(10) සංයුක්ත ගණිතය

පුශ්න පතු වසූහය

I පතුය -	කාලය : පැය 0	3 යි. (ඊට අමතරව කියවීම් ක	ාලය	මිනිත්තු 10 යි.)
	මෙම පුශ්න පතු)ය කොටස් <mark>දෙකකින්</mark> සමන්වි	රිත ෙ	ව්.
	A කොටස -	පුශ්ත <mark>දහයකි.</mark> පුශ්න <mark>සියල්ල</mark> පුශ්නයකට ලකුණු 25 බැගින	ට ම ් ලකු	පිළිතුරු සැපයිය යුතු ය. එක් ණු 250කි.
	B කොටස -	පුශ්න හතකි. පුශ්න පහකට පි ලකුණු 150 බැගින් ලකුණු 7:	ළිතුර 50කි.	ැ සැපයිය යුතු ය. එක් පුශ්නයකට
	I පතුය සඳහා §	මුළු උකුණු = 1000		
II පතුය -	කාලය : පැය 0	3 යි. (ඊට අමතරව කියවීම් ක	ාලය	මිනිත්තු 10 යි.)
	මෙම පුශ්න පතු	ාය කොටස් <mark>දෙකකින්</mark> සමන්ද්	විත ෙ	වේ.
	A කොටස -	පුශ්ත <mark>දහයකි.</mark> පුශ්න සියල්ල පුශ්නයකට ලකුණු 25 බැගින	ට ම ෆ් ලකු	පිළිතුරු සැපයිය යුතු ය. එක් ඉණු 250කි.
	B කොටස -	පුශ්ත හතකි. පුශ්ත පහකට පි ලකුණු 150 බැගින් ලකුණු 7	ළිතුර 50කි.	ැ සැපයිය යුතු ය. එක් පුශ්නයකට
	II පතුය සඳහා	මුළු ලකුණු = 1000		
අවසාන ලකුණ	් ගණනය කිරීම	: I පතුය	=	1000
		II පතුය	=	1000
		අවසාන ලකුණ	=	$2000 \div 20 = \underline{100}$
\ \				

(10) සංයුක්ත ගණිතය

I පතුය

A කොටස

1.	ගණික අභාපුහන කරන්න.	මූලධර්මය	භාවිතයෙන්	සියලු n	$\in \mathbb{Z}^{^{+}}$ සඳහා	6 ⁿ - 1 c	න්න 5 න්	බෙදෙන	බව	සාධනය
2.	$2 x-3 \le 2+x$ ඒ නයින්, $2 x+3 $	x අසමානස 3 ≤ 2 − <i>x</i> වි	තාව තෘප්ත ස වසඳන්න.	තරන x හි	සියලු තාත්ත	ත්වික අගය	න්හි කුලකං	ය සොයන	්ත.	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන¤ 3 ≤ 2 − x වි	තාව තෘප්ත ස විසඳන්න.	රෙන x හි	සියලු තාත්ත	ත්වික අගය	න්හි කුලකං	ය සොයන	්න. 	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන≍ 3 ≤ 2 – x වි	තාව තෘප්ත ස වසඳන්න.	තරන x හි	සියලු තාත්ත	ා්චික අගය	න්හි කුලකං	ය සොයන	්ත.	
2.	2 x - 3 ≤ 2 + x ඒ නයින්, 2 x + 3	x අසමානස 3 ≤ 2 – x ව්	තාව තෘප්ත ස විසඳන්න.	රෙන x හි	සියලු තාත්ත	ා්වික අගය	න්හි කුලකං	3 සොයන	්න.	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන¤ 3 ≤ 2 – x වි	තාව තෘප්ත ස විසඳන්න.	රෙන x හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 සොයන	්ත.	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x + 3	x අසමාන¤ 3 ≤ 2 – x වි	තාව තෘප්ත ස වසඳන්න.	තරන <i>x</i> හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 සොයන	්න. 	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන¤ 3 ≤2-x ව්	තාව තෘප්ත ස විසඳන්න.	තරන <i>x</i> හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 මසායන	්න. 	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x + 3	x අසමාන¤ 3 ≤ 2 – x ව	තාව තෘප්ත ස විසඳන්න.	තරන x හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 සොයන	්න. 	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන¤ 3 ≤2-x ව	තාව තෘප්ත ස	තරන <i>x</i> හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 මසායන	්න. 	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන¤ 3 ≤ 2 – x ව්	තාව තෘප්ත ස විසඳන්න.	තරන <i>x</i> හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 සොයන	්න. 	
2.	2 x-3 ≤ 2+ x ඒ නයින්, 2 x+3	x අසමාන¤ 3 ≤2-x ව	තාව තෘප්ත ස	තරන <i>x</i> හි	සියලු තාත්ත	්වික අගය	න්හි කුලකං	3 සොයන	්න. 	

අ.පො.ස.(උ.පෙළ) විහාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විහාග සඳහා පුශ්න පතු වෘූහය හා මූලාකෘති පුශ්න සංයුක්ත ගණිතය -1163. ආගන්ඩ් සටහනක $|z - i| \le 1$ හා $\frac{\pi}{4} \le \operatorname{Arg}(z - i) \le \frac{3\pi}{4}$ යන අවශානා තෘප්ත කරන z සංකීර්ණ සංඛාා නිරූපණය කරන R පෙදෙස අඳුරු කරන්න.

R පෙදෙස තුළ වූ z සඳහා, $\operatorname{Re} z + \operatorname{Im} z$ හි උපරිම අගය ලියා දක්වන්න.

4.

