}pK_a - \frac{1}{2}\log(1/C)$$

(5)
$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log(1/C)$$

- 5 -

AL/2020/02/E-I(NEW

24. The strength of a H₂O₂ solution can be expressed as the volume of O₂ produced at standard temperature and pressure (STP). For example, a litre of 20 volume strength H2O2 solution will produce 20 litres of O_2 gas at STP $(2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g))$. (Assume that 1 mole of gas has 22.4 litres volume at STP.)

A bottle labelled X contains H₂O₂ solution. When 25.0 cm³ of solution X was titrated with 1.0 mol dm⁻³ KMnO₄ in the presence of dilute H₂SO₄ the volume required to reach the end point was 25.0 cm^3 . The volume strength of solution **X** is,

(1) 15

(4) 28

(5) 30

25. M(OH)₂(s) is a sparingly water soluble salt formed by the reaction between M²⁺(aq) and $OH^{-}(aq)$ ions at 298 K. The solubility (mol dm⁻³) of $M(OH)_{2}(s)$ in water at pH = 5 is, $(K_{sp_{\text{M(OH)}_2}} = 4.0 \times 10^{-36} \text{ at } 298 \text{ K}).$

(1) $\sqrt{2} \times 10^{-18}$

(2) 2×10^{-18} (3) 1×10^{-18} (4) $\sqrt[3]{2} \times 10^{-12}$ (5) 1×10^{-12}

26. Which of the following correctly denotes the standard galvanic cell constructed by using a standard hydrogen electrode, a standard Mg-electrode and a salt-bridge at 298 K?

(1) $Mg(s) | Mg^{2+} (aq, 1.00 \text{ mol dm}^{-3}) | H^{+} (aq, 1.00 \text{ mol dm}^{-3}) | H_{2}(g) | Pt(s)$

(2) $Pt(s) | H_2(g) | H^+(aq, 1.00 \text{ mol dm}^{-3}) | Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3}) | Mg(s)$

(3) Mg(s), Mg^{2+} (aq, 1.00 mol dm⁻³) $\|H^{+}$ (aq, 1.00 mol dm⁻³) $|H_{2}(g)|$ Pt(s)

(4) $Mg(s) | Mg^{2+} (aq, 1.00 \text{ mol dm}^{-3}), H^{+}(aq, 1.00 \text{ mol dm}^{-3}), H_{2}(g) | Pt(s)$

(5) Pt(s), $H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \mid \mid Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3})$, Mg(s)

27. The following procedure was carried out at 298 K to determine the distribution coefficient K_D of a monobasic organic acid between dichloromethane and water. 50.00 cm³ of a 0.20 mol dm⁻³ aqueous solution of acid were mixed vigorously with 10.00 cm³ of dichloromethane and the two layers were allowed to separate. Thereafter, the dichloromethane layer in the bottom of the flask was drained out. 10.00 cm³ of 0.02 mol dm⁻³ NaOH(aq) solution were required to neutralize the acid remaining in the aqueous layer. (Assume that the acid does not dimerize in the organic phase.) K_D of the acid between dichloromethane and water at 298 K is,

(1) 0.05

(2) 0.25

(3) 4.00 (4) 20.00 (5) 245.00

28. A reaction $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$ occurs in a rigid-closed container at a given temperature. After a certain time, it was found that the rate of the reaction with respect to consumption of $C_3H_4(g)$ was x mol dm⁻³ s⁻¹. Which of the following shows the rates of consumption of $O_2(g)$, formation of $CO_2(g)$ and formation of $H_2O(g)$ respectively, during that time?

rate / mol dm⁻³ s⁻¹

 $CO_{\gamma}(g) = H_{\gamma}O(g)$

(1)

(2)

(3)

(4)

(5)3x2x2x

29. Consider the following reaction occurring in a rigid-closed container at temperature T.

 $M(g) + Q(g) \rightarrow R(g) + Z(g)$

The rate of reaction doubled when the concentration of M was doubled. The rate of reaction is 5.00×10^{-4} mol dm⁻³ s⁻¹ when the concentrations of M and Q are 1.0×10^{-5} mol dm⁻³ and 2.0 mol dm⁻³ respectively. The rate constant of the reaction under these conditions is,

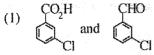
(1) $2.5 \times 10^{-4} \,\mathrm{s}^{-1}$

(2) 12.5 s^{-1}

(3) $25 s^{-1}$

 $(4) 50 s^{-1}$

 $(5) 500 \,\mathrm{s}^{-1}$


- 6 -

AL/2020/02/E-I(NEW)

30. Consider the following reaction scheme.

$$\begin{array}{c}
CO_2H \\
CI_2/AICI_3
\end{array}$$
P $\frac{1. \text{ LiAlH}_4}{2. \text{ H}^+/\text{H}_2\text{O}}$ Q

P and Q respectively could be,

- For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark
 - (1) if only (a) and (b) are correct.
 - (2) if only (b) and (c) are correct.
 - (3) if only (c) and (d) are correct.
 - (4) if only (d) and (a) are correct.
 - (5) if any other number or combination of responses is correct.

Summary of above Instructions

businessed	(1)	(2)	(3)	(4)	(5)
	Only (a) and (b)	Only (b) and (c)	Only (c) and (d)	Only (<i>d</i>) and (<i>a</i>)	Any other number or combination of responses
-	are correct	are correct	are correct	are correct	is correct

- 31. Which of the following statement/s is/are correct with regard to 3d-block elements and their compounds?
 - (a) Among the 3d-block elements, Sc is not considered as a transition element.
 - (b) The radii of atoms (Sc to Cu) decrease from left to right.
 - (c) $[Ni(NH_3)_6]^{2+}$ is blue in colour whereas $[Zn(NH_3)_4]^{2+}$ is colourless.
 - (d) The IUPAC name of K₂NiCl₄ is dipotassium tetrachloronickelate(II).
- 32. Which statement/s is/are correct regarding the following molecule?

- (a) Atoms labelled P, Q, R and S lie on a straight line.
- (b) Atoms labelled Q, R, S and T lie on a straight line.
- (c) Atoms labelled R, S, T, U and V lie on the same plane.
- (d) Atoms labelled R, S, T and U lie on a straight line.
- 33. 0.01 moles of N₂(g), 0.10 moles of H₂(g) and 0.40 moles of NH₃(g) were inserted into a 1.0 dm³ rigid-closed container and allowed to reach equilibrium at 500 K as given below.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $K_C = 2.0 \times 10^2 \text{ mol}^{-2} \text{ dm}^6$

Which of the following statement/s is/are correct for the changes in the system from the initial stage to equilibrium? Q_C is the reaction quotient.

- (a) Initially $Q_C > K_C$; $NH_3(g)$ starts to produce $N_2(g)$ and $H_2(g)$ and the system reaches equilibrium.
- (b) Initially $Q_C < K_C$, $NH_3(g)$ starts to produce $N_2(g)$ and $H_2(g)$ and the system reaches equilibrium.
- (c) Initially $Q_C < K_C$; $N_2(g)$ and $H_2(g)$ react to form $NH_3(g)$ and the system reaches equilibrium.
- (d) Initially $Q_C > K_C$; $N_2(g)$ and $H_2(g)$ react to form $NH_3(g)$ and the system reaches equilibrium.

[See page seven

34. Which of the following statement/s regarding the reaction between compound P and HCl to form an alkyl halide is/are correct?

CH₃

CH₃CH=CCH₃

- (a) The major product is 2-chloro-2-methylbutane.
- (b) A secondary carbocation is formed as an intermediate in this reaction.
- (c) In one of the steps of the reaction, the HCl bond is cleaved to give a chlorine radical (Cl*).
- (d) In one of the steps of the reaction, a nucleophile reacts with a carbocation.
- 35. A binary liquid mixture prepared by mixing two liquids in a closed evacuated container at a given temperature shows a negative deviation from Roult's Law. Which of the following statement/s is/are correct for this system?
 - (a) Total vapour pressure of the mixture is less than the expected total vapour pressure should it behave as an ideal mixture.
 - (b) Heat is released when the mixture is formed.
 - (c) Number of molecules in the vapour phase of the mixture is greater than the expected number of molecules should it behave as an ideal mixture.
 - (d) Heat is absorbed when the mixture is formed.
- 36. Which of the following statement/s is/are correct with regard to CFC, HCFC and HFC?
 - (a) Both classes of compounds CFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
 - (b) Both classes of compounds HFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
 - (c) All three classes of compounds CFC, HCFC and HFC are strong greenhouse gases.
 - (d) All three classes of compounds CFC, HCFC and HFC contribute significantly to ozone layer depletion.
- 37. Which of the following statement/s is/are correct with regard to halogens, noble gases and their compounds?
 - (a) Hypochlorous ion disproportionates rapidly in acidic solutions.
 - (b) Xe forms a series of compounds with F₂ gas, among which XeF₄ has a square planar geometry.
 - (c) Among the hydrogen halides, HF has the highest bond dissociation energy per mole.
 - (d) Boiling points of halogens increase down the group as a result of increasing strength of London forces.
- 38. Which of the following statement/s is/are correct regarding the Daniell cell when it operates at room temperature? ($E_{cell}^{\circ} = +1.10 \text{ V}$)
 - (a) Net electron flow occurs from Zn to Cu.
 - (b) The equilibrium $Zn^{2+}(aq) + 2e \rightleftharpoons Zn(s)$ shifts to the right.
 - (c) A liquid-junction potential is created due to the presence of a salt-bridge.
 - (d) The equilibrium $Cu^{2+}(aq) + 2e \rightleftharpoons Cu(s)$ shifts to the right.
- 39. Which of the following statement/s is/are correct for ideal gases and real gases at constant temperature?
 - (a) At very high pressures, the volume of a real gas is higher than that of an ideal gas.
 - (b) At high pressures, real gases tend to behave as ideal gases.
 - (c) At very high pressures, the volume of a real gas is lower than that of an ideal gas.
 - (d) At low pressures, real gases tend to behave as ideal gases.
- 40. Which of the following statement/s is/are correct regarding some industrial processes?
 - (a) The first two steps involved in the manufacture of Na,CO, by Solvay Process are endothermic.
 - (b) The presence of Mg²⁺, Ca²⁺ and SO₄²⁻ ions in brine, hinders the production of NaOH using the membrane cell method.
 - (c) The first step involved in the manufacture of nitric acid by Ostwald method is the oxidation of NH, gas using O, in air in the presence of a catalyst to give NO, gas.
 - (d) High temperature and low pressure conditions are employed in the manufacture of NH₃ gas using Haber-Bosh process.

