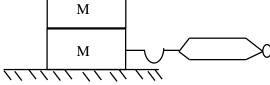
1	51	1	7 -	÷
	節	杰	-Hut	1
	詢	12	1	5
	城	T	6	
	1	7.00	24	S.,,
C	Jan .	Z	mi	a)

JAFFNA HINDU COLLEGE

First Term Exam - 2023

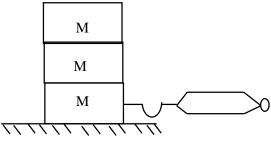

Graue	- 10		Science	Time: - 2 Hours
Name/I	ndex No:			
			Part - I	
In each o correct o	r most approp	1 to 30, pick one o priate.		2), (3), (4) which you consider i n the answer sheet provided.
		amentals of force.		
1. K	Kgms ⁻¹	2. Kgms	3. Kgms ⁻²	4. N
	h is not a unicel	lular organism?		
1. Y 2. A	'east Amoeba		 Chlamydomonas Mushroom 	
	oup of elements i), N, C, H	in ascending order of 1 2. H, N, C, O	mass in the human body. 3. N, H, C, O	4. C, H, O, N
	· · ·		which of the following is a	
1. C	Hucose	2. Fructose	3. Galactose	4. Sucrose
05) The f	orm in which ca	rbohydrate is stored ir	n the animal body as food.	
1. C	Cellulose	2. Glycogen	3. Starch	4. Chitin
06) What	is the momentu	m of a motor vehicle of	of mass 1250Kg traveling a	t a uniform velocity of 4ms ⁻¹ ?
1. 4	000Kgms ⁻¹	2. 1250Kgms ⁻¹	3. 6000Kms ⁻¹	4. 5000Kgms ⁻¹
A B	Always foundAlways found	ng statements related to d against the applied fo d opposite to the direc is applied to an objec	orce. tion of motion.	nly a frictional force is produced.
١	Which of the abo	ove statements are corr	rect?	
1. A	, B	2. B, C	3. A, C	4. A, B, C
✤ An el	ement is symbol	lized as $^{27}_{13}X$ Answer q	uestion 8: 9 with this.	
	ncy of X			