$\lim_{x \to 0} \frac{\left((8+x)^{\frac{1}{3}} - 2 \right) \sin 2x}{x^2} = \frac{1}{6} \ \text{ab erabbasis}.$

5.	$P = (4 \cos \theta, 3 \sin \theta)$ ලක්ෂායෙහි දී $\frac{x^2}{16} + \frac{y^2}{9} = 1$ ඉලිප්සයට අඳිනු ලබන ස්පර්ශකයේ සමීකරණය
	$\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$ බව පෙන්වන්න. P 88 ලංකා ලයිස්සයට සුපිත ලබන සුපිලම්භය $\begin{pmatrix} 0 & 7 \end{pmatrix}$ ලක්සාය තරනා යන පරිදි θ $(0 < \theta < \pi)$ 8
	1 act gaps generation = 1 act gaps generation = 1 act gaps and generation = 1 act gaps act gaps action a
6.	$\tan^{-1}\left[\frac{5}{2}\tan\left(\frac{x}{2}\right)+\frac{4}{2}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int dx$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3} \tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5 + 4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3} \tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5 + 4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3} \tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5 + 4 \sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3} \tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5 + 4 \sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3} \tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3} \tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3}\tan\left(\frac{x}{2}\right)+\frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3}\tan\left(\frac{x}{2}\right)+\frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3}\tan\left(\frac{x}{2}\right) + \frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින්, $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3}\tan\left(\frac{x}{2}\right)+\frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින් , $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3}\tan\left(\frac{x}{2}\right)+\frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින් , $\int \frac{dx}{5+4\sin x}$ සොයන්න.
6.	$\tan^{-1}\left[\frac{5}{3}\tan\left(\frac{x}{2}\right)+\frac{4}{3}\right]$ යන්න x විෂයෙහි අවකලනය කරන්න. ඒ නයින් , $\int \frac{dx}{5+4\sin x}$ සොයන්න.

අ.පො.ස.(උ.පෙළ) විභාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විභාග සඳහා පුශ්න පතු වයූහය හා මූලාකෘති පුශ්න සංයුක්ත ගණිතය

- වකුයෙන් ද x=3 සරල රේඛාව හා x–අක්ෂය මගින් ද ආවෘත වූ පෙදෙස S යැයි ගනිමු (රූපය 7. $y = \frac{x}{\sqrt{2}}$ බලන්න). x–අක්ෂය වටා රේඩියන 2π වලින් S භුමණය කිරීමෙන් ජනනය වන ඝන වස්තුවේ පරිමාව $3\pi\left(1-\frac{\pi}{4}\right)$ බව පෙන්වන්න. v (2, 1) ලක්ෂාය හරහා යන විචලා සරල රේඛාවක් x–අක්ෂය හා y–අක්ෂය පිළිවෙළින් P හා Q ලක්ෂා 8. වලදී හමුවේ. PQ හි මධා ලක්ෂා R වේ. R ලක්ෂාය x + 2y = 2xy වකුය මත පිහිටන බව පෙන්වන්න.

.....

අ.පො.ස.(උ.පෙළ) විභාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විභාග සඳහා පුශ්න පතු වයූහය හා මූලාකෘති පුශ්න සංයුක්ත ගණීනය -119-

වෘත්තයේ සම								
				•••••				•••••
								•••••
•••••	•••••				•••••			
	•••••							
			••••••	•••••	••••••			
$\sqrt{3} \cos x - x$ ඒ නයින්, $\sqrt{3}$	sin x යන්න cos 2x – si	$R \cos (x + 1) = 1$	α) ආකාර : 0 සමීකර∢	ංයන් පුකාශ කය විසඳන්z	කරන්න; ෙ ත.	මෙහි <i>R</i> > () හා 0 < <i>α</i>	< 7
$\sqrt{3} \cos x - x$ ඒ නයින්, $\sqrt{3}$	sin x යන්න cos 2x – si	$R\cos(x+$ n 2x + 1 =	α) ආකාර : 0 සමීකර∢	ංයන් පුකාශ ණය විසඳන්ද	කරත්න; කෙරත්න; කෙරත්න; කෙරත්න; කෙ	මෙහි <i>R</i> > () හා 0 < <i>a</i>	< 7
√3 cos x – ; ඒ නයින්, √3	sin x	$R\cos(x+$ n 2x + 1 =	α) ආකාර : 0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	୭୦୫ R > () හා 0 < α	< 7
√3 cos x − ; ඒ නයින්, √3	sin x යන්ත cos 2x – si	$R \cos (x + n 2x + 1) =$	α) ආකාර 0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්2	කරන්න; ෙ ත.	මෙහි <i>R</i> > () හා 0 < α	< 7
√3 cos x – ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) = 0$	α) ආකාර : 0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	୭୦ଟି <i>R</i> > () ຫາ 0 < α	< 1
√3 cos x − ; ඒ නයින්, √3	sin x යන්ත cos 2x – si	$R \cos (x + n 2x + 1) =$	α) ආකාර 0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	මෙහි <i>R</i> > 0)	< 7
√3 cos x – ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) = 0$	α) ආකාර 0 සමීකර	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	୭୦ଟି <i>R</i> > () ຫາ 0 < α	< 1/2
√3 cos x − ඒ නයින්, √3	sin x යන්ත cos 2x – si	$R \cos (x + 1) =$	α) ආකාර 0 සමීකර∢	ංයන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	මෙහි R > ()	< 17
√3 cos x − ; ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) =$	α) ආකාර :0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	୭୦ଟି <i>R</i> > () ຫາ 0 < α	< 1/2
√3 cos x − ඒ නයින්, √3	sin x යන්ත cos 2x – si	$R \cos (x + 1) =$	α) ආකාර 0 සමීකර∢	ංයන් පුකාශ ණය විසඳන්2	කරන්න; ෙ ත.	>⊗∂∂ R > ()	< 12
√3 cos x − ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) =$	α) ආකාර :0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ.	୭୦ଟି R > () හා 0 < α	< 1/2
√3 cos x – ඒ නයින්, √3	sin x යන්න cos 2x – si	$R\cos(x+) =$	α) ආකාර 0 සමීකර∢	ංයන් පුකාශ ණය විසඳන්ද	කරන්න; ෙ ත.	>⊗∂∂ R > ()	< 1/2
√3 cos x − ; ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x+$ n 2x + 1 =	α) ආකාර :0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; ත.	>මଟି R > () ຫາ 0 < α	< 1/2
√3 cos x − ඒ නයින්, √3	sin x යන්න cos 2x – si	$R\cos(x+) =$	α) ආකාර 0 සමීකර∢	ංයන් පුකාශ කය විසඳන්ද	කරන්න; තෙ ත.	>⊗∂∂ R > () ຫາ 0 < α	< 1/2
√3 cos x − ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) =$	α) ආකාර :0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; තෙ ත.	>මଟି R > () ຫາ 0 < α	< 1/2
√3 cos x − ඒ නයින්, √3	sin x යන්න cos 2x – si	$R\cos(x+) =$	α) ආකාර :0 සමීකර∢	ංයන් පුකාශ කය විසඳන්ද	කරන්න; තෙ ත.	>⊗∂∂ R > () ຫາ 0 < α	<
√3 cos x − ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) =$	α) ආකාර 0 සමීකර	ංයන් පුකාශ ණය විසඳන්2	කරන්න; තෙ.	>@& R > ()	
√3 cos x − ; ඒ නයින්, √3	sin x යන්න cos 2x – si	$R\cos(x+) =$	α) ආකාර :0 සමීකර∢	ංයන් පුකාශ ණය විසඳන්ද	කරන්න; ත.	>⊗∂∂ R > () ຫຼາ 0 < α	<
√3 cos x – ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + 1) =$	α) ආකාර 0 සමීකර	ංයන් පුකාශ කය විසඳන්ද	කරන්න; ත.	>⊗& R > ()	
√3 cos x − ; ඒ නයින්, √3	sin x යන්න cos 2x – si	$R \cos (x + n 2x + 1) =$	α) ආකාර :0 සමීකර∢	යෙන් පුකාශ ණය විසඳන්ද	කරන්න; ත.	>> R > () ຫຼາ 0 < α	