See nave eight

- 8 -

AL/2020/02/E-I(NEW)

• In question Nos. 41 to 50, two statements are given in respect of each question. From the Table given below, select the response, out of the responses (1), (2), (3), (4) and (5), that best fits the two statements and mark appropriately on your answer sheet.

Response	First Statement	Second Statement
(1)	True	True, and correctly explains the first statement
(2)	True	True, but does not explain the first statement correctly
(3)	True	False
(4)	False	True अर्थ के प्राप्त कर के किया है कि
(5)	False	False

I	First Statement	Second statement
	Among the oxides of Cr and Mn, CrO and MnO are acidic, while CrO_3 and Mn_2O_7 are basic.	The acidic/basic nature of the oxides of Cr and Mn is dependant on the oxidation number of the metal.
1	An acidic buffer solution can be prepared by mixing a weak acid HA(aq) with its sodium salt NaA(aq).	When $OH^{\dagger}(aq)$ or $H^{\dagger}(aq)$ ions are added to a buffer solution, the added amounts of $OH^{\dagger}(aq)$ or $H^{\dagger}(aq)$ ions are removed through the reactions; $OH^{\dagger}(aq) + HA(aq) \rightarrow A^{\dagger}(aq) + H_2O(l)$ and $H^{\dagger}(aq) + A^{\dagger}(aq) \rightarrow HA(aq)$ respectively.
	Essential oils can be extracted from plants by steam distillation at a temperature below 100 °C.	At the temperature at which a mixture of essential oil and water boils, the total vapour pressure of the system is less than the atmospheric pressure.
-	At a given temperature and pressure the molar volumes of two different ideal gases are different from each other.	At 0 °C temperature and 1 atm pressure, the molar volume of an ideal gas is 22.4 dm ³ mol ⁻¹ .
	All compounds having a C=C bond show diastereoisomerism.	Any two isomers which are not mirror images of each other are diastereoisomers.
	Hydrogenation of benzene is more difficult than hydrogenation of alkenes.	Addition of hydrogen to benzene results in the loss of aromatic stabilization.
	The reaction that takes place between SO_3 gas and water in the production of sulphuric acid is endothermic.	SO ₃ gas reacts with concentrated H ₂ SO ₄ to give oleum.
	gives a mixture of primary, secondary and tertiary	Primary, secondary and tertiary amines can react as nucleophiles.
1	If $P+Q \rightarrow R$ is a first order reaction with respect to the reactant P, the graph of rate against concentration of P gives a straight line passing through the origin.	Initial rate of a first order reaction is independent of the concentration of reactant(s).
*	On a sunny day, strong photochemical smog can be seen in a city with heavy traffic congestion.	Photochemical smog is caused entirely by scattering of solar radiation by small particle and water droplets that are emitted by vehicle exhaust systems.

* * *

ශී් ලංකා විභාග දෙපාර්තමේන්තුව

Department of Examinations - Sri Lanka

අ.පො.ස.(උ.පෙළ)විභාගය/G.C.E. (A/L)- 2020

නව නිර්දේශය/ New Syllabus

විෂයය අංකය Subject No

02

විෂයය Subject

Chemistry

ලකුණු දීමේ පටිපාටිය/Marking Scheme I පතුය/Paper I

පුශ්න අංකය Question No.	පිළිතුරු අංකය Answer No.								
01.	5	11.	2	21.	3	31.	5	41.	4
02.	3	12.	3	22.	4.or.5	32.	2	42.	1 or 2
03.	44	13.	3	23.	1	33.	5	43.	3
04.	2	14.	2	24.	ALL	34.	4 or 5	44.	4
05.	ALL	15.	ALL	25.	ALL	35.	1	45.	5
06.	1	16.	3	26.	1	36.	5	46.	1
07.	2	17.	1	27.	5	37.	3 or 5	47.	4
08.	3	18.	1	28.	5	38.	44	48.	1
09.	4	19.	2	29.	4	39.	44	49.	3
10.	2	20.	2	30.	2	40.	5	50.	3

�විශේෂ උපදෙස්∕ Special Instructions:

එක් පිළිතුරකට ලකුණු 01 බැගින්/ 01 Mark for each question

මුළු ලකුණු/ Total Marks 01 × 50 = 50

PART A - STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question carries 10 marks.)

- 1. (a) Write the answers to the questions given below on the dotted lines.
 - (i) Of the three ions Na⁺, Mg²⁺ and F⁻, which one has the smallest ionic radius?

Mg²⁺

- (ii) Of the three elements C,N and O, which one has the highest second ionization energy?
- 0
- (iii) Of the three compounds H₂O, HOCl and OF₂, which one has the most electronegative oxygen atom?

OF₂

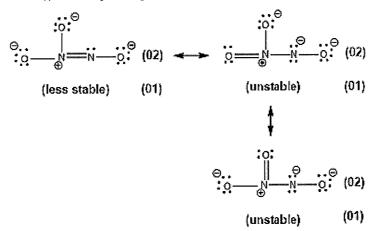
(iv) Of the three elements Be, C and N, which one will liberate energy when an electron is added to its atom $[Y(g) + e \rightarrow Y^{-}(g); Y = Be, C, N]$ in the gaseous state?

С

(v) Of the three ionic compounds NaF, KF and KBr, which one has the highest solubility in water?

KF or KBr

(vi) Of the three compounds HCHO, CH₃F and H₂O₂, which one has the strongest intermolecular forces?


H₂O₂

(04 marks X 6 = 24)

1(a): 24 marks

(b) (i) Draw the most acceptable Lewis structure for the ion, N₂O₃²⁻. Its skeleton is given below.

(ii) Draw three more Lewis structures (resonance structures) for this ion. Indicate the relative stabilities of the structures drawn by you, when compared with the most acceptable structure drawn in (i) above, by writing 'less stable' or 'unstable' under these structures.

(iii) Complete the given table based on the Lewis structure and its labelled skeleton given below.

	N ¹	N ²	O ³	C⁴
VSEPR pairs around the atom	3	3	4	2
electron pair geometry around the atom	trigonal planar	trigonal planar	tetrahedral	linear
shape around the atom	trigonal planar	angular/ V	angular/ V	linear
hybridization of the atom	sp ²	sp²	sp ³	sp

 $(01 \times 16 = 16)$

0	Parts (iv) to (vii) ar	re based	on th	e Lewis	structure	given	in	part	(iii)	above.	Labelling	of	atoms
	is as in part (iii).					_		_					

(iv) Identify the atomic/hybrid orbitals involved in the formation of σ bonds between the two atoms given below.

below.

I.
$$N^1 - N^2$$
 N^1 N^1 , $2p$ N^2 N^2 , $2p$

II. $C^4 - N$ C^4 C^4 , $2p$ N N , $2p$ N

(vi) State the approximate bond angles around N1, N2, O3 and C4 atoms.

$$N^{1}$$
 120° ± 1, 1 N^{2} 115° -118° O^{3} 104° ± 1, C^{4} 180° ± 1

(01 X 4 = 04)

 $(01 \times 12 = 12)$

(vii) Arrange the atoms N¹, N², O³ and C⁴ in the increasing order of electronegativity.

$$....C^4... <N^2... <N^1.... <O^3...$$
 (03)

1(b): 56 marks

- (c) Consider the following information.
 - I. The atoms $\bf A$ and $\bf B$ combine to form a heterodiatomic molecule $\bf AB$ that has a σ bond. This is represented as $\bf A-\bf B$.
 - II. The electronegativity of A is less than that of B $(X_A < X_B)$. X = electronegativity of the atom
 - III. The inter-nuclear distance between A and B atoms (d_{A-B}) of the AB molecule is given by the following equation.

$$d_{A-B} = r_A + r_B - c(X_B - X_A)$$

 $r = \text{atomic radius, } c = 9 \text{ pm}$

Note: d and r are measured in picometres (pm). $(1 \text{ pm} = 10^{-12} \text{ m})$

Based on the above information, answer the following questions.

- (i) What is the name used to identify the type of σ bond between A and B?

 Polar covalent bond

 (03)
- (ii) Show how fractional charges (δ + and δ -) are located in the molecule **AB**. $A^{\delta +} B^{\delta -}$ (03)
- (iii) Write the equation to calculate the dipole moment (μ) of molecule AB and show its direction

$$\mu = d_{AB} \times \delta$$
, OR $\mu = qr$, A—B OR A—B (01 + 01)

(iv) Calculate the percentage of ionic character of the H-F bond in the HF molecule using the data given below.

Inter-nuclear distance of $H_2(d_{H-H}) = 74 \text{ pm}$ Inter-nuclear distance of $F_2(d_{F-F}) = 144 \text{ pm}$ Electronegativity of H = 2.1

Electronegativity of F = 4.0

Dipole moment of HF = 6.0×10^{-30} C m Charge of an electron = 1.6×10^{-19} C

 $\mu = d_{HF} \times \delta$, $H^{\delta+} - F^{\delta-}$

$$r_{H} = \frac{d_{H2}}{2} = \frac{74}{2} = 37 \text{ pm}$$
 (02)

$$\mathbf{r}_{F} = \frac{d_{F2}}{2} = \frac{144}{2} = 72 \text{ pm}$$
 (02)

Therefore,
$$d_{HF} = 37 + 72 - 9(4.0 - 2.1)$$

= $109 - 9 \times 1.9$ (01)

$$= 91.9 \text{ pm}$$
 (02)

$$\mu = d_{HF} x \delta$$
, 6.0 x 10⁻³⁰ C m = δx 91.9 x 10⁻¹² m (01)

$$\delta = \frac{6.0 \times 10^{-30}}{91.9 \times 10^{-12}} = 0.65 \times 10^{-19}$$
 (02)

% lonic character =
$$\frac{0.65 \times 10^{-19}}{1.6 \times 10^{-19}} \times 100$$
 (01)
= 40.6% (01)

OR

$$r_{H} = \frac{d_{H2}}{2} = \frac{74}{2} = 37 \text{ pm}$$
 (02)

$$r_F = \frac{d_{F2}}{2} = \frac{144}{2} = 72 \text{ pm}$$
 (02)

Therefore,
$$d_{HF} = 37 + 72 - 9(4.0 - 2.1)$$

= $109 - 9 \times 1.9$

$$= 91.9 \text{ pm}$$
 (02)

$$\mu_{\text{ ionic}}$$
 = 1.6 x 10⁻¹⁹ C x 91.9 x 10⁻¹² m
= 147.04 x 10⁻³¹ C m (03)

% lonic character =
$$\frac{6 \times 10^{-30}}{147.04 \times 10^{-31}} \times 100$$
 (01)
= 40.8% (01)

2. (a) A, B, C and D are chlorides of p-block elements. These elements have atomic numbers less than 20. A description of the products (P₁-P₉) formed when A is reacted with a limited amount of water and B, C and D are reacted with excess water are given below.

