
8). $P Q S$ is an equilateral triangle. Find $Q \hat{R} S$.

9). The diagram shows sketches of three rectangular faces of a triangular $\underset{25 \mathrm{~cm}}{\text { prism }}$

Draw a rough sketch of the triangular face with correct measurements.
10). In the straight line find
i). gradient
ii). Intercept.

11). Write the two smallest integers satisfying the inequality $5-3 x<8$..
12). Find x.

13). $5 x-2 y=2$
$3 x+2 y=2$ Write the suitable value for x in the given simultaneous equation.
14). $A B$ is a vertical wall of a building and A is represented by an upper point and B is represented by a point on the ground. An observer who is at A, sees a point T which is situated 12 m away from B with an angle of depression 28^{0}. Represent it on the diagram.

15). There are 12 elements in the sample space of a certain random experiment and the ability of happening the event A is $\mathrm{P}(\mathrm{A})=\frac{3}{4}$. Find the number of elements of the event A .
16). $a, 48,144$ are three adjacent terms of a geometric progression. Find "a".
17). According to the data find the length of $A B .$.

18). If $A=\left[\begin{array}{ll}5 & 1 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. In the matrix $A \times B$ write
i). the order of matrix,
ii). the number of elements.
19). The first quartile and the interquartile range of a distribution containing 15 scores written in ascending order are 23 and 4 respectively. Put a tick $(\sqrt{ })$ or $\operatorname{cross}(x)$ in front of each of the following statement according to its validity.
i). The third quartile is 19.
()
ii). The $12^{\text {th }}$ score from the left end of the distribution represents the $3^{\text {rd }}$ quartile .
iii). There are only 4 scores between the first and the third quartile.
20). Kamal borrowed a certain amount under the simple interest method at the rate of 12% annual interest rate for two years and paid Rs, 8400 as interest for two years. Hence find the amount that he borrowed.
21). A, B and C lie on the circle of centre O.. $O P \perp A C$. Write two relations between $O P$ and $B C$

22). The area of the curved part of a cylinder of base radius 7 cm is $220 \mathrm{~cm}^{2}$. Find the height of the cylinder(The area of the curved part of a cylinder is $2 \pi \mathrm{rh}$)
23). The locus of a point equidistant from $A B$ and $B C$ is $B D$. Mark the location of the point " M " equidistant from $A B$ and $B C$ and also equidistant from B and C on the following rough diagram using the knowledge of loci.

24). PQ is a chord of the circle of centre O . Find the perpendicular distance from O to PQ .

25). $A \widehat{D} F=40^{\circ}, A \hat{E} C=60^{\circ}, A, B, C, D, E, F$ lie on the circle of centre O. Find $F \hat{B} C$

Part B

Answer all questions on this paper itself.

1) Out of the students who entered to advance level classes of a certain school $\frac{2}{5}$ is to Bio classes, $\frac{1}{3}$ to Maths classes. Out of the remainder $\frac{1}{4}$ entered to commerce classes and the remainder to the Art classes.
i) What is the fractional part of the students who entered to the Bio and Maths classes out of the total number of students.?.
ii) Write the number of students who entered to the commerce classes as a fraction out of the total number of students
iii) If there are 30 students entered to the art classes then find the total number of students entered to the Advance level classes..
iv) Show that the number of students in bio classes is twice the number of students in art classes.
2) .
a) The annual assessed value of a house situated in a certain local government area is

Rs. 60 000.The owner of the house pays 8% annual rate for this house.
i) Find the quarterly rate amount of the house.
ii) If this house has been rented such that to obtain the monthly rental which is equal to ten times of the quarterly rate, then find the annual rental value of the house
b)A washing machine of worth Rs. 40000 can be bought by paying Rs. 6000 first and the balance within 9 equal monthly installments each of Rs. 4800.
i) What is the remaining amount that should be paid as installments?.
ii) Find the total amount that should be paid as installments.

i) Represent the sample space showing how two consecutive buses can reach Bandarawela by a randomly selected route on the grid given below.

ii) Encircle the event that the two buses can't arrive on the same route and write its probability
iii) It is noticed that 3 busses out of five buses arriving to Bandarawela town within a minute are from Badulla. Below is an incomplete tree diagram drawn to illustrate whether the first bus arriving in a minute is from Badulla or another route. Complete it by showing the relevant probabilities on its branches.