අ.පො.ස.(උ.පෙළ) විභාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විභාග සඳහා පුශ්න පතු වපූහය හා මූලාකෘති පුශ්න සංයුක්ත ගණිතය

B කොටස

- **11.** (a) a හා b යනු පුභින්න තාත්ත්වික සංඛාා දෙකක් යැයි ගනිමු. $x^2 + 2bx + 2ab = a^2$ සමීකරණයෙහි මූල තාත්ත්වික හා පුභින්න බව පෙන්වන්න. $a \neq 2b$ හා $a \neq 0$ ම නම් පමණක් ඉහත සමීකරණයේ මූල වන α හා β දෙකම නිශ්ශනා වන බව පෙන්වන්න. දැන් $a \neq 2b$ හා $a \neq 0$ යැයි සිතමු. $\frac{\alpha}{\beta}$ හා $\frac{\beta}{\alpha}$ ස්වකීය මූල ලෙස වූ වර්ගජ සමීකරණය සොයන්න.
 - (b) f(x) යනු මාතුය 2 ට වැඩි බහුපදයක් යැයි ද p හා q යනු පුහින්න තාත්ත්වික සංඛාා යැයි ද ගනිමු. ශේෂ පුමේයය දෙවරක් යෙදීමෙන් f(x) යන්න (x-p)(x-q) වලින් බෙදූ විට ශේෂය $\frac{f(q) - f(p)}{q-p}(x-p) + f(p)$ බව පෙන්වන්න. $g(x) = x^3 + ax^2 + bx + 1$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ. (x-2) ත් g(x) බෙදූ විට ශේෂය, (x-1) ත්

එය බෙදූ විට ලැබෙන ශේෂය මෙන් තෙගුණයක් බව (x-1)(x-2) න් g(x) බෙදූ විට ශේෂය kx + 5 වන බව ද දී ඇත; මෙහි $k \in {\rm I\!R}$ වේ. a, b හා k හි අගයන් සොයන්න.

12. (a)
$$(1+x)^2 \left(2x^2 - \frac{1}{2x}\right)^{10}$$
හි පුසාරණයේ x වලින් ස්වායත්ත පදය -15 බව පෙන්වන්න.

- (b) වෙනස් පරිසාධන වාර්තා සහිත කෙටිදුර ධාවකයන් 8 දෙනකු අතුරින් ධාවකයින් 4 දෙනකුගෙන් සමන්විත සහාය දිවීමේ කණ්ඩායමක් තෝරා ගත යුතුව ඇත. ඔවුන් අතුරින් අඩුතම දක්ෂතා පෙන්වා ඇති කීඩකයා තෝරා ගතහොත් වැඩිතම දක්ෂතා පෙන්වා ඇති කීඩකයා ද තෝරා ගනු ලැබේ. එසේ නමුත් අඩුතම දක්ෂතා පෙන්වා ඇති කීඩකයා තෝරා නොගෙන වැඩිතම දක්ෂතා පෙන්වා ඇති කීඩකයා තෝරා ගත හැකිය. මෙලෙස සාදා ගත හැකි වෙනස් සහාය දිවීමේ කණ්ඩායම් ගණන සොයන්න.
- $(c) \ r \in \mathbb{Z}^{+} \ \mbox{treps} u_{r} = \frac{2r^{2} 5}{(r+1)^{2} (r+2)^{2}} \ \mbox{treps} \ f(r) = \frac{\lambda r + \mu}{(r+1)^{2}} \ \mbox{treps} \ \mbox{treps$
- **13.** (a) $a, b, c \in \mathbb{R}$ යැයි ගනිමු. තවද $A = \begin{pmatrix} 1 & 2 & 1 \\ a & 3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & b & 1 \\ b & 1 & c \end{pmatrix}$ හා $C = \begin{pmatrix} c & 2a + c \\ 1 & b \end{pmatrix}$ යැයි ද ගනිමු. $AB^{T} = C$ වන පරිදි a, b හා c හි අගයන් සොයන්න. a, b හා c හි මෙම අගයන් සඳහා $(C^{T})^{-1}$ සොයා, **ඒ නයින්**, $C^{-1} P C^{T} = 5C$ වන පරිදි වූ P නාහසය සොයන්න.
 - (b) ධන නිඛිලමය දර්ශකයක් සඳහා වූ ද මුවාවර් පුමේයය භාවිත කරමින්, $z = \cos \theta + i \sin \theta$ නම $z^{-n} = \cos n \theta i \sin n \theta$ බව පෙන්වන්න; මෙහි $\theta \in \mathbb{R}$ හා $n \in \mathbb{Z}^+$ වේ.