Compound	Description of products
A	P ₁ a compound with a covalent network structure P ₂ a strong monobasic acid
В	P ₃ a gas that turns red litmus blue a compound with bleaching properties
C	P ₅ a tribasic acid P ₆ a strong monobasic acid
b	P ₇ a gas that turns acidic KMnO ₄ solution colourless a colloidal solid a strong monobasic acid

(i) Identify A, B, C and D (give the chemical formulae).

(ii) Give balanced chemical equations for the reactions of A, B, C and D with water to give products P_1 to P_9 .

SiCl₄ + 2H₂O
$$\rightarrow$$
 SiO₂ (P₁) + 4HCl (P₂) (05)
NCl₃ + 3H₂O \rightarrow NH₃ (P₃) + 3HOCl (P₄) (05)

$$PCI_5$$
 + $4H_2O$ \rightarrow H_3PO_4 (P_5) + $5HCI$ (P_6) (05)

....2SCl₂ + 2H₂O
$$\rightarrow$$
 SO₂ (P₇) + S (P₈) + 4HCl (P₉) (05)

Note: Award marks if correct balanced equations are given.

(iii) Write balanced chemical equations for the following reactions.

I.
$$P_1$$
 with NaOH(aq)
SiO₂ + 2NaOH \rightarrow Na₂SiO₃ + H₂O (04)
II. P_3 with Mg
3Mg + 2NH₃ \rightarrow Mg₃N₂ + 3H₂ (04)
III. P_7 with acidic $K_2Cr_2O_7$
3(SO₂ + 2H₂O \rightarrow SO₄²⁻ + 4H⁺ + 2e)

$$\frac{Cr_2O_7^{2-} + 14H^+ + 6e}{3SO_2 + Cr_2O_7^{2-} + 2H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + H_2O}$$
(06)

If only half reactions are given – part marks (02 + 02)

2(a): 50 marks

(b) A student is provided with bottles labelled **P**, **Q**, **R**, **S**, **T** and **U** containing aqueous solutions of Al₂(SO₄)₃, H₂SO₄, Na₂S₂O₃, BaCl₂, Pb(Ac)₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion)

Г	Solutions mixed	Observations
I	T+R	a clear colourless solution
II	P+R	a white precipitate
111	T+S	a gelatinous white precipitate
IV	U+R	a white precipitate
V	P+Q	a white precipitate, turns black on heating
V	P+U	a white precipitate, dissolves on heating

(i) Identify P to U.S. H. AND AND MEDICAL DESCRIPTION OF THE BANK LAWS

P: Pb(Ac)₂ Q: Na₂S₂O₃ R: H₂SO₄ S: Al₂(SO₄)₃ OR KOH T: KOH OR Al₂(SO₄)₃ U: BaCl₂

 $(05 \times 6 = 30)$

(ii) Give balanced chemical equations for each of the reactions I to VI.

I.
$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$$
 OR $Al_2(SO_4)_3 + H_2SO_4 \rightarrow No \text{ reaction}$

II. $Pb(Ac)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HAc$ (03)

III. $6KOH + Al_2(SO_4)_3 \rightarrow 2Al(OH)_3 \downarrow + 3K_2SO_4$ (03)

IV. $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2HCl$ (03)

V. Formation of white ppt $Pb(Ac)_2 + Na_2S_2O_3 \rightarrow PbS_2O_3 \downarrow + 2NaAc$ (03)

Turning black on heating $PbS_2O_3 + H_2O \rightarrow PbS \downarrow + H_2SO_4$ (02)

VI. $Pb(Ac)_2 + BaCl_2 \rightarrow PbCl_2 \downarrow + Ba(Ac)_2$ (03)

Note: Precipitates have to be shown by ↓ or as (s). If not, deduct (01) mark.

2(b): 50 marks

- 3. (a) A saturated aqueous solution of a sparingly soluble salt $AB_2(s)$ was prepared by stirring an excess amount of $AB_2(s)$ in 1.0 dm³ of distilled water at 25 °C. The amount of $A^{2+}(aq)$ ions present in this saturated aqueous solution was found to be 2.0×10^{-3} mol.
 - (i) Write the equilibrium related to the dissolution of $AB_2(s)$ in the above system at 25 °C. $AB_2(s) \rightleftharpoons A^{2+}(aq) + 2B^{-}(aq)$ (05)
 - (ii) Write the expression for the equilibrium constant for the equilibrium written in (i) above at 25 °C.

$$K_{sp} = [A^{2+}(aq)][B^{-}(aq)]^{2}$$
 (05)
 $\frac{K_{C} = [A^{2+}(aq)][B^{-}(aq)]^{2}}{[AB_{2}(s)]}$ Note: If only K_c is given award (03 marks)

(iii) Calculate the value of the equilibrium constant stated in (ii) above at 25 °C.

$$[A^{2+}(aq)] = 2.0 \times 10^{-3} \text{mol dm}^{-3}$$
 (04+01)

$$[B^{-}(aq)] = 2[A^{2+}(aq)] = 4.0 \times 10^{-3} \text{mol dm}^{-3}$$
 (04+01)

$$K_{sp} = 2.0 \times 10^{-3} \text{mol dm}^{-3} \times (4.0 \times 10^{-3} \text{mol dm}^{-3})^2$$
 (05)

$$K_{sp} = 3.2 \times 10^{-8} \text{mol}^3 \, \text{dm}^{-9}$$
 (05)

(iv) Another saturated aqueous solution of AB₂ was prepared by stirring an excess amount of AB₂(s) in 2.0 dm³ of distilled water at 25 °C. Giving reasons, predict the value of the equilibrium constant for this system.

$$K_{sp} = 3.2 \times 10^{-8} \text{ mol}^3 \text{ dm}^{-9}$$
 (05)

$$K_{sp}$$
 is a constant at constant temperature (05)

(v) A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution of AB₂ at 25 °C. Giving reasons, predict whether the concentration of A²⁺(aq) is increased or decreased.

$$\therefore$$
 More AB₂(s) is formed to keep the K_{sp} constant or reverse reaction takes place (05)

$$[A^{2+}(aq)], decreases$$
 (05)

3(a): 60 marks

(b) In an aqueous solution, propanoic acid (C₂H₅COOH) ionizes as given below.

$$\mathrm{C_2H_5COOH(aq) + H_2O(\mathit{l})} \rightleftharpoons \mathrm{C_2H_5COO^{-}(aq) + \ H_3O^{+}(aq)}$$

At 25 °C,
$$K_{\alpha}$$
 (propanoic acid) = 1.0×10^{-5}

(i) Write the expression for the equilibrium constant for the above reaction at 25 °C.

$$K_a = \frac{[C_2 H_5 COO^-(aq)][H_3 O^+(aq)]}{[C_2 H_5 COOH^-(aq)]}$$
(05)

(ii) 100.0 cm³ of an aqueous solution of C₂H₅COOH(aq) was prepared by dissolving 0.74 cm³ of C₂H₅COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C.

(C = 12; O = 16; H = 1; consider the density of
$$C_3H_3$$
COOH as 1.0 g cm⁻³)

mass of
$$C_2H_5COOH(aq) = 0.74 \text{ cm}^3 \times 1.00 \text{ g cm}^{-3} = 0.74 \text{ g}$$

moles of
$$C_2H_5COOH(aq)$$
 in 100 cm³ = 0.74 g/74 g mol⁻¹ = 0.01 mol (05)

$$[C_2H_5COOH(aq)] = 0.10 \text{ mol dm}^3$$
 (05)

Consider the equilibrium:

 $C_2H_5COOH(aq) + H_2O(1) \rightleftharpoons C_2H_5COO^{-}(aq) + H_3O^{+}(aq)$

Initial 0.10 0 0 mol
$$dm^{-3}$$

Change -x x mol dm^{-3}
At eqm 0.10-x x mol dm^{-3} (05)

$$K_a = \frac{[c_2 H_5 COO^-(aq)][H_3 O^+(aq)]}{[c_2 H_5 COOH^-(aq)]} = \frac{x.x}{0.10 - x} = 1.0 \times 10^{-5}$$

$$(02)$$

$$\frac{x^2}{0.10} = 1.0 \times 10^{-5} \quad (0.10 - x \sim 0.1)$$
 (03)

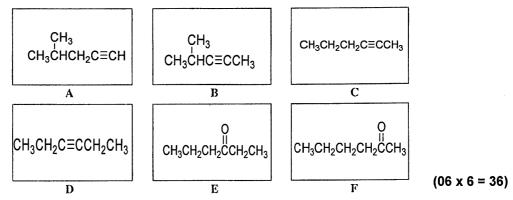
$$x^2 = 1.0 \times 10^{-6}$$

$$x = 1.0 \times 10^{-3} \text{ mol } dm^{-3} = H_3 O^{+}(aq)$$
 (05)

$$pH = -log / H_3 O^+(aq) / = 1.0 \times 10^{-3}$$
 (05)

$$pH = 3.0 \tag{05}$$

Note: Students may take –log of both sides of $K_a = \frac{[c_2H_5coo^-(aq)][H_3o^+(aq)]}{[c_2H_5coo^-(aq)]}$ and calculate pH.

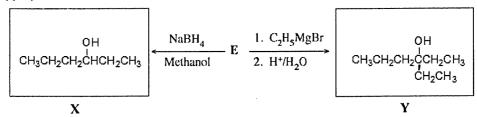

Award marks appropriately.

3(b): 40 marks

4. (a) A, B, C and D are structural isomers having the molecular formula C₆H₁₀. None of them show optical isomerism. All four isomers, A, B, C and D when treated with HgSO₄/dil. H₂SO₄ give products which react with 2,4-dinitrophenylhydrazine (2,4-DNP) to give coloured precipitates.