1.	3, III	Dup of element X respective 2. 2, III	3. 13, III	4.3,
10) Wł 1.		ntist revised and publisl	hed Rutherford's planetar 2. Niels Bohr	ry model?
3	John Dalton		4. Mendeleev	
11) Ne	wton's third lav	w is unrelated to phenom	nena,	
1.	Passengers mo	oving forward while a ru	unning bus is using the bi	rake.
2.	Motion of a ro	ocket.		
3.	Swimming.			
4.	-	g a ball at a wall, the ba	ll returns.	
12) Vit	tamin and mine	ral essential for blood c	lotting respectively.	
	Vit A, Ca	2. Vit K, Ca	3. Vit C, Fe	4. Vit D, Ca
		21 111, 04		
13) Th	e most correct	statement of motion 3	f the displacement of a	S(m) n object varies ▲
	th time shown h		in the displacement of al	
			2 Uniform decel	
	Uniform veloc	•	2. Uniform decele	eration
3	Uniform accel	leration	4. Rest	t
			•	f 4ms ⁻¹ what is the magnitude of istance)
ext			eglect friction and air res 3. 150N	-
ext 1.	ternal force gene 600N	erated by its engine. (No	eglect friction and air res	istance)
ext 1. 15) Co	ternal force gene 600N onsider the follo	erated by its engine. (No 2. ON	eglect friction and air rest 3. 150N	istance)
ext 1. 15) Co A)	ternal force gene 600N onsider the follow Neutrons are f In atoms, the	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is	eglect friction and air rest 3. 150N ements.	istance)
ext 1. 15) Co A) B)	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec	erated by its engine. (No 2. ON wing statements. Yound in all atoms of ele number of protons is ctrons.	eglect friction and air rest 3. 150N ements. always equal to the num	istance) 4. 450N mber of protons is always equal to
ext 1. 15) Co A) B)	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number o	eglect friction and air rest 3. 150N ements. always equal to the num	istance) 4. 450N
ext 1. 15) Co A) B) C)	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff	erated by its engine. (No 2. ON wing statements. Yound in all atoms of ele number of protons is ctrons.	eglect friction and air rest 3. 150N ements. always equal to the num	istance) 4. 450N mber of protons is always equal to
ext 1. 15) Co A) B) C) 1. 16) If a	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C	istance) 4. 450N mber of protons is always equal to ne same element) isotopes appear.
ext 1. 15) Co A) B) C) 1. 16) If a the	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of t	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is,	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon	istance) 4. 450N mber of protons is always equal to he same element) isotopes appear. 4. A, B, C hds completely cross a bridge 75m lo
ext 1. 15) Co A) B) C) 1. 16) If a the	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C	istance) 4. 450N mber of protons is always equal to he same element) isotopes appear. 4. A, B, C
ext 1. 15) Co A) B) C) 1. 16) If a the 1.	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of the 144m	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is,	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon 3. 180m	istance) 4. 450N mber of protons is always equal to he same element) isotopes appear. 4. A, B, C hds completely cross a bridge 75m lo
ext 1. 15) Co A) B) C) 1. 16) If a the 1. 17) WF	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of t 144m hat is the mass of	erated by its engine. (No 2. ON wing statements. found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is, 2. 219m of an object of mass 60k	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon 3. 180m	istance) 4. 450N mber of protons is always equal to he same element) isotopes appear. 4. A, B, C hds completely cross a bridge 75m lo
ext 1. 15) Cor A) B) C) 1. 16) If a the 1. 17) Wr (Gr	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of the 144m hat is the mass of ravitational acce	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is, 2. 219m of an object of mass 60k eleration on Earth is 10k	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon 3. 180m	istance) 4. 450N mber of protons is always equal to ne same element) isotopes appear. 4. A, B, C nds completely cross a bridge 75m lo 4. 69m
ext 1. 15) Co A) B) C) 1. 16) If a the 1. 17) WF (Gr of t	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of the 144m hat is the mass of ravitational acce	erated by its engine. (No 2. ON wing statements. found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is, 2. 219m of an object of mass 60k	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon 3. 180m	istance) 4. 450N mber of protons is always equal to ne same element) isotopes appear. 4. A, B, C nds completely cross a bridge 75m lo 4. 69m
ext 1. 15) Co A) B) C) 1. 16) If a the 1. 17) WF (Gri 0 ft 1.	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of the 144m hat is the mass of ravitational acce the Earth's grav 600N	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is, 2. 219m of an object of mass 60k eleration on Earth is 10k vitational acceleration.) 2. 10Kg	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon 3. 180m ag on the moon? ms ⁻² , assume that the grav	istance) 4. 450N mber of protons is always equal to ne same element) isotopes appear. 4. A, B, C nds completely cross a bridge 75m lo 4. 69m vitational acceleration on the moon is 4. 100N
ext 1. 15) Co A) B) C) 1. 16) If a the 1. 17) WF (Gr of t 1. 18) WF	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of the 144m hat is the mass of ravitational acce the Earth's grav 600N	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is, 2. 219m of an object of mass 60k eleration on Earth is 10k vitational acceleration.) 2. 10Kg	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of the 3. B, C of $8ms^{-1}$ takes 18 secon 3. 180m ag on the moon? ms^{-2} , assume that the grav 3. 60Kg at is not bounded by a me	istance) 4. 450N mber of protons is always equal to ne same element) isotopes appear. 4. A, B, C nds completely cross a bridge 75m lo 4. 69m vitational acceleration on the moon is 4. 100N
ext 1. 15) Co A) B) C) 1. 16) If a the 1. 17) WF (Gr of 1 1. 18) WF 1.	ternal force gene 600N onsider the follow Neutrons are f In atoms, the number of elec Due to the diff Correct statem A a train traveling en the length of the 144m hat is the mass of ravitational acco the Earth's grav 600N hich of the follo	erated by its engine. (No 2. ON wing statements. Found in all atoms of ele number of protons is ctrons. ference in the number of nent / statements. 2. A, B g with a uniform speed the train is, 2. 219m of an object of mass 60k eleration on Earth is 10k vitational acceleration.) 2. 10Kg	eglect friction and air rest 3. 150N ements. always equal to the num f neutrons (in atoms of th 3. B, C of 8ms ⁻¹ takes 18 secon 3. 180m ag on the moon? ms ⁻² , assume that the grav 3. 60Kg	istance) 4. 450N mber of protons is always equal to ne same element) isotopes appear. 4. A, B, C nds completely cross a bridge 75m lo 4. 69m vitational acceleration on the moon is 4. 100N embrane?