 $-1+i\sqrt{3}$ හා $\sqrt{3}+i$ යන එක් එක් සංකීර්ණ සංඛාහ $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r > 0 හා $-\pi < \theta \le \pi$ වේ.

 $m, n \in \mathbb{Z}^+$ යැයි ගතිමු. $\frac{(-1+i\sqrt{3})^n}{(\sqrt{3}+i)^m} = 8$ තම් n = m+3 හා n = 4k-1 බව පෙන්වන්න; මෙහි $k \in \mathbb{Z}$ වේ.

14. (a)
$$x \neq -2$$
 සඳහා $f(x) = \frac{(x+1)}{(x+2)^2}$ යැයි ගනිමු. $f(x)$ හි වයුත්පන්නය වූ $f'(x)$ යන්න $x \neq -2$ සඳහා $f'(x) = \frac{-x}{(x+2)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.
 $x \neq -2$ සඳහා $f''(x) = \frac{2(x-1)}{(x+2)^4}$ බව දී ඇත; මෙහි $f''(x)$ මගින් $f(x)$ හි දෙවෙනි වයුත්පන්නය දක්වයි.
ස්පර්ශෝන්මුඛ, හැරුම ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් $y = f(x)$ හි පුස්තාරයේ දළ සටහනක් අදින්න.

(b) ගොඩනැගිල්ලක සිරස් බිත්තියක සිට 27 m දුරකින්, 8 m ක් උස වැටක් ඇත. රූපයේ දක්වා ඇති පරිදි, ඉණිමගක් එහි පහළ කෙළවර තිරස් පොළොව මත ඇතිව වැටට යන්තම් ඉහළින් ගොස් බිත්තිය කරා ළඟා වේ. ඉණිමගෙහි දිග y m යැයි ද ඉණිමග තිරස සමඟ සාදන කෝණය θ යැයි ද ගනිමු. y යන්න θ හි ශිතයක් ලෙස පුකාශ කරන්න.

$$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 0$$
 වන්නේ $\theta = \tan^{-1}\left(\frac{2}{3}\right)$ ම නම් පමණක් බව පෙන්වන්න.
සුදුසු පුාන්තරතුළ $\frac{\mathrm{d}y}{\mathrm{d}\theta}$ හි ලකුණ සැලකීමෙන්, කෙටිතම එවන්

ඉණිමගෙහි දිග සොයන්න.

15. (a) භින්න භාග ඇසුරෙන්
$$\frac{4}{(x-1)(x+1)^2}$$
 යන්න පුකාශ කරන්න.

ඒ නයින්,
$$\int \frac{1}{(1-e^{-x})(1+e^{x})^2} \, \mathrm{d}x$$
 සොයන්න.

(b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්
$$\int x^2 (\sin x + 2\cos x) \, \mathrm{d}x$$
 සොයන්න.

(c)
$$\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$$
 සූනුය පිහිටුවන්න.
ඒ නයින්, $\int_{0}^{\pi} \frac{x \sin x}{(2 - \sin^{2} x)} dx = \frac{\pi^{2}}{4}$ බව පෙන්වන්න.

16. A = (-1, 1) යැයි ද l යනු x + y = 7 මගින් දෙනු ලබන සරල රේඛාව යැයි ද ගනිමු.
[^] ABC = ACB = tan⁻¹(7) වන පරිදි l මත වූ B හා C ලක්ෂාවල බණ්ඩාංක සොයන්න.
[^] තවද BAC කෝණයෙහි සමච්ඡේදකය වන m හි සමීකරණය සොයන්න.
BC විෂ්කම්භයක් ලෙස වූ වෘත්තයෙහි සමීකරණය ලියා දක්වා ඒ නයින් B හා C හරහා යන ඕනෑම වෘත්තයක සමීකරණය පරාමිතියක් ඇසුරෙන් ලියා දක්වන්න.

A, B හා C ලක්ෂාය හරහා යන S වෘත්තයෙහි සමීකරණය අපෝහනය කරන්න.

S වෘත්තයේ හා m සරල රේඛාවේ ඡේදන ලක්ෂාවල ඛණ්ඩාංක ද සොයන්න.

- 17. (a) $\cos^3 x \cos 3x + \sin^3 x \sin 3x = \cos^3 2x$ බව පෙන්වන්න. ඒ නයින්, 8 ($\cos^3 x \cos 3x + \sin^3 x \sin 3x$) = 1 විසඳන්න.
 - (b) ABC යනු තිකෝණයක් යැයි ගනිමු. BC මත D හා E ලක්ෂා ගෙන ඇත්තේ BD : DE : EC = 1 : 2 : 3 වන පරිදි ය. තවද $\stackrel{\wedge}{BAD} = \alpha$, $\stackrel{\wedge}{DAE} = \beta$ හා $\stackrel{\wedge}{EAC} = \gamma$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන් $\sin(\alpha + \beta) \sin(\beta + \gamma) = 5 \sin \alpha \sin \gamma$ බව පෙන්වන්න.
 - (c) $|x| \le 1$, $|y| \le 1$ හා $|z| \le 1$ යැයි ගතිමු. $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$ නම්, $x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2} = 2xyz$ බව පෙන්වන්න.