Only A gives a precipitate with ammonical $AgNO_3$. A has only one position isomer, which is B. B is a chain isomer of C. C reacts with $HgSO_4/dil$. H_2SO_4 to give two products E and F. D reacts with $HgSO_4/dil$. H_2SO_4 to give only one product, which is E.

(i) Draw the structures of A, B, C, D, E and F in the boxes given below.



(ii) Which of the compounds **A**, **B**, **C** and **D** gives a product that does not show diastereoisomerism when reacted separately with H₂ / Pd-BaSO₄ / quinoline?

or Appropriate letter (A, B, C or D) identifying the correct structure

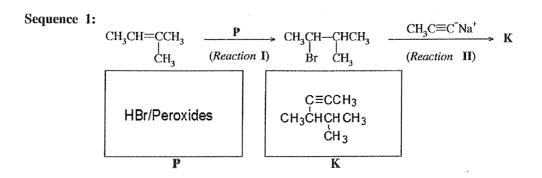
(iii) Draw, in the box given below, the structure of the product G obtained when A is reacted with excess HBr.

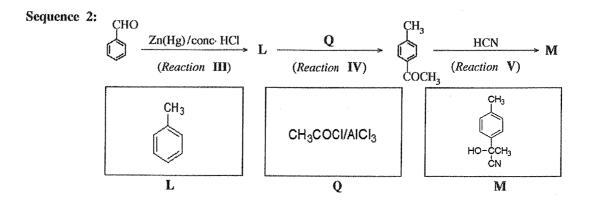
(iv) Draw the structures of products X and Y obtained in the following reactions of E, in the appropriate boxes.

Name a test to distinguish between X and Y.

 $(05 \times 2 = 10)$

Lucas test or


anh. ZnCl2/ conc. HCl or


H⁺/K₂Cr₂O₇ or

H⁺/KMnO₄

(04)

4(a): 60 marks

Sequence 3:
$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Compounds/reagents $(05 \times 6 = 30)$

(ii) Selecting from the reactions I-VI, give one (01) example for each of the following types of reactions.

Nucleophilic addition Reaction V

Nucleophilic substitution Reaction II

Reactions $(05 \times 2 = 10)$

4(b): 40 marks

PART B - ESSAY

5. (a) A compound XY₂Z₂(g) undergoes dissociation when heated to temperatures above 300 K as given below.

$$XY_2Z_2(g) \stackrel{\Delta}{\rightleftharpoons} XY_2(g) + Z_2(g)$$

A sample of 7.5 g of $XY_2Z_2(g)$ was placed in an evacuated 1.00 dm³ rigid-closed container and the temperature was raised to 480 K.

Molar mass of $XY_2Z_2(g)$ is 150 g mol⁻¹. Use the approximate value of 4000 J mol⁻¹ for RT at 480 K. Assume ideal gas behaviour for all gases.

(i) Calculate the number of moles of $XY_2Z_2(g)$ in the container before dissociation.

$$7.5 \text{ g/}150 \text{ g mol}^{-1} = 5.0 \times 10^{-2} \text{ mol}$$
 (05)

5(a) (i): 05 marks

(ii) When the above system reaches equilibrium at 480 K, the total number of moles in the container was found to be 7.5×10^{-2} mol. Calculate the number of moles of $XY_2Z_2(g)$, $XY_2(g)$ and $Z_2(g)$ in the equilibrium mixture at 480 K.

$$XY_2Z_2(g) \Rightarrow XY_2(g) + Z_2(g)$$

Initial 0.05 0 mol dm⁻³ (05)

Change
$$-x$$
 x $mol dm^{-3}$

At eqm
$$0.05-x$$
 x $mol dm^{-3}$ (05)

Total number of moles =
$$0.05+x = 7.5 \times 10^{-2} \text{ mol}$$
 (05)

$$x = 2.5 \times 10^{-2} \,\mathrm{mol}$$
 (05)

$$XY_2(g) = Z_2(g) = 2.5 \times 10^{-2} \text{ mol}$$
 (05)

$$XY_2Z_2(g) = 5.0 \times 10^{-2} \text{ mol} - 2.5 \times 10^{-2} \text{ mol} = 2.5 \times 10^{-2} \text{ mol}$$
 (05)

5(a) (ii): 30 marks

(iii) Calculate the equilibrium constant K_c for the above reaction at 480 K.

$$K_c = \frac{[XY_2(g)][Z_2(g)]}{[XY_2Z_2(g)]}$$
 (05)

Concentration =
$$2.5 \times 10^{-2} \, mol \, dm^{-3}$$
 (05)

$$K_c = \frac{2.5 \times 10^{-2} \, mol \, dm^{-3} \times 2.5 \times 10^{-2} \, mol \, dm^{-3}}{2.5 \times 10^{-2} \, mol \, dm^{-3}}$$
 (05)

$$K_c = 2.5 \times 10^{-2} \, mol \, dm^{-3} \tag{05}$$

5(a) (iii): 20 marks

(iv) Calculate K_p for the equilibrium at 480 K.

$$K_p = K_c (RT)^{\Delta n}$$
 (05)

$$\Delta n = 1 \tag{05}$$

$$K_p = 2.5 \times 10^{-2} \, mol \, dm^{-3} \times 4 \times 10^3 \, J \, mol^{-1}$$
 (05)

$$K_p = 1.0 \times 10^5 \ Pa$$
 (05)

iv. Alternative:

Total number of moles at equilibrium = 7.5×10^{-2} mol

$$P_{\text{Total}} = (7.5 \times 10^{-2} \text{ mol} \times 4 \times 10^{3} \text{ J mol}^{-1})/1.0 \times 10^{-3} \text{ m}^{3}) = 3.0 \times 10^{5} \text{ Pa})$$

Number of moles of
$$XY_2 Z_2(g) = XY_2(g) = Z_2(g) = 2.5 \times 10^{-2} \text{ mol}$$

Mole fractions of
$$XY_2 Z_2(g) = XY_2(g) = Z_2(g) = 1/3$$

$$P_i = X_i P_{total}$$

$$P_{XY2\ Z2(g)} = P_{XY2(g)} = P_{Z2(g)} = 1.0 \times 10^5 \text{ Pa}$$

$$K_p = [P_{XY2(g)} = P_{Z2(g)}] / P_{XY2 Z2(g)} = 1.0 \times 10^5 Pa$$

5(a): 75 marks

- (b) For the reaction $XY_2Z_2(g) \rightarrow XY_2(g) + Z_2(g)$ described in (a), Gibbs free energies (G) at 480 K for $XY_2Z_2(g)$, $XY_2(g)$ and $Z_2(g)$ are -60 kJ mol⁻¹, -76 kJ mol⁻¹ and -30 kJ mol⁻¹, respectively.
 - (i) Calculate ΔG (in kJ mol⁻¹) for the reaction at 480 K.

$$XY_2Z_2(g) \rightarrow XY_2(g) + Z_2(g)$$

$$\Delta G_{rxn} = G_{products} - G_{reactants}$$

$$= (-76 + (-30)) - (-60) = -46 \text{ kJ mol}^{-1}$$
(05)

Note: No marks if ΔG_{rxn}^0 is written.

5(b) (i): 10 marks

(ii) The magnitude of ΔS of the above reaction is 150 J K⁻¹ mol⁻¹ at 480 K. Calculate ΔH for the reaction at 480 K by using the appropriate sign (- or +) of ΔS .

 ΔS must be positive (number of gaseous moles is higher in products) (05)

5(b) (ii): 05 marks

(iii) By using the sign (- or +) of ΔH obtained in (ii), explain whether this reaction is exothermic or endothermic.

$$\Delta G = \Delta H - T \Delta S \tag{05}$$

$$-46 \, kJ \, mol^{-1} = \Delta H \, - \, 480 \, K \, \times \, 150 \, \times 10^{-3} \, kJ \, K^{-1} \, mol^{-1}$$
$$\Delta H = \, -46 \, kJ \, mol^{-1} + 72 \, kJ \, mol^{-1}$$

$$(04 + 01)$$

$$\Delta H = +26 \ kI \ mol^{-1}$$

(04+01)

5(b) (iii): 15 marks

(iv) Deduce the enthalpy difference for the formation of $XY_2Z_2(g)$ from $XY_2(g)$ and $Z_2(g)$ at 480 K.

because ΔH is positive

(05)

5(b) (iv): 10 marks

(v) If the bond enthalpy of the X-Z bond in $XY_2Z_2(g)$ is +250 kJ mol⁻¹, calculate the bond enthalpy of the Z-Z bond.

(Assume that $XY_2Z_2(g)$ has the structure Z - X - Z)

$$\Delta H = -26 \, kJ \, mol^{-1} \tag{09+01}$$

5(b) (v): 10 marks

(vi) If liquid XY_2Z_2 is used instead of gaseous XY_2Z_2 , giving reasons, explain whether the value of ΔH obtained for the reaction $XY_2Z_2(l) \rightarrow XY_2(g) + Z_2(g)$ is equal to, or higher or lower than ΔH obtained in (ii).

$$\Delta H_{rxn} = \Delta H_{bonds\ formed} - \Delta H_{bonds\ broken}$$
 (05)

$$\Delta H_{rxn} = \Delta H_{Z-Z} - 2 \Delta H_{X-Z} \tag{05}$$

 $26 \, kJ \, mol^{-1} = \Delta H_{Z-Z} - 2 \times 250 \, kJ \, mol^{-1}$

$$\Delta H_{Z-Z} = 526 \, kJ \, mol^{-1} \tag{04+01}$$

(OR students may solve through an appropriate thermo cycle)

It is necessary to supply energy to convert liquid to gas first (05)

(or $XY_2Z_2(l) \rightarrow XY_2Z_2(g)$ needs an extra energy)

5(b) (vi): 25 marks

5(b): 75 marks

6. (a) Consider the reaction given below occurring in a closed container at a given temperature T.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

(i) Write three expressions for the rate of reaction relevant to each of the compounds appearing in the reaction.

$$Rate = -\frac{\Delta[N_2O_5(g)]}{2 \Delta t} = \frac{\Delta[NO_2(g)]}{4 \Delta t} = \frac{\Delta[O_2(g)]}{\Delta t}$$
 (05)

6(a) (i): 05 marks

- (ii) This reaction was carried out at temperature T with an initial concentration of 0.10 mol dm⁻³ of $N_2O_5(g)$. It was found that 40% of the initial amount was decomposed after a period of 400 s.
 - 1. Calculate the average rate of decomposition of N₂O₅(g) in this time interval.