	Cl, Na	element) 2. F, K	3. F, He	4. K, He	
1.	C1, 11a	2. I , IX	5.1,110	T. IX, IIC	
		~ ~	vooden block of mass 2K force and its magnitude	Ig as shown in the figure, if the wor	odeı
DI		$2 \text{Kg} \rightarrow 12$	Torce and its magnitude		
1	Limitin a fri		2. Statia friction	al forma 12N	
	-	ctional force, 10N ctional force, 12N	 Static friction Static friction 		
	ne chemical for nosphate of M ⁴		e of an element M is MC	CO_3 , what is the chemical formula of	of th
1.	MPO ₄	2. M ₃ Po ₄	3. M ₃ (Po ₄) ₂	4. M(Po ₄) ₂	
22) A	water retainin	g compound found in p	lant leaves.		
	Suberin	2. Cutin	3. Lignin	4. Pectin	
A. B.	Spots in the Pin – like bl Dry skin.	listers on knees, elbows			
	1. Trotein				
		vdrate food	4. Oily food.		
A. B.	3 Carbohy ne properties o It has allotro It has high n	of an element are as follo opes and isotopes.	ows.		
А. В. С.	3 Carbohy ne properties o It has allotro It has high n	of an element are as follo opes and isotopes. nelting point. ature of absorbing toxic	ows.		
A. B. C. Tł	3 Carbohy ne properties o It has allotro It has high n It has the na	of an element are as follo opes and isotopes. nelting point. ature of absorbing toxic	ows.	4. N	
A. B. C. Th 1 26) A	3 Carbohy ne properties o It has allotro It has high n It has the na nis could be th I. C metal that doe	of an element are as follo opes and isotopes. melting point. ature of absorbing toxic e element of 2. Na es not react with Coldwa	ows. gases. 3. Si ater but reacts with hot v	vater.	
A. B. C. Th 1 26) A	3 Carbohy ne properties o It has allotro It has high n It has the na nis could be th	of an element are as follo opes and isotopes. nelting point. ature of absorbing toxic the element of 2. Na	ows. gases. 3. Si		
A. B. C. Th 1 26) A 1. 27) St A. B. C.	 3 Carbohy ne properties o It has allotro It has high n It has the na nis could be th C metal that doe Na atement about Always grea Equal to dis Less than di 	of an element are as follo opes and isotopes. nelting point. ature of absorbing toxic e element of 2. Na es not react with Coldwa 2. K t the displacement of an ater than distance. tance.	ows. gases. 3. Si ater but reacts with hot v 3. Mg object are always true.	vater.	