* * *

(10) සංයුක්ත ගණිතය

II පතුය

	${f A}$ කොටස $_{2u}$ $_{2u}$	
1.	ස්කන්ධ m හා λm වූ අංශු දෙකක් සුමට තිරස් මේසයක් මත පිළිවෙළින් u හා $\frac{2u}{2}$ වේගවලින් එකිලාක	
	දෙසට චලනය වේ. ඒවායේ ස 2 ල ගැටුමෙන් අනතුරුව අංශු සමාන $\frac{u}{2}$ වේගවලින් එකිනෙකින් ඉවතට	
	චලනය වන බව දී ඇත. පුතාාගති සංගුණකය $\frac{3}{2}$ බ්වත් λ හි අගය $\frac{9}{2}$ බ්වත් ඉපන්වන්න.	0
	$5 5 \frac{3}{5} 7 \frac{3}{5} 7 \frac{9}{7}$	$\frac{1}{7}$
	5 /	
		$\frac{1}{1}$
	5 5	4
	$\frac{5}{6}mg = \frac{5}{6}mg$	5
$\frac{2u}{2}$	~	$\frac{5}{6}mg$
3	$\frac{2u}{3}$	
<u>u</u>		0
2	9	θ
$\frac{3}{25}$	7 $\frac{9}{2}$	
<u> </u>	$\frac{dt}{dt} = \sqrt{\frac{2g}{3}} = $	$\sin \theta$
	අවිතනා තන්තුවකින් නිදහසේ එල්ලෙන ස්කන්ධය $2m$ වූ අංශුවකට සම්බන්ස් $=\sqrt{\frac{2g\sin\theta}{3a}}$ dt $\sqrt{3}$	a
	කරනු ලැබේ. තන්තුව ඇදී තිබිය දී පද්ධතිස් නිශ්චලතාවයේ සිට මුදාහරිනු	
	ලැබේ. ස්කන්ධය m වූ t ඈඹුව හා ළම්ඩංය අතර සර්ෂණ සංගුණකය $\frac{u}{4}, \frac{1}{4}$ වේ. $\frac{u}{4},$	и
	තන්තුවේ ආතතිය $\frac{5}{6}mg$ බව පෙන්වන්න. $t=0$, $t=0^{+}, 4$ $\frac{u}{4}$,	$\frac{1}{4}$,
	5u $5u$ $5u$ $5u$ $5u$ $5u$ $5u$ $5u$	
	$\frac{1}{4} \qquad \begin{array}{c} t = I \\ 4 \\ 5u \\ 5u \\ t = T \end{array} \qquad \begin{array}{c} 5u \\ 4 \\ 5u \\ t = T \end{array}$	
	4	
	θ	
$\frac{d\theta}{dt} = \sqrt{\frac{2g\sin^2\theta}{3a}}$	$\frac{n\theta}{2\sigma\sin\theta}$	
u y Su	$\frac{d\sigma}{dt} = \sqrt{\frac{28 \mathrm{sm}\sigma}{3a}}$	
	<u><u>u</u></u>	
t = 0,	$4 \frac{u}{\pi},$	

අ.පො.ස.(උ.පෙළ) විභාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විභාග සඳහා පුශ්න පතු වයූහය හා මූලාකෘති පුශ්න සංයුක්ත ගණිතය

දිග $2a$ වූ සැහැල්ලු AB දණ්ඩක A හා $\stackrel{{}_{\mathcal{B}}}{B}$ දෙකෙළෙවරට පිළිවෙළින්	A 2	
ස්කන් $\overline{\mathfrak{g}}$ m හා $2m$ වූ අංශු දෙකක් සම්බන්ධ කර ඇත. දණ්ඩේ	m $\frac{3}{2}$	
C මධා ලක්ෂාය අචල ලක්ෂායකට සුමට g ලෙස අසව් කර තිරස්	<u>5 C</u>	
(රූපය බලන්න.) ශක්ති සංස්ථිති මූලධර්මය යෙදීමෙන් දණ්ඩ	B_{2m}	
තිරස සමඟ $ heta$ කෝණයක් සාදන විට එක් එක් අංශුවේ v වේගය		
$v^2 = \frac{2ga}{3}\sin\theta$ බව පෙත්වත්න.	$\frac{1}{4}$	
$\frac{5}{c}mg$		
0		
	Δ	
	U da	$\overline{2}$
$d\theta = \frac{2\pi \sin \theta}{2\pi \sin \theta}$	$\frac{dv}{dt} =$	$\sqrt{\frac{2}{2}}$
$\frac{dv}{dt} = \sqrt{\frac{2g\sin v}{3a}}$		

A හා B මෝටර් රථ දෙකක්, සෘජු මාර්ගයක සමාන්තර මංතීරු දෙක්ක0එකම දිශාවට චලනය වේ. 4 $t \neq = = 0,0$ කාලයේ දී A හා B පිළිවෙළින් u හා $\frac{u}{4}$ වේගවලින් පාලමක් පසු කර යයි. A මෝටර් රථය එම නියත u වේගයෙන්ම චලනය වන අතර B මෝටර් රථය t=T කාලයේ දී වේගය $rac{5u}{4}$ වනු හුණු නියත ත්වරණයෙන් 5 \mathfrak{V} ලනය වී පසුව එම වේගය පවත්වා ගෙන යයි. A මෝටර් රථයේ හා B මෝටර් රථයේ චලිතය සඳහා 4 . පුවේග - කාල පුස්තාරවල දළ සටහන් එකම රූපයක අඳින්න. **ඒ නයින්** B මගින් A පසුකර යැමට ගතවන කාලය නීර්ණය කිරීමට සමීකරණක් ලබා ගන්න.

අ.පො.ස.(උ.පෙළ) විභාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විභාග සඳහා පුශ්න පතු වයුහය හා මූලාකෘති පුශ්න සංයුක්ත ගණිනය -1255. ස්කන්ධය මෙටික් ටොන් 300ක් වූ දුම්රියක්, සෘජු සමතලා දුම්රිය මාර්ගයක් දිගේ 15 m s⁻¹ නියත වේගයෙන් චලනය වන අතර චලිතයට ප්රිරෝධය මෙටික් ටොන් එකකට 50 N වේ. දුම්රියේ ජවය, කිලෝ වොට්වලින් සොයන්න. ස්කන්ධය මෙටික් ටොන් 50ක් වූ පිටුපස මැදිරිය ගිලිහී යන අතර එන්ජිමේ ප්කර්ෂණ බලය නොවෙනස්ව පවතී. දුම්රියේ ඉතිරි කොටසෙහි ත්වරණය සොයන්න.