Decomposed amount =
$$0.10 \text{ mol dm}^{-3} \times 40/100 = 4.0 \times 10^{-2} \text{ mol dm}^{-3}$$
 (05)

Remaining concentration after
$$400 \text{ s} = 6.0 \times 10^{-2} \text{ mol dm}^{-3}$$
 (05)

Average Rate =
$$\frac{-(0.06 - 0.10) \, mol \, dm^{-3}}{(400 - 0)s}$$
 = 1.0 × 10⁻⁴ mol dm⁻³ s⁻¹ (05)

II. Calculate average rates of formation of NO2(g) and O2(g).

$$\frac{\Delta[N_2O_5(g)]}{2 \Delta t} = \frac{\Delta[NO_2(g)]}{4 \Delta t}$$

$$\frac{\Delta[NO_2(g)]}{4 \Delta t} = 2.0 \times 10^{-4} \ mol \ dm^{-3} \ s^{-1}$$
(02)

$$\frac{\Delta[O_2(g)]}{\Delta t} = \frac{\Delta[N_2O_5(g)]}{2\,\Delta t} = 5.0 \times 10^{-5} \, mol \, dm^{-3} \, s^{-1} \tag{03}$$

6(a) (ii): 20 marks

(iii) In another experiment, initial rates were measured for this reaction at 300 K and the results are given below.

[N ₂ O ₅ (g)] / mol dm ⁻³	0.01	0.02	0.03	
Initial rate / mol dm ⁻³ s ⁻¹	6.930×10^{-5}	1.386 × 10 ⁻⁴	2.079 × 10 ⁻⁴	

Derive the rate law for the reaction at 300 K.

When the concentration were increased two and three times, rate increased two and three times, respectively. (05)

$$\therefore \text{ Rate law}: \text{Rate} = k \left[N_2 O_5(g) \right] \tag{05}$$

(**OR**
$$R_1/R_2 = 1/2$$
 ::::reaction is first order)

6(a) (iii): 15 marks

- (iv) Another experiment was carried out at 300 K with an initial concentration of 0.64 mol dm⁻³ of $N_2O_5(g)$. It was found that the concentration of $N_2O_5(g)$ which remained after a period of 500 s was 2.0×10^{-2} mol dm⁻³.
 - I. Calculate the half-life $(t_{1/2})$ of the reaction at 300 K.

Order of concentration change =
$$0.64/2.0 \times 10^{-2} = 32 = (2)^5$$
 (05)

$$\therefore \text{ Fraction of initial } N_2 O_5(g) = (1/2)^5$$
 (05)

$$\therefore t_{1/2} = 500 \text{ s/5} = 100 \text{ s} \tag{05}$$

II. Calculate the rate constant of the reaction at 300 K.

from iii,

Rate =
$$k [N_2 O_5(g)] = 6.93 \times 10^{-5} \text{ mol } dm^{-3} \text{ s}^{-1} = k \ 0.01 \text{ mol } dm^{-3}$$
 (05)

$$k = 6.93 \times 10^{-3} \, \text{s}^{-1}$$
 (04+01)

OR

Reaction is first order

For first order reaction:
$$t_{1/2} = 0.693 / k$$
 (05)

$$\therefore k = 0.693/100 \, s = 6.93 \times 10^{-3} \, s^{-1} \tag{05}$$

6(a) (iv): 30 marks

(v) This reaction proceeds through a mechanism involving the following elementary steps.

Step 1 :
$$N_2O_5(g)$$
 \rightleftharpoons $NO_3(g)$ + $NO_2(g)$: Fast
Step 2 : $NO_3(g)$ + $NO_2(g)$ \rightarrow $2NO_2(g)$ + $O(g)$: Slow
Step 3 : $N_2O_5(g)$ + $O(g)$ \rightarrow $2NO_2(g)$ + $O_2(g)$: Fast

Show that the above mechanism is consistent with the rate law of the reaction. (8.0 marks)

Step 1:
$$N_2O_5(g) \Rightarrow NO_3(g) + NO_2(g)$$
; fast
Step 2: $NO_3(g) + NO_2(g) \rightarrow 2NO_2(g) + O(g)$; slow
Step 3: $N_2O_5(g) + O(g) \rightarrow 2NO_2(g) + O_2(g)$; fast

From step 2 (Slow-step);

Rate=
$$k[NO_3(g)][NO_2(g)]$$
 (05)

For step 1 (equilibrium)

$$K_{eq} = \{ [NO_3(g)] [NO_2(g)] \} / [N_2O_5(g)]$$
 (05)

We get,
$$K_{eq}[N_2O_5(g)] = \{[NO_3(g)][NO_2(g)]\}$$

: Rate=
$$k K_{eq} [N_2O_5(g)] = k'[N_2O_5(g)]$$
 (05)

This is a first order reaction which follows the rate low derived (05)

6(a) (v): 20 marks

6(a): 90 marks

- (b) An ideal binary-liquid mixture was prepared by mixing two liquids of **A** and **B** in a closed evacuated container at temperature T. After establishing the equilibrium at temperature T, partial pressures of **A** and **B** in the vapour phase are P_A and P_B , respectively. At temperature T, the saturated vapour pressures of **A** and **B** are P_A° and P_B° , respectively. Mole fractions of **A** and **B** in solution are X_A and X_B , respectively.
 - (i) Show that $P_A = P_A^c X_A$ (Consider that the rates of vaporization and condensation are equal at equilibrium.)

Consider the above described vapor – liquid equilibrium of an ideal solution with components **A** and **B**. As the rate of evaporation equals the rate of condensation, we can write:

$$A_{(l)} \stackrel{r_v}{\rightleftharpoons} A_{(g)} \dots \dots (1)$$

$$r_c$$

$$(05)$$

 r_v and r_c are the rates of vaporization and condensation, respectively of the component A. Considering (1), we can write;

$$r_v = k \left[A_{(l)} \right] = k_1 X_A \tag{05}$$

 X_A is the mole fraction of A in solution

Likewise,

$$r_{\nu}' = k'[A_{(q)}] = k_2 P_A \tag{05}$$

 P_A is the partial pressure of A in vapor phase.

At equilibrium

$$,r_v=r_v'$$

$$k_2 P_A = k_1 X_A \tag{05}$$

$$\therefore P_A = \frac{k_1}{k_2} X_A \text{ or } \therefore P_A = k X_A \tag{05}$$

when $X_A = 1$, $P_A = P_A^0 =$ saturated vapor pressure of A

$$\therefore k = P_A^0 \tag{05}$$

$$\therefore P_A = P_A^0 X_A \tag{05}$$

6(b) (i): 35 marks

- (ii) In the above system at 300 K, the total pressure was 5.0×10^4 Pa. The saturated vapour pressures of pure A and B at 300 K, are 7.0×10^4 Pa and 3.0×10^4 Pa, respectively.
 - 1. Calculate the mole fraction of A in the liquid phase of the equilibrium mixture.
 - II. Calculate the vapour pressure of A in the equilibrium mixture.

$$(I) P_{total} = P_A + P_B (05)$$

$$= X_A P^0_A + X_B P^0_B = X_A P^0_A + (1 - X_B) P^0_B$$
 (05)

$$\therefore X_A = \frac{P_{total} - P_B^0}{P_A^0 - P_B^0}$$
 (05)

$$= \frac{5 \times 10^4 - 3 \times 10^4}{7 \times 10^4 - 3 \times 10^4} = \frac{1}{2}$$
 (05)

(II)
$$\therefore P_A = P_A^0 X_A = \frac{1}{2} \times 7 \times 10^4 Pa = 3.5 \times 10^4 Pa$$
 (05)

6(b) (ii): 25 marks

6(b): 60 marks

(i) To compare the properties of Electrolytic and Galvanic cells, copy and complete the following 7. (a) table using the given terms.

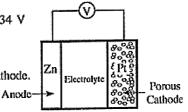
Terms: anode, cathode, positive, negative, spontaneous, non-spontaneous.

		Electrolytic cell	Galvanic cell
A.	Oxidation half reaction takes	Anode	Anode
A.	place at		
В.	Reduction half reaction takes	Cathode	cathode
5.	place at		
C.	Sign of E ⁰ cell	-ve	+ve
D.	Electron flow	From anode to cathode	From anode to cathode
E.	Spontaneity of reaction	Non-spontaneous	spontaneous

 $(2 \times 10 = 20 \text{ marks})$

7(a) (i): 20 marks

(ii) An electrochemical cell was constructed at 300 K by using a Zn(s) anode, an aqueous alkaline electrolyte and a porous Pt cathode which facilitates the collection of oxygen O2(g) from air as shown below. As the cell operates ZnO(s) is produced.


You are given that

$$E_{\text{ZnO(s)}|\text{Zn(s)}|\text{OH}^{-}(\text{aq})}^{\circ} = -1.31 \text{ V} \text{ and } E_{\text{O}_{2}(g)|\text{OH}^{-}(\text{aq})}^{\circ} = +0.34 \text{ V}$$

 $Zn = 65 \text{ g mol}^{-1}$, $O = 16 \text{ g mol}^{-1}$ and

 $1F = 96,500 \,\mathrm{C}$

I. Write the half-reactions occurring at anode and cathode.

anode :
$$Zn(s) + 2 OH^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2e$$

(05)

Cathode ;
$$O_2(g) + 2 H_2O(1) + 4e \rightarrow 4 OH^{-}(aq)$$

(05)

Write the overall cell reaction.

$$2 \operatorname{Zn}(s) + O_2(g) \to 2 \operatorname{ZnO}(s)$$
 (05)

III. Calculate the cell potential E_{cell}° at 300 K.

$$E^{0}_{cell} = E^{0}_{R} - E^{0}_{L} = E^{0}_{cathode} - E^{0}_{anode}$$
 (05)

$$= 0.34 \text{ V} - (-1.31 \text{ V}) = 1.65 \text{V}$$
 (04+01)

State the direction of migration of OH-(aq) ions between the electrodes.

V. When the cell operates for a period of 800 s at 300 K, 2 mol of $O_2(g)$ are consumed. A. Calculate the number of moles of electrons passing through the cell.