Arriving the first bus

iv) Extend the above tree diagram to indicate the route taken by the second bus arriving within that minute and also write the relevant probabilities
v) Obtain the probability that only one of the above two buses from the subordinate route will arrive from Badulla by using the tree diagram..
5)
a) The following is a frequency distribution the group of students in grade 11 in a school, including the marks obtained on a mathematics paper(Where 20-30 is more than 20 and less than or equal to 30 , and the same is true of other class intervals).

Marks(class intervals)	$20-30$	$30-40$	$40-50$	$50-60$	$60-90$
Number of students	4	6	12	10	18

i) Draw a histogram to represent the above data in the following grid..

ii) Draw the frequency polygon on the histogram.
b) The following is pie-chart showing data how the employees of an organization coming to work.

i) Find the value of the centre angle representing the employees who are coming on foot
ii) If 15 coming by motor vehicles then find the total number of employees in the organization.

- Answer only 10 questions selecting any 5 questions from part A and any 5 questions from part B.
- 10 marks will be awarded for each question.
- The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$. The volume of a cylinder of base radius rand h is $\pi r^{2} h$.

Part A

Answer only 5 questions.

1) The length of a piece of aluminium strip, cut and sold during a day from an aluminium workshop shows the frequency distribution below to the nearest centimeter.

length (cm)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Number of pieces	3	9	16	23	18	8	3

i) Write the model class.
ii) A meter of aluminium strip costs Rs.200. Find the mean length of an aluminium strip sold and according to it find the total amount of money received by selling aluminium strips within 30 days.
2) The following is a table of values set to draw the graph of the function $y=k-(x-a)^{2}$.

x	-1	0	1	2	3	4	5
y	-4	1	4	5	4	1	-4

i) Select the appropriate scale and draw the graph of the above function on the standard axis system.
ii) Draw the axis of symmetry.
iii) Write the value of k and a respectively.
iv) Write the range of values of x for which the function decreases in the range $-4 \leq y \leq 4$.
v) Write the value of \sqrt{k} to the first decimal place.
3) .
a) Simplify. $\frac{1}{3 x+3}-\frac{1}{5 x+5}$
b) 5 shirts and 3 denim trousers can be bought for Rs. 14500 and 3 shirts can be bought for the amount equal to the amount that can be bought two denim trousers.
i) Taking the price of a shirt as Rs. x and the denim trouser as Rs. Y and build a pair of simultaneous containing x and y.
ii) Solving them find the price of a shirt and the price of a denim trouser respectively.
4) .

Figure A

Figure B

The area of the darkened part of figure A with two concentric semicircles is equal to the area of figure B. Show that $x^{2}-4 x-147=0$ is satisfied by the relation between the shaded regions of the diagrams and find x by solving it. $(\sqrt{151}=12.29)$
5)

L
i) Copy this diagram on to your answer script and mark the given data on it..
ii) Calculate the shortest distance between C and P to the nearest meter using the trigonometric tables.
iii) Calculate $P \hat{C} L$ correct to the nearest degree. Accordingly find the bearing of the library (L) as seen from the clock tower.
6) From the bonus amount received by Mr. Sampath who retired from his job deposited a part of it in a fixed deposit in a certain financial authority and the balance invested in the purchase of shares of Sithumini company at the market price of Rs. 120 each. After receiving the annual income he earns Rs. 650000 from the sale of the above shares at a capital gain of Rs. 10 per a share.
i) Find the number of shares that he had.
ii) The amount invested in the company was 30% of the total amount of the bonus money that he received. Accordingly find the amount of bonus that Mr. Sampath received..
iii) The deposited in the fixed account receives an interest of 15% per annum. Calculate the interest received from the financial authority at the end of 2 years.