 $4i + j \cdot \lambda i + \mu j \cdot \cdot i + 5j$

6. සුපුරුදු අංකනයෙන්, O අචල මූලයක් අනුබද්ධයෙන් A, B හා C ලක්ෂා තුනක පිහිටුම් දෛශික පිළිවෙළින් $4\mathbf{i} + \mathbf{j}, \ \lambda \mathbf{i} + \mu \mathbf{j}$ හා $\mathbf{i} + 5\mathbf{j}$ වේ. මෙහි λ හා μ ධන නියත වේ. OABC චතුරසුයේ විකර්ණ දිගින් සමාන හා එකිනෙකට ලම්බ වේ. \mathbf{i} හා \mathbf{j} ඇසුරෙන් \overrightarrow{AC} ලියා දක්වන්න; අදිශ ශුණිතය භාවිතයෙන් $\lambda = 4$ හා $\mu = 3$ බව පෙන්වන්න.

1
Λ

$\tan \alpha > \mu$
$(\sin \alpha + \alpha + \alpha) \leq D \leq \alpha + \alpha$
$mg(\sin\alpha - \mu\cos\alpha) \le P \le mg$

7. 3 <i>i</i> +4 <i>j</i>	කුඩා සැහැල්ලු සුමට P මුදුවක් තුළින් යන දිග $2a$ හා බර W වූ සුමට ඒකාකාර AB දණ්ඩක් එහි A කෙළෙවර සුමට තිරස් ගෙබිමක් මත ද අනෙක් B කෙළෙවර සුමට සිරස් බිත්තියක් ස්පර්ශ වෙමින් ද තිබේ. තිරසට 60° ක කෝණයක් සාදමින් බිත්තියට් ලම්බ සිරස් තලයක දණ්ඩ සමතුලිතතාවේ තබනු ලැබ ඇත්තේ මුදුව රූපයෙහි පෙන්වා ඇති පරිදි වූ O ලක්ෂායට යා ක්රින සැහැල්ලු අවිතනා තන්තුවක් මගිනි. $O\hat{P}A = 90^\circ$ බව පෙන්වා තන්තුවේ ආතතිය \hat{g} ර්ණය කිරිුමට සුමාණවත් සමීකරණ ලියා දක්වන්න.
-	λ $\frac{a}{2}$
	2
	$\tan \alpha > \mu$ μ
	$mg(\sin\alpha - \mu\cos\alpha) \le P \le mg(\sin\alpha + \mu\cos\alpha)$
_	60°
Ω	Ω
	$O\hat{P}A = 90^{\circ}$
	$\frac{a}{2}$
8 . tan d	$lpha$ ස්කන්ධය m වූ අංශුවක් තිරසට $lpha$ කෝණයකින් ආනත රළු තලයක් මත තබා ඇත. මෙහි μ (< tan $lpha$) $\alpha > \mu$ μ යනු අංශුව හා තලය අතර ඝර්ෂණ සංගුණකය වේ. අංශුව සමතුලිතතාවේ රඳවා ඇත්තේ තලයේ උපරිම බෑවුම් රේඛාව දිගේ උඩු අතට අංශුවට යෙදූ P බලයක් මගිනි. $mg(\sin \alpha - \mu \cos \alpha) \le P \le mg(\sin \alpha + \mu \cos \alpha)$ බව පෙන්වන්න.

ස්ඛතීය මහණත් හය මත 1 $'$	7315	·	ත-ඹර- සබ්බත කර	5
සවකය මුහුණත හය මත 1, 2 කැටයක් වැඩි තරමින් විසිකිරී	2, 3, 4, 3 හා 6 ලෙස තත ම තුනකදී ලබාගත් මුලු සි	ලකුණු කොට ඇත නො? බත් ගණන හරියටම හයක්	නැඹුරු සමමත දාදු වීමේ සම්භාවිතාව))
භොයන්න.				
			 01	$\hat{P}A = 90^{\circ}$
				11-90
		$\tan \alpha > \mu$	μ	
		$mg(\sin \alpha - \mu)$	$u\cos\alpha) \le P \le mg$	$r(\sin \alpha + \mu c)$
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ායා හතෙහි මධාෘතය හා මං සංඛාය හතෙහි විචලතාව	ාතය සමාන වේ. මෙහි <i>a</i> හ 5_ බව පෙන්වන්න.	ා <i>b</i> යනු ධන නිබිල)
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ායා හතෙහි මධායනය හා මං සංඛායා හතෙහි විචලතාව – – –	ාතය සමාන වේ. මෙහි a හ 5 බව පෙන්වන්න. 7	ා <i>b</i> යනු ධන නිබිල)
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)හා හතෙහි මධානය හා මං සංඛාහ හතෙහි විචලතාව – ද	ාතය සමාන වේ. මෙහි <i>a</i> හ 5– බව පෙන්වන්න. 7	ා <i>b</i> යනු ධන නිබල	
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව – ද	ාතය සමාන වේ. මෙහි <i>a</i> හ <u>6</u> බව පෙන්වන්න. 7	ා <i>b</i> යනු ධන නිබිල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව (ද	ාතය සමාන වේ. මෙහි <i>a</i> හ <u>6</u> බව පෙන්වන්න. 7	ා <i>b</i> යනු ධන නිබිල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)හා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව (ාතය සමාන වේ. මෙහි <i>a</i> හ <u>6</u> බව පෙන්වන්න. 7	ා <i>b</i> යනු ධන නිබිල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)හා හතෙහි මධානය හා මා සංඛාහ හතෙහි විචලතාව (ාතය සමාන වේ. මෙහි a හ <u>රි</u> බව පෙත්වත්න. 7	ා b යනු ධන නිබිල)
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)හා හතෙහි මධානය හා මා සංඛාහ හතෙහි විචලතාව – –	ාතය සමාන වේ. මෙහි a හ 5 බව පෙන්වන්න. 7	ා b යනු ධන නිබිල)
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)හා හතෙහි මධානය හා මා සංඛාා හතෙහි විචලතාව – –	ාතය සමාන වේ. මෙහි a හ <u>6</u> බව පෙත්වත්න. 7	ා <i>b</i> යනු ධන නිබිල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව – ද	ාතය සමාන වේ. මෙහි a හ <u>5</u> බව පෙත්වත්ත. 7	o b යනු ධන නිබිල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව – ද	ාතය සමාන වේ. මෙහි a හ 5 බව පෙන්වන්න.	ා <i>b</i> යනු ධන නිබල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව (ාතය සමාන වේ. මෙහි a හ 5 බව පෙන්වන්න.	ා <i>b</i> යනු ධන නිබිල	
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)හා හතෙහි මධානය හා මා සංඛාහ හතෙහි විචලතාව (ාතය සමාන වේ. මෙහි <i>a</i> හ <u>5</u> බව පෙන්වන්න.	ා b යනු ධන නිබිල	
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මා සංඛාා හතෙහි විචලතාව - 	ාතය සමාන වේ. මෙහි a හ 5 බව පෙත්වත්ත.	o b යනු ධන නිබිල)
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව (ාතය සමාන වේ. මෙහි a හ <u>6</u> බව පෙන්වන්න.	o b යනු ධන නිබිල	3
a, b, 4, 5, 7, 4 හා 5 යන සංඛ වේ. a හා b හි අගයන් සොයා)ා හතෙහි මධානය හා මං සංඛාා හතෙහි විචලතාව (ාතය සමාන වේ. මෙහි <i>a</i> හ <u>5</u> බව පෙන්වන්න.	o b යනු ධන නිබල	