2 mol O₂(g)
$$\times \frac{4 \, mol \, ens}{1 \, mol \, O_2(g)} = 8$$
 moles of electrons (05)

B. Calculate the mass of ZnO(s) formed.

Mass of ZnO(s) =
$$\frac{8 \text{ mol ens} \times 96500 \text{ C}}{1 \text{ mol } e \times 800 \text{ s}} \times \frac{1 \text{ mol e}}{96500 \text{ C}} \times \frac{2 \text{ mol ZnO(s)}}{4 \text{ mol en}} \times \frac{81 \text{ g}}{1 \text{ mol ZnO}}$$
(05)

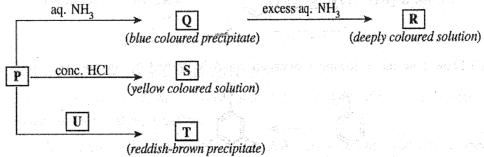
$$= 324 g$$
 (04+01)

OR

Mass of ZnO =
$$4 \text{ mol} \times 81 \text{ g mol}$$
 (05)

$$= 324 g$$
 (04+01)

C. Calculate the current passing through the cell.


$$I = q/t (05)$$

$$= \frac{8 \ mol \ ens \times 96500 \ C}{1 \ mol \ e \times 800 \ s} = 965 \ A$$
 (05)

7(a) (i): 55 marks

7(a): 75 marks

(b) A coloured complex ion P is formed when the salt $M(NO_3)_n$ is dissolved in distilled water. M is a transition element belonging to the 3d block. P undergoes the following reactions.

T and U are coordination compounds each containing four elements. P, R and S are complex ions.

(i) Identify the metal M. Give the oxidation state of M in complex ion P.

$$\mathbf{M} = \mathbf{C}\mathbf{u} \tag{10}$$

Oxidation state:
$$+2$$
 OR Cu^{2+} (03)

7(b) (i): 13 marks

(ii) Give the value of n in $M(NO_3)_n$. (03)n = 27(b) (ii): 03 marks (iii) Write the complete electronic configuration of M in complex ion P. $1s^22s^22p^63s^23p^63d^9$ (03)7(b) (iii): 03 marks (iv) Write the chemical formulae of P, Q, R, S, T and U. P: $[Cu(H_2O)_6]^{2+}$ (04)Q: Cu(OH)₂ (04)[Cu(NH₃)₄]²⁺ (04)R: [CuCl₄]²⁻ S: (04)Cu₂[Fe(CN)₆] T: U: $K_4[Fe(CN)_6]$ 7(b) (iv): 16 marks (v) Give the IUPAC names of P, R, S, T and U. P: hexaaquacopper(II) ion (03)R: tetraamminecopper(II) ion (03)S: tetrachloridocuprate(II) ion (03)T: copper hexacyanoferrate(II) U: potassium hexacyanoferrate(II) 7(b) (v): 12 marks (vi) What is the colour of P? (04)pale blue 7(b) (vi): 04 marks (vii) What would you expect to observe in I and II given below? When H₂S gas is passed into an acidic solution containing P at room temperature (06)black precipitate When the mixture obtained in I above is heated with dilute HNO₃ after the removal of dissolved H₂S (04)pale blue solution solution is turbid/ pale yellow or milky/ white precipitate (02)(06)turbid pale blue solution

7(b) (vii): 12 marks

(viii) Briefly describe a method with the aid of balanced chemical equations for determining the concentration of M^{n+} present in an aqueous solution, using the following chemicals. KI, Na, S₂O₃ and starch.

Add excess KI (01)

to an aqueous solution of volume $V_1 \text{ cm}^3$ containing M^{n+} (01)

Here, $M^{n+} = Cu^{2+}$

Titrate the liberated I₂ (01)

with $Na_2S_2O_3$ whose concentration is known (M mol dm⁻³) (01) with starch as the indicator (01)

$$2Cu^{2+} + 2I^{-} \rightarrow 2Cu^{+} + I_{2}$$
 -----(1) (01)

$$I_2$$
 + $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^-$ -----(2)

$$2Cu^{2+} + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2Cu^+$$
 -----(3)

OR

$$2Cu^{2+} + 4l^{-} \rightarrow 2Cul \downarrow + l_{2}$$
 -----(1a) (01)

$$I_2$$
 + $2S_2O_3^{2-}$ \rightarrow $S_4O_6^{2-}$ + $2I^-$ -----(2a) (01)

$$2Cu^{2+} + 2S_2O_3^{2-} \rightarrow 2CuI \downarrow + S_4O_6^{2-}$$
 -----(3a) (02)

Note: If correct overall equation is given, award the part marks for half equations as well.

From both (3) or (3a)
$$Cu^{2+} \equiv S_2O_3^{2-}$$
 (01)

Let the burette reading of
$$S_2O_3^{2-}$$
 be V_2 cm³ (01)

Therefore, moles of
$$S_2O_3^{2-}$$
 = V_2 x M (01)

Therefore, moles of
$$Cu^{2+}$$
 = V_2 x M (01)
 1000

Therefore,
$$[Cu^{2+}]$$
 = V_2 x M x 1000 (01)

$$= \underbrace{MV_2}_{V_1} \quad \text{mol dm}^{-3}$$
 (01)

Note: The above explanation could be given in words.

7(b)(viii): 15 marks

7(b): 75 marks

(i) Given below is a reaction scheme for the synthesis of compound G using CH₃CH₂CH₂OH 8. (a) as the only organic starting compound.

> Complete the reaction scheme by drawing the structures of compounds A, B, C, D, E and F and writing the appropriate reagents for steps 1-7, selected only from those given in the list.

Compounds, A - F

$$A = CH_3CH=CH_2$$

$$D = CH_3CH_2CHO$$

OMgBr
$$F = CH_3CH_2CHCHCH_3$$
 CH_3 CH_3

Reagents:

Step 1 = conc.
$$H_2SO_4$$

Step 5 = $dil.H_2SO_4$

Step 2 = HBr

Step 6 = PBr_3

Step 3 = Mg / dry ether

Step 7 = KCN

Step 4 = PCC

Compounds/Reagents

 $(04 \times 13 = 52 \text{ marks})$

8(a) (i): 52 marks

(ii) Consider the following series of reactions.

Draw the structures of compounds G, H and K. Give the reagents X, Y and Z.

Note that
$$K$$
 gives benzyl alcohol ($\begin{cal} \begin{cal} \be$

Compounds G, H and K

Reagents

$$X = H^+ / K_2Cr_2O_7 / \text{ or } H^+ / \text{KMnO}_4$$
 $Y = PCl_5 \text{ or } PCl_3$ $Z = NH_3 \text{ or } H^+/CrO_3$

Compounds/Reagents

 $(04 \times 6 = 24 \text{ marks})$

8(a) (ii): 24 marks

8(a): 76 marks

(b) (i) Show how the following conversion could be carried out in not more than three steps

$$\bigcap_{Br}^{NH_2} \longrightarrow \bigcap_{Br}^{Br}$$

8(b) (i) 20 marks

(ii) Consider the following reaction.

$$\begin{array}{c} \text{CH}_3\text{CHCH}_3 \\ \end{array}$$

Identify the chemical substances P and Q necessary to carry out this reaction. Write the mechanism of this reaction.

$$P + Q = (CH_3)_2CHCI + AICI_3$$
 5

P + Q = (05)

$$(CH_3)_2CHCI + AICI_3 \xrightarrow{+} CH(CH_3)_2 + AICI_4$$

$$(CH_3)_2CHCI + AICI_3 \xrightarrow{+} CH(CH_3)_2 \xrightarrow{+} CH(CH_3)_2$$

$$CH(CH_3)_2 \xrightarrow{+} CH(CH_3)_2 \xrightarrow{+} CH(CH_3)_2$$

Intermediates $03 \times 3 = 09$ Arrows $02 \times 3 = 06$

Alternative answer:

IF the student has written the electrophile as R–Cl molecule polarized by coordinating to AlCl₃, only the marks allocated for the last two steps may be awarded as given below.

(CH₃)₂CH-CIAICI₃

$$(CH_3)_2CH-CIAICI_3$$

$$(CH_3)_2CH-CIAICI_3$$

$$(CH_3)_2CH-CIAICI_3$$

$$(CH_3)_2CH-CIAICI_3$$

$$(CH_3)_2CH-CIAICI_3$$

$$(CH_3)_2CH-CIAICI_3$$

$$(CH_3)_2CH-CIAICI_3$$

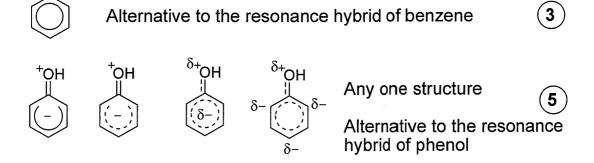
$$(CH_3)_2CH-CIAICI_3$$

The electrophile may be written as:

$$(CH_3)_2CH-CIAICI_3$$
 or $(CH_3)_2CH-CI-AICI_3$ or $(CH_3)_2CH-CI-AICI_3$

8(b)(ii): 20 marks

8(b): 40 marks


(c) (i) Explain why phenol is more reactive in electrophilic substitution reactions than benzene, by considering their resonance hybrids.

Structures of benzene and phenol can be illustrated as follows.

Consider these only for marking

Resonance structures and Double headed arrows $01 \times 8 = 08$

OR

The benzene ring of phenol is more reactive towards electrophiles than benzene itself because:

The benzene ring in phenol is electron rich compared to benzene due to the Delocalization of lone pair of electrons on the oxygen atom

Over the benzene ring of phenol

 $04 \times 3 = 12$

8(c)(i): 20 marks

(ii) Illustrate the difference in reactivity between phenol and benzene as given in (i) above by means of a suitable reaction.

Phenol reacts with bromine at room temperature/ decolorizes bromine / gives a white precipitate with bromine water

Benzene does not react with bromine at room temperature / does not decolorize bromine / does not give a white precipitate with bromine water OR

Benzene reacts with bromine (only) in the presence of a Lewis catalyst

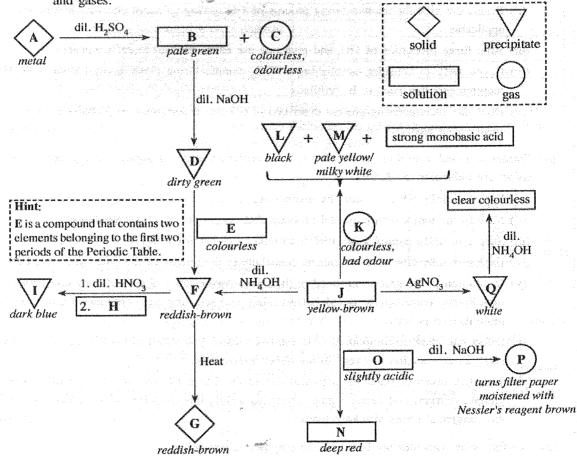
Reaction of phenol with bromine occurs even in the absence of Lewis catalyst

OR

Nitration of phenol takes place at room temperature / at 20 °C / without heating with dilute HNO₃ (20% HNO₃).