28) Not an example for the	a non crystalling form	of silicon		
1. Clay	2. Thiruvanaikkal	3. Sand	4. Gem	
29) Which of the followin1. Al₂O₃	ng oxide is a basic oxide? 2. K ₂ O	3. SO ₂	4. Cl ₂ O ₇	
30) What is the magnitud smooth horizontal sur	-	o produce an a	cceleration of 4ms ⁻² on an object of	80N on a
1. 320N	2. 80N	3. ON	4. 32N (30×1=3	30 Marks)
		Part - II		
✤ Part II consists part II	A and part II B.			
-	tions in part A, in the space	ce provided.		
_	s in part B answer two qu	_		
	part A and the answer scri		gether and hand over.	
	Part -	– II A]	
01. The chemical substa	inces that make up the	body of the	organisms can be classified into	two main
	bio – organic compounds	•	-	
A.		-		
I. Give 4 types of bio	o – organic compounds,			
				••••
				(2Marks)
II. The structural unit	of one of the above bio -	- organic comp	ound is shown below.	
	P			
		ר		
	$Q \xrightarrow{R}$			
a. Name the structur	al unit shown above figu	re.		
				(1) (1)
				(1 Marks)
	onents P, Q and R here.			
Р	Q		R	•••••
				(3 Marks)
III. Give 2 functions question II	of the polymer formed	by the combi	nation of components shown in the	e figure I
-				
				(2 Marks)

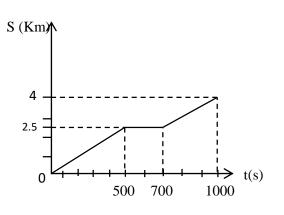
- B. Complete the following chart. I. Component Elements that make up Reagent Observation Glucose Protein C, H, O, N (S) Sudan III $(8 \times 1/2 = 4 \text{ Marks})$ II. Give 2 Unique properties of water that contribute to the survival of living organisms. (2 Marks) III. What is the colour of dry cobalt chloride paper? (1 Marks) 02. An activity related to friction carried out by a group of student in the laboratory is given. Μ М תוולו הדדר הדר לה החו $\overline{77}$ Sand paper Wooden plank Μ



Wooden plank

Glass plate

Wooden plank


A.

I. Give the 3 types of frictional force.

(3 Marks)

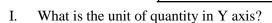
Set up A		
Set up Y:		
		(2 Marks
III. What is the instrumen	t used in these experimental setups to measure force?	
		(1 Marks
IV. Give the observation i	n setup X.	
		(1 Marks
V. Give the observation i	n setup Y.	
VI. Give 2 instances in da	ily life where the frictional force is increased?	
VI. Give 2 instances in da	ily life where the frictional force is increased?	
VI. Give 2 instances in da	ily life where the frictional force is increased?	(2 Marks
	ily life where the frictional force is increased?	(2 Marks
Give the elements that hav a- Dyeing denim fabrics	ve the following properties / applications.	(2 Marks)
Give the elements that hav a- Dyeing denim fabrics b- Production of solar cell	ve the following properties / applications. 	
Give the elements that hav a- Dyeing denim fabrics b- Production of solar cell c- High ionization energy	ve the following properties / applications.	
Give the elements that hav a- Dyeing denim fabrics b- Production of solar cell	ve the following properties / applications. 	······
Give the elements that hav a- Dyeing denim fabrics b- Production of solar cell c- High ionization energy	ve the following properties / applications. ls in 3 rd period	· · · · · · · · · · · · · · · · · · ·

- ✤ Answer only two question from the questions No. 3, 4 and 5.
 - 03. The time varying rate of displacement for Maaran's motion from his home to the shop on a straight line for shopping is given in the figure. Maaran met his friend Ravi in the middle of the Journey and continued his journey towards the shop after having a conversation.

Α.

- I. How far from home did he meet his friend?
- II. What is the time span of meeting a friend?
- III. What is the speed at which he traveled till he met his friend? (in ms⁻¹)
- IV. How long would he have reached the shop if he had not met his friend?
- V. What is the velocity at which Maaran must have traveled after meeting his friend if he wants to reach the shop by the given time in question IV?
- VI. How far is the shop from the house?