අ.පො.ස.(උ.පෙළ) විහාගය 2019 සහ ඉන් පසුව පැවැත්වෙන විහාග සඳහා පුශ්න පතු වපූහය හා මූලාකෘති පුශ්න සංයුක්ත ගණිතය -128-

දැන් මෙම පිහිටුමේදී අංශුව කූඤ්ඤයට ඇලේ යැයි සිතන්න. ඇලුන අංශුව සහිත කූඤ්ඤය අතිරේක dදුරක් චලනය වීම සඳහා ගන්නා කාලය සොයන්න. $B\hat{A}C = rac{\pi}{3}$ AB = a

(b) ස්කන්ධය m වූ P පබළුවක්, සිරස් තලයක සවිකර ඇති අරය a හාhetaකේන්දුය O වූ වීං**ත්බි දින්ට් සුගා හි**heta. කම්බියක් දිගේ චලනය වීමට නිදහස් ය. කම්බියේ ඉහළම A ලක්ෂායෙහි දී පබළුව අුල්වා තබා, යන්තමින් විස්ථාපිත පිහිටුමකින් නිශ්චලතාවේ සිට මුදා හරිනු ලැබේ.

OP යන්න heta කෝණයකින් හැරී ඇති විට, පබළුවේ වේගheta වන v යන්න, $v^2=2ga(1-\cos heta)$. මගින් දෙනු ලබන බව පෙන්වන්න.

පහළම ලක්ෂාය වන B වෙත ළඟා වීමේදී පබළුවේ වේගය සොයන්න.

B ලක්ෂාය වෙත P ළඟheta වන විට, එය $extsf{b} = 32$ හිංග්heta තිබූ ස්කන්ධය m වූ වෙනත් පබළුවක් සමඟ ගැටී හාවී Q සංයුක්ත් පබටටයා $\cos\theta = \frac{\pi}{3}$ නිශ්චලතාවයට පැමිණෙන බව පෙන්වන්ත. $\cos\theta = \frac{2}{3}$ සමඟ ගැටී හාවී Q සංයුක්තී පබළුවක් සාදයි. $\frac{2}{2} \overline{O} \partial \mathcal{G}$ ස්හිති හැරී ඇති විට Q ක්ෂණික $\cos \theta = \frac{1}{2} \frac{1}{2$

$$\begin{array}{c} x+\omega(x-2a)=0, \qquad x+\omega(a) \\ a (3) \qquad \text{downlow for } (a), (a) \\ a (4) \qquad \text{downlow for } (a), (a) \\ a (4) \\ a (5) \\ a$$

මෙහි ${f i}$ හා ${f j}$ මගින් පිළිවෙළින් Ox හා Oy ඛණ්ඩාංක අක්ෂවල ධන දිශාවලට ඒකක දෛශික වන අතර F, a යනු පිළිවෙළින් නිව්ටන් හා මීටරවලින් මනිනු ලැබූ ධන රාශි වේ. මෙම බල තනි රූප සටහනක සලකුණු කර, ඒවායේ දෛශික ඓකාය ශුනා වන බව පෙන්වන්න. $x\mathbf{i}+y\mathbf{j}$ පිහිටුම් දෛශිකය සහිත P ලක්ෂායක් වටා පද්ධතියේ වාමාවර්ත සූර්ණය G සොයා, එය x හා y වලින් ස්වායත්ත වන බව පෙන්වන්න.

ඒ නයින් පද්ධතිය යුග්මයකට තුලා බව පෙන්වා මෙම යුග්මයේ ඝූර්ණය සොයන්න.

දැන් $X\mathbf{i} + Y\mathbf{j}$ අතිරේක බලයක්, $\mathbf{d} = -\frac{5a}{2}\mathbf{i}$, පිහිටුම් දෛශිකය සහිත D ලක්ෂායෙහි දී යොදා ගනු ලබන්නේ A, B, C හා D ලක්ෂාවලදී කියාකරන බල හතරේ සම්යුක්තය O මූලය හරහා යන පරිදි ය. X හා Yහි අගයන් සොයන්න.

15A(E)=ABC==Ba = 2a හා ED =EDD==-CD මන්ඩ්ක්කු දිගක බර w වූ ඒකාකාර දඩුවලින් නිදහස් ලෙස සන්ධි කළ ABCDE පංචාසුයක ආකාරයේ රාමුවක් රූපයේ දැක්වේ. A, B හා Dශීර්ෂවල කෝණ එක එකක් 120 $^\circ$ වේ. AB හි මධාා ලක්ෂායෙන් රාමුව සමතුලිතව එල්වා සමමිතික හැඩය පවත්වා ගනු ලබන්නේ $\stackrel{-}{C}$ හා E සන්ධි යා කරන දිග $2b\sqrt{3}$ වන සැහැල්ලු දණ්ඩක් මගිනි. D සන්ධියේ පුතිකිුයාවෙහි-විශාලත්වය $b\sqrt{3}w$ බව $b\sqrt{3}w$ $20^{0} \, 120^{0}_{120^{0}} \, 120^{0}_{120^{0}} \, CE$ සැහැල්ලු දණ්ඩේ තෙරපුම සොයන්න.