Benzene does not react with dilute HNO₃

 $04 \times 2 = 08$


8(c): (ii) 08 marks

(iii) Draw the structure(s) of product(s) you described in the reaction in (ii) above.

8(c) (iii): 06 marks

8(c): 34 marks

(a) (i) Write the chemical formulae of the substances A - Q given in the flow chart below.
 (Note: Chemical equations and reasons are not expected for the identification of substances A - Q.)
 The symbols given in the box (dash lines) are used to represent solids, precipitates, solutions and gases.

A: Fe C: H₂ D: Fe(OH)₂ B: FeSO₄ or [Fe(H₂O)₆]SO₄ or [Fe(H₂O)₆]²⁺

E:H₂O₂

F: Fe(OH)₃

G: Fe₂O₃

H:K₄[Fe(CN)₆]

I: Fe₄[Fe(CN)₆]₃ J: FeCl₃

K: H₂S

L: FeS

KFe[Fe(CN)₆]

M: S or S₈

N: Fe(SCN)₃

O: NH₄SCN

P: NH₃

or

[Fe(SCN)(H₂O)₅]²⁺

[Fe(SCN)]2+

Q: AgCI

 $(04 \text{ marks } \times 17 = 68 \text{ marks})$

9 (a) (i): 68 marks

(ii) Write the complete electronic configuration of A.

$$1s^22s^22p^63s^23p^63q^64s^2$$
 (02)

(iii) State the function of E in the conversion of D to F. Give the relevant balanced chemical equations for the stated function.

E:
$$H_2O_2$$
 function – oxidizing agent (02)
 $2(Fe(OH)_2 + H_2O \rightarrow Fe(OH)_3 + H^+ + e)$
 $H_2O_2 + 2H^+ + 2e \rightarrow 2H_2O$
 $2Fe(OH)_2 + H_2O_2 \rightarrow 2Fe(OH)_3$ (03)

OR

(Half reactions (01) each if written)

9 (a) (ii & iii) marks :07

9 (a) 75 marks

(b) The solid X contains only Cu₂S and CuS. The following procedure was used to determine the percentage of Cu₂S in X.

Procedure

A 1.00 g portion of solid X was treated with $100.00 \,\mathrm{cm^3}$ of $0.16 \,\mathrm{mol}\,\,\mathrm{dm^{-3}}\,\,\mathrm{KMnO_4}$ in dilute $\mathrm{H_2SO_4}$ medium. This reaction gave $\mathrm{Mn^{2+}}$, $\mathrm{Cu^{2+}}$ and $\mathrm{SO_4^{2-}}$ as products. Thereafter, the excess $\mathrm{KMnO_4}$ in this solution was titrated with 0.15 mol dm⁻³ Fe²⁺ solution. The volume required for the titration was 35.00 cm³.

(i) Write the balanced ionic equations for the reactions taking place in the above procedure.

Reaction of Cu₂S with MnO₄-

$$2Cu^{+} \rightarrow 2Cu^{2+} + 2e$$
 -----(1) (03)

$$S^{2-}$$
 + $4H_2O \rightarrow SO_4^{2-}$ + $8H^+$ + 8e -----(2) (03)

OR

$$(1) + (2)$$

$$2Cu^{+} + S^{2-} + 4H_{2}O \rightarrow 2Cu^{2+} + SO_{4}^{2-} + 8H^{+} + 10e -----(3)$$

$$2(MnO_{4}^{-} + 8H^{+} + 5e \rightarrow Mn^{2+} + 4H_{2}O) \qquad ------(4)$$

$$(03)$$

$$(3) + (4)$$

$$2Cu^{+} + S^{2-} + 2MnO_4^{-} + 8H^{+} \rightarrow 2Cu^{2+} + SO_4^{2-} + 2Mn^{2+} + 4H_2O$$
 (05)

OR

$$Cu_2S$$
 + $2MnO_4$ + $8H^+ \rightarrow 2Cu^{2+} + SO_4^{2-} + 2Mn^{2+} + 4H_2O$ (If only this equation is written award the full 14 marks)

Reaction of CuS with MnO₄-

$$5(S^{2-} + 4H_2O \rightarrow SO_4^{2-} + 8H^+ + 8e)$$
 -----(5)
 $8(MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O)$ -----(6)
 $\overline{(5)+(6)}$
 $5S^{2-} + 8MnO_4^- + 24H^+ \rightarrow 5SO_4^{2-} + 8Mn^{2+} + 12H_2O$ (05)

OR

$$5CuS + 8MnO_4^- + 24H^+ \rightarrow 5CuSO_4 + 8Mn^{2+} + 12H_2O_4$$

Reaction of Fe2+ with MnO4

$$5(Fe^{2+} \rightarrow Fe^{3+} + e)$$
 -----(7) (03)
 $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$ ----(8)

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$
 (05)

9 (b)(i): 27 marks

OR

Reaction of Cu⁺ with MnO₄⁻

$$5(Cu^+ \rightarrow Cu^{2+} + e)$$
 -----(1a) (03)

$$MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$$
 -----(2a) (03)

(1a) + (2a)

$$5Cu^{+} + MnO_{4}^{-} + 8H^{+} \rightarrow 5Cu^{2+} + Mn^{2+} + 4H_{2}O$$
 (05)

Reaction of S2- with MnO4-

$$5(S^{2-} + 4H_2O \rightarrow SO_4^{2-} + 8H^+ + 8e)$$
 -----(5) (03)

$$\frac{8(MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O)}{(5)+(6)}$$

$$5S^{2-}$$
 + $8MnO_4^-$ + $24H^+$ \rightarrow $5SO_4^{2-}$ + $8Mn^{2+}$ + $12H_2O$ (05)

Reaction of Fe²⁺ with MnO₄-

$$5(Fe^{2+} \rightarrow Fe^{3+} + e)$$
 -----(7) (03)
 $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$ ----(8)

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$
 (05)

Note: If only the overall reaction is written correctly, award the marks due to the half reactions as well.

b (b)(i): 27 marks

- (ii) Based on the answers to (i) above, determine the molar ratio between,
 - I. Cu₂S and KMnO₄
 - II. CuS and KMnO₄
 - III. Fe2+ and KMnO

Molar ratios

$$\frac{\text{Cu}_2\text{S}}{\text{MnO}_4^-} = \frac{1}{2}$$
 $\frac{\text{CuS}}{\text{MnO}_4^-} = \frac{5}{8}$ $\frac{\text{Fe}^{2+}}{\text{MnO}_4^-} = \frac{5}{1}$ (05 x 3)

OR

$$Cu_2S: MnO_4^- = 1: 2$$
 $CuS: MnO_4^- = 5: 8$ $Fe^{2+}: MnO_4^- = 5: 1$

9 (b)(ii): 15 marks

(iii) Calculate the percentage by weight of Cu_2S in X. (Cu = 63.5, S = 32)

Let the number of moles of Cu_2S and CuS be n_1 and n_2 respectively in the 1.0 g of sample \boldsymbol{X}

Molar mass of
$$Cu_2S = (2 \times 63.5) + 32 = 159$$
 (02)

Molar mass of CuS =
$$63.5 + 32 = 95.5$$
 (02)

$$159n_1 + 95.5n_2 = 1.0$$
 (02)

Moles of Fe²⁺ reacted =
$$\frac{0.15}{1000} \times 35.0$$
 (02)

Moles of MnO₄ =
$$\frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$$
 (02)

Moles of MnO₄ reacted with Cu₂S and CuS

$$= \frac{0.16}{1000} \times 100.0 - \frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$$
 (02)

$$= 0.016 - 0.001 \tag{02}$$

$$= 0.015 \text{ mol}$$
 (02)

Based on molar ratios

$$2n_1 + \frac{8}{5}n_2 = 0.015$$
 -----(10) (02) (9) + (10)

$$2n_1 + \frac{8}{5} \frac{(1-159 \, n1)}{95.5} = 0.015 \tag{02}$$

$$2 \times 5 \times 95.5 \, n_1 + 8(1-159n_1) = 0.015 \times 95.5 \times 5$$
 (02)

$$955n_1 + 8 - 1272n_1 = 7.1625$$

 $317n_1 = 0.84$

$$n_1 = 0.0027$$
 (02)

Weight of
$$Cu_2S = 0.0027 \times 159 g$$
 (02)

$$= 0.43 q$$
 (02)

% Cu₂S =
$$\frac{0.43}{1.0} \times 100$$
 (02)

9 (b)(iii): 33 marks

OR

Moles of Fe²⁺ =
$$\frac{0.15}{1000} \times 35.0$$
 (02)

Moles of MnO₄⁻ remaining =
$$\frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$$
 (02)

Moles of MnO₄ added =
$$\frac{0.16}{1000} \times 100.0$$
 (02)

Moles of MnO₄ reacted with Cu₂S and CuS

$$= \frac{0.16}{1000} \times 100.0 - \frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$$
 (02)

$$= 0.016 - 0.001 \tag{02}$$

$$= 0.015 \text{ mol}$$
 (02)

Consider the masses of Cu₂S and CuS to be p and q respectively.

$$p + q = 1.0 g$$
 (02)

Molar mass of
$$Cu_2S = (2 \times 63.5) + 32 = 159$$
 (02)

Molar mass of CuS =
$$63.5 + 32 = 95.5$$
 (02)

$$\frac{2p}{159} + \frac{8q}{95.5 \times 5} = 0.015$$
 (02)

From (9a) & (10a)

$$\frac{2p}{159} + \frac{8(1-p)}{95.5 \times 5} = 0.015 \tag{02}$$

$$2p \times 5 \times 95.5 + 8 \times 159(1-p) = 0.015 \times 5 \times 159 \times 95.5$$
 (02)

$$955p - 1272p = 1138.84 - 1272$$
 (02)

317p = 133.16

$$p = \frac{133.16}{317} = 0.42 \tag{02}$$

% Cu₂S =
$$\frac{0.42}{1000} \times 100.0$$
 (02)