6

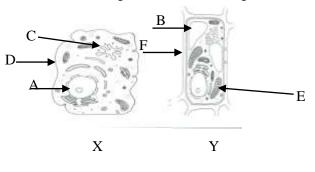

- B. Maaran was traveling with a friend in a bicycle while returning home from the shop along the same route. In the first 20 seconds after starting the journey from the shop, they reached the highest velocity with a uniform acceleration of 0.2ms⁻². Then they traveled the certain distance at the same velocity and decelerated for the last 30 second before coming to rest in front of the house.
 - I. What is the maximum velocity attained by the bicycle?
 - II. Draw the velocity time graph for this motion.
 - III. What is the total time taken for the journey?
 - IV. If the is total mass of both of them along with the bicycle is 300Kg, what is the momentum in case of traveling at constant velocity?

(20 Marks)

04.

A. The graph below shows how the first ionization energy of some element belonging to the 2nd and 3rd periods varies with atomic number.

Atomic number



II. Give 2 pair of element in the same group.

First ionization energy

- III. Which element forms amphoteric oxide?
- IV. Give the electronic configuration of element R.
- V. What is the formula for the combination of D and J?
- VI. Select the element having the following properties from the graph above.
 - a. Super cooling agent in liquid form.
 - b. Vulcanization of rubber.
 - c. High electronegativity among the first 20 elements.
- B. A car of mass 1250Kg traveling with a velocity of 5ms⁻¹ suddenly applies a brake and comes to rest for 10 seconds.
 - I. Calculate the acceleration of the car.
 - II. What is the magnitude of the force applied against the motion when the brake is applied?
 - III. Write the law you used to answer the question.

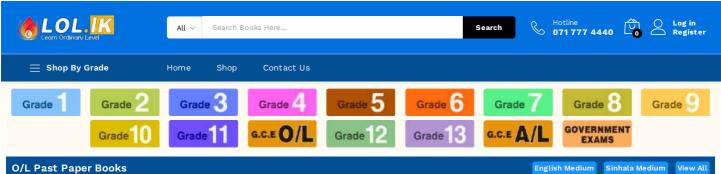
A. Picture of two generalized cells are given below.

Grade: 10

Science

(30 Marks)

Identify the cell X and Y.


- I. Name the part A to F.
- II. Name 2 scientists who proposed the cell theory.
- III. Tabulate 2 differences between X and Y.
- IV. Give one function of each of the give parts.
 - a- A
 - b- C
 - c- E
- V. What are the 2 main types of cell division?
- VI. Which is the type of cell division in which chromosome number is kept constant?

B.

- I. What are the main elements that make up carbohydrates?
- II. Give 2 function of DNA.
- III. In which solvents do lipids dissolve?
- IV. Give 2 special properties of water as one of the biological molecules.

(20 Marks)

O/L Past Paper Books

O/L English language Past Paper Book – Master Guide රු 900.00

or 3 X ರ್**300.00** with **mintpay**

O/L Sinhala Language Past Paper Book – Master Guide රු 850.00 or 3 X of 283.33 with wintpay

ALOL.

071 777 4440 @ est s

Dal

O/L History Past Paper Book - Master Guide රු 900.00 or 3 X ರ್**300.00** with **mintpay**

ลิตายน

LOL.

gula ogu TZImulá

O/L Mathematics Past Paper Book - Master Guide රු 850.00

or 3 X of 283.33 with wintpay

O/L Science Past Paper Book - Master Guide රු 850.00 or 3 X ರ್**283.33** with **mintpay**

O/L Second Language Tamil Past Paper Book – Master Guide රු 700.00 or 3 X ഗ്**233.33** with **ശ്രിദ്യാ**ം

O/L Second Language Sinhala Past Paper Book – Master Guide රු 800.00 or 3 X **്വ266.67** with **ക്രിറ്റാ**

O/L Design And Mechanical Technology Past Paper Book -Master Guide රු 650.00 or 3 X of 216.67 with wintpay

DELT

O/L Buddhism Past Paper Book – Master Guide

071 777 4440 @ over snet? miles will milet