 $120^{\circ}_{AB} = CD 120^{\circ}_{a}$ C C(b)BCABDAG, GD, DA DBDBA a (හැල්ලු දඩු ඒවායේ කෙළෙවරවලින් නිදහසේ 120° AB = CD = 3a E4a සන්ධි කරන ලද චලනය කළ හැකි A සන්ධිය වටා Fසිරස් තලයක රාමු DB = 4aD සැකිල්ලක් රූපයේ දැක්වේ. මෙහි $AB = CD_{AB} \underline{3}a_{CD}B\underline{C}_{\overline{3}a} DA = 5 \mu 2 \omega^0$ D $\dot{M}_{DA} = 5 dB = 4 a B B = 4 a$. C සන්ධියේ W බරක් එල්වා එය AB හා DC තිරස්ව ද BDසිරස් $I\!\!\!\mathcal{D}$ ද $t\!\!\!\mathcal{D}$ මතුලිතව තබා ගනු ලබන්නේ D සන්ධිය හිදී CD දිගේ Pතිරස් බලයක් මගිනි. Wඇසුරින් P සොයන්න.

කේන්දුයේ පිහිටීම සොයන්න.

A 3a В

 t^A B 3m h 6. B අනුකලනය මගින්, එකිනෙකට h දුරකින් වූ අරය r හා $\lambda r (\lambda > 1)$ වූ වෘත්තාකාර ගැටි ${}^{m d} {}^{m d} {}^{m d}$ කකින් යුත් ඒකාකාර වූ කුහර සෘජු වෘත්තැකා හි කිබ්බා සින්නකයක ගුරුත්ව කේන්දය, කඩා ගැටියේ කේන්දයේ $\frac{4}{2\lambda+1}$ සිට $\frac{h}{3}\left(\frac{2\lambda+1}{\lambda+1}\right)$ දුරකින් ඇති බව (සන්ධන්න. $r(\lambda>1)$ අරය a හා පාස්ධික සනානවය σ වූ තුනී ඒකාකාර වෘත්තාකාර තැටියක හැටිය, අරයශ්න a හා 5a වූ වෘත්තාකාර ගැටි සහිත එම σ පෘෂ්ඨික 0<u>,</u> 5a 3a ස ${f y}$ ත්වයම ඇති හිස් සෘජු වෘත්තාකාර කේතුවක උස 3a වූ ජින්නකයකා $_a$ කුසිා ගැටියට පැස්සීමෙන් ද, දිග 4a හා රේඛීය ඝනත්වය ho වූ තුනී $_{\overline{A}}$ 3a ඒකාකාර AB දණ්ඩක් ජින්නකයේ ලොකු ගැටියට O,A හා B ඉදුක්ෂා ඒක රේඛීය වන පරිදි රූපයේ දැක්වෙන ඇසුරින් පෑස්සීමෙන් ද ස<mark>ැ</mark>ස්පානක් සාදා ඇත. සාස්පානෙහි ගුරුත්ව

 $rac{
ho}{\sigma} < rac{31}{24} \, \pi a$ නම්, තිරස් මේසයක් මත ස්වකීය පතුල ස්පර්ශ වන පරිදි තැබූ විට සාස්පාන සමතුලිතව පැවතිය හැකි බව පෙන්වන්න.

 $ho=\pi a\sigma$ බව දී ඇත. සාස්පාන, B කෙළවරෙන් නිදහසේ එල්ලා ඇති විට BA යටි අත් සිරස සමඟ සාදන කෝණය ද සොයන්න.

 $\lambda r($

4E = B0

DB = 4a

C

 120°

D

R

30

120

BC = DA⊉⊕5a

5aDB = 4a

CW

D 120° 17.(a) පෙට්ටියක, පාටින් හැර අන් සෑම අයුරකින් ම සමාන වූ රතු බෝල 6ක්, කොළ බෝල 3ක් හා නිල්බෝල 3ක් අඩංගු වේ. සසම්භාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. බෝලය නිල් එකක් වීමේ සම්භාවිතාව සොයන්න. ඉවතට ගත් බෝලය කොළ හෝ රතු නම් අමතර රතු බෝලයක් හා අමතර නිල් බෝලයක් මුල් බෝලය සමඟම පෙට්ටියට එකතු කරනු ලැබේ. ඉවතට ගත් බෝලය නිල් නම් පුතිස්ථාපනයක් නොමැත. දැන්, සසම්භාවී ලෙස දෙවන බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. ඉවතට ගත් දෙවන බෝලය නිල් එකක් වීමේ සම්භාවිතාව කුමක් ද?

ඉවතට ගත් දෙවන බෝලය නිල් එකක් බව දී ඇති විට, ඉවතට ගත් පළමු බෝලය නිල් එකක් වීමේ සම්භාවිතාව සොයන්න.

(b) සිසුන් 100 ක් විභාගයකදී ලබා ගත් ලකුණු පහත වගුවේ දී ඇත.

ලකුණු	5 - 19	20 - 34	35 - 49	50 - 64	65 - 79	80 - 94
මධා ලකුණ (x,)	12	27	42	57	72	87
සංඛාාතය (f_i)	10	20	30	15	15	10

 (x_i) (f_i)

 $y_i = rac{1}{15} (x_i - 42)$, පරිණාමනය භාවිතයෙන් මෙම ලකුණු වාහප්තියේ මධානාය සහ විචලතාව

නිමානය කරන්න.

තවත් සිසුන් 100 ක් එම විභාගයටම ලබාගත් ලකුණුවල මධානාය සහ විචලතාව පිළිවෙළින් 40 හා 15 වේ. මුළු සිසුන් 200 ම මෙම විභාගය සඳහා ලබාගත් ලකුණුවල මධානාය හා විචලතාව නිමානය කරන්න.

* *