9 (b)(iii): 33 marks

OR

Let the number of moles of Cu₂S and CuS be n₁ and n₂ respectively in the 1.0 g of X

$$5Cu^{+} + MnO_{4}^{-} + 8H^{+} \rightarrow 5Cu^{2+} + Mn^{2+} + 4H_{2}O$$

$$5S^{2-}$$
 + $8MnO_4^-$ + $24H^+ \rightarrow 5SO_4^{2-}$ + $8Mn^{2+}$ + $12H_2O$

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

Moles of MnO₄ added =
$$\frac{0.16}{1000} \times 100.0$$
 = 0.016 (02)

Moles of Fe²⁺ reacted =
$$\frac{0.15}{1000} \times 35.0$$
 = 0.005 (02)

Moles of MnO₄⁻ remaining =
$$\frac{0.15}{1000} \times 35.0 \times \frac{1}{5}$$
 = 0.001 (02)

Moles of
$$MnO_4$$
 reacted = 0.016 - 0.001 = 0.015 (02)

Molar mass of
$$Cu_2S = (2 \times 63.5) + 32 = 159$$
 (02)

Molar mass of CuS =
$$63.5 + 32 = 95.5$$
 (02)

$$159n_1 + 95.5n_2 = 1$$
 -----(1) (02)

Moles of $Cu^+ = 2n_1$

Therefore, moles of MnO₄ reacted = $\frac{2n_1}{5}$

Moles of
$$S^{2-} = n_1 + n_2$$
 (02)

Therefore, moles of MnO₄⁻ reacted with S²⁻ = $\frac{8(n_1 + n_2)}{5}$

Therefore, total moles of MnO₄⁻ reacted =
$$\frac{10n_1 + 8n_2}{5}$$
 (02)

$$\frac{(10n_1 + 8n_2)}{5}$$
 mol = 0.015 mol (02)

$$10n_1 + 8n_2 = 0.075 \text{ mol}$$
 -----(2)

 $(1) \times 8 - (2) \times 95.5$

$$1272 n_1 - 955 n_1 = 8 - 7.14 (02)$$

$$317n_1 = 0.86$$
 Therefore, $n_1 = \frac{0.86}{317}$

Therefore, moles of Cu₂S in 1 g =
$$\frac{0.86}{317}$$
 (02)

Mass of
$$Cu_2S$$
 = 0.86 × 159 g (02)

% of Cu₂S =
$$\frac{0.86}{317} \times 159 \times 100\%$$
 (02)

9 (b)(iii): 33 marks

9(b): 75 marks

- 10. (a) The following questions are based on the properties of titanium dioxide (TiO₂) and its manufacture carried out by the "Chloride Process".
 - (i) Name the raw materials used in this process.

Rutile (02)

Coke (02)

 Cl_2 (02)

 O_2 (02)

10 (a) (i): 08 marks

(ii) Briefly describe the manufacturing process of TiO₂ giving balanced chemical equations where applicable.

Chlorination

$$TiO_2(s) + C(s) \rightarrow Ti(s) + CO_2(g)$$
 -----(A) (03)

Stream of chlorine is passed over mixture of rutile and coke (02)

$$Ti(s) + 2Cl2(g) \rightarrow TiCl4(g) \qquad -----(B)$$

OR

Reactions (A) and (B) can be combined.

$$TiO_2(s) + C(s) + 2Cl_2 \rightarrow TiCl_4(g) + CO_2(g)$$
 (06)

For three descriptions above (02 x 3)

After removal of dust particles, TiCl₄ gaseous mixture is cooled and liquid TiCl₄ is separated.

(02)

Oxidation

TiCl₄ is reacted with oxygen and TiO₂ is regenerated.

$$TiCl_4(g) + O_2(g) \rightarrow TiO_2(s) + 2Cl_2(g)$$
 (03)

 Cl_2 is re-used in chlorination. (02)

10 (a) (ii): 19 marks

- (iii) State three properties of TiO2 and give one use each, relevant to each property.
 - White colour as a pigment in paint, plastic goods and paper, paper
 - High refractive index as a pigment
 - Chemically inert as a pigment in medicine and toothpaste
 - Prevents the reach of UV rays to skin produce substances to prevent sunburn

Any three properties

 $(02 \times 3 = 06)$

One use for each property

 $(02 \times 3 = 06)$

10 (a) (iii): 12 marks

- (iv) If you were to consider establishing a TiO₂ manufacturing plant in Sri Lanka, state three requirements that need to be fulfilled.
 - Availability of raw material
 - Capitol
 - Labour force
 - Technology
 - Storage conditions
 - Minimize environmental pollution
 - Transport facilities
 - Waste product management

Any three

 $(02 \times 3 = 06)$

10 (a) (iv): 06 marks

(v) Does the manufacturing process described in (ii) above contribute to global warming? Justify your answer.

Yes. (02)

CO₂ is produced and given out to the environment in the oxidation of coke

(03)

10 (a) (v): 05 marks

10(a): 50 marks

- (b) Currently, global warming due to change in greenhouse effect is significantly greater than that before the industrial revolution.
 - (i) Explain briefly what is meant by greenhouse effect.

Heating of earth (01) by infrared absorbing gases (01) in the atmosphere by trapping energy (IR radiation) (02) reradiated from the earth surface (02).

10 (b) (i): 06 marks

(ii) Identify the major environmental problem that occurs due to global warming,

Climate change

(03)

10 (b) (ii): 03 marks

(iii) State two main natural gases that contribute to global warming.

CO₂, CH₄, and N₂O

any two

(03 + 03)

10 (b) (iii): 06 marks

(iv) Explain briefly how microorganisms contribute to the release of the gases you stated in (iii).

CO₂- Action of aerobic bacteria on organic substances/ plant materials/ and animal materials

CH₄- Action of anaerobic bacteria on organic substances/ materials

N₂O- Action denitrifying bacteria on ammonia/ nitrogen fertilizers(urea)/ and nitrogen containing substances.

Any two (04 + 04)

10 (b) (iv): 08 marks

(v) In addition to the gases you stated in (iii), name two classes of synthetic volatile compounds that directly contribute to the global warming, and selecting one compound from each class, draw their structures.

CFC, HFC, HCFC

$$F \longrightarrow C \longrightarrow Cl$$
 $F \longrightarrow C \longrightarrow H$ $F \longrightarrow C \longrightarrow Cl$ $F \longrightarrow H$ $F \longrightarrow C \longrightarrow H$

Any two (03 for class +03 for the structure)
(03 x 4 =12 marks)
No marks for the structure if the class is wrong

Note In addition to these compounds award marks for the following structures on each class.

CFC - Any saturated organic compound that contain one or two carbon atoms with only CI and F atom

HCFC - Any saturated organic compound that contain one or two carbon atoms with only one hydrogen atom and others are Cl and F atoms

HFC - Any saturated organic compound that contain one or two carbon atoms with only one hydrogen atom and others are F atoms.

10 (b) (v): 12 marks

(vi) Select **one** class of compounds from the two classes you stated in (v) that contributes to the catalytic degradation of ozone in the upper atmosphere.

CFC or HCFC (must be selected from (v) to get marks)

10 (b) (vi): 03 marks

(vii) The slow down of industrial activities due to the Covid-19 pandemic temporarily eased the global environmental issues in many countries. Justify this statement by using two main global environmental issues you have learnt.

Reduction of Global warming (01): Due to the reduction of emission of CO₂ (01) because of reduction of fossil fuel burning (02) due to limitation of industrial activities (01) and transportation (01).

Reduction of acid rain (01): Reduction of emission of $SO_2(01)$ into the atmosphere due to decrease of burning of coal and diesel (01+01) for power generation and transportation (01+01) respectively.

or

Reduction of acid rain (01) Reduction of emission of NO₂/NO into the atmosphere (01) due to decrease of fuel burning (01) in internal combustion engine (01) of vehicles caused by limitation of transportation (02).

Reduction of Photochemical smog (01). Reduction of emission of NO and volatile hydrocarbons (01+01) into the atmosphere from internal combustion engines/vehicles (01) due to limitation of transportation (02).

Any two $(06 \times 2 = 12 \text{ marks})$

10 (b) (vii): 12 marks

10(b): 50 marks

(c) The following questions are based on the polymers given below.

Polyvinyl chloride (PVC), Polyethylene (PE), Polystyrene (PS), Bakelite, Nylon 6.6, Polyethylene terephthalate (PET), Gutta percha

(i) Draw the repeating units of fo f the above polymers.

PVC
$$-\left(-H_2C--CH-\right)$$

PE
$$\left(CH_2 - CH_2 \right)$$

Nylon 6,6
$$-NH$$
— $(CH_2)_6$ — NH — C — $(CH_2)_4$ — C

PET
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Gutta percha
$$CH_2$$
 CH_2 CH_2

Brackets are not required for award of marks.

Any four

 $(02 \times 4 = 08)$

10 (c) (i): 08 marks

- (ii) Categorize each of the above seven (7) polymers as either,
 - 1. natural or synthetic polymers.
 - II. addition or condensation polymers.

		10 (c) (ii): 24 marks
	For II – Any 6	$(02 \times 6 = 12)$
	For I – Any 6	(02 x 6 = 12)
Gutta percha	natural	addition
PET	synthetic	condensation
Nylon 6,6	synthetic	condensation
Bakelite	synthetic	condensation
PS	synthetic	addition
PE	synthetic	addition
PVC	synthetic	addition
	I - natural/synthetic	II - addition/condensation

(iii) Name the two monomers used in the formation of bakelite.

phenol and formaldehyde

 $(02 \times 2 = 04)$

10 (c) (iii): 04 marks

(iv) Polymers can be grouped into two categories based on their thermal properties. State these two categories. Write to which of these categories PVC and bakelite belong.

Thermoset polymers (02)

Thermoplastic polymers (02)

Bakelite – thermoset polymer (02)

PVC – thermoplastic polymer (02)

10 (c) (iv): 08 marks

(v) Give one use each for three of the polymers given in the above list.

PVC pipes to supply water, seat cover, electric wire covers

PE food wrapping, garbage bags

PS stylofoam cups, rigiform, insulating materials, packing

materials

Bakelite heat resistant parts for electric utensils, insulating

materials

Nylon 6,6 clothes, fishing nets & lines, tyre threads

PET bottles

Gutta percha insulation, permanent tooth fillings, golf balls

Any three $(02 \times 3 = 06)$

10(c) (v): 06 marks

10(c): 50 marks