Part B

Answer only 5 questions.
7) A florist near a public temple sells 50 flower vasses per a day of the first month. Afterwards he sells 15 flower vases more than the number of vases sold in a day of the previous month.
i) Find the number of flower vases that he sells in a day of the first, second and third month.
ii) Find in which month that 125 flower vases are sold per a day.
iii) The net profit that he obtains by selling one flower vase is Rs. 20. Assuming that he sells flower vases in 30 days in a month, then find the number of flower vases that he sells at the end of the year and also show that his annual income does not exceed Rs. 955000.
8) Do the following constructions by using only a straight edge, $\mathrm{cm} / \mathrm{mm}$ scale and a pair of compass and also representing all constructions lines clearly.
i) Construct the circle of radius 3.5 cm and mark the centre as 0 ..
ii) Mark any point on the circle as P and also mark another point Q such that $P \hat{O} Q=120^{\circ}$
iii) Construct a tangent to the circle at Q.. Produce PO such that it meets the tangents that you constructed at R..
iv) Construct another tangent to the circle at R as RS..
v) Find the value of $\mathrm{Q} \widehat{R} S$ giving reasons..
9).

The tangent drawn to the circle of diameter $S R$ at S is PS. PR crosses the circle at Q and U lies on $Q R$. T is situated on SR such that $Q \hat{T} U=U \widehat{T} R$. The produced UT meets V on the circle. Show that PUTS is a cyclic quadrilateral. Joining necessary line segments show that $S \widehat{Q} V+U \widehat{V} R=S \hat{P} Q$
10) Of the 60 ornamental flower growers, 13 grow only anthuriums and 7 grow only roses, while 28 do not grow anthurium or roses

Growers who grow anthurium

i) Copy this venn diagram on to your answer script and include the above data on it. How many growers who grow both anthuriums and roses ?
ii) Out of the rose growers, 15 do not grow orchids and the growers who grow anthuriums do not grow archides. How many grow orchids and roses ?

14 grow orchids.
iii) Copy down the above venn diagram again and represent the subset "Growers who grow orchids" in it in suitable manner and also insert the relevant values in relevant regions.
iv) Find the number of growers who do not grow any type of the flowers.
11).

In the quadrilateral $A B C D, B \hat{A} D=B \hat{C} D$, $A \widehat{D} B=C \widehat{B} D$. E is situated on the produced $C D$ such that $A D=A E$.
i) Copy down the above diagram on to your answer script and insert the information on it.
ii) Show that $A B C D$ is a parallelogram.
iii) Show that the area of $B A E \triangle$ is equal to the area of $A C D \Delta$
iv) If $E B \perp B C$ then show that $A E^{2}+B E^{2}=C E^{2}$.
12) The innermost radius of a right cylindrical metallic pipe is x and the outer most radius is three times of the innermost radius. The height of it is 2 units. This metallic pipe is melted and made 24 small spheres of radius " r " without any wastage. Show that $x=2 \sqrt{r^{3}}$ and if $\mathrm{r}=0.53$ find the value of x corrected to two places of decimals.

A ๑ணぃ๐					
Эัケ゚ロ 20201		C3imo	ए可氟		๑อฺைฺ
1		20 $8 \times 5 \text { ๑๒ว } 40$	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	
02		2.3892	02	02	
3		$\begin{aligned} & 40 / 40^{0} \\ & x+2 x+60=180 \end{aligned}$	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	 C円ை โัง ชิอ －字湯
4		$24 x^{2} y^{2}$ 	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	
5		80 $\frac{1200}{15}$	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	
6		\｛2，3\}	02	02	
7		$a=3 \quad b=4$	01＋01	（02）	
8		$\begin{aligned} & 120^{0} \\ & S \hat{P} Q=60^{0} \end{aligned}$	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	 ए四我 \％\％ชิอ C凹．
9			02	02	
10	i	$\begin{aligned} & 1 \\ & -2 \end{aligned}$	01 01	02	
11		$\begin{aligned} & 0,1 \\ & x>-1 \\ & \hline \end{aligned}$	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	

12		$\begin{aligned} & 35^{0} \\ & 180-(20+125) \end{aligned}$	02 01	02	 ए皮雨 โัง ภิอ Cखug －央が
13		$\begin{aligned} & \frac{1}{2} \\ & 8 x=4 \\ & \hline \end{aligned}$	02 01	02	
14			02	02	$\begin{array}{\|l\|} 28---------01 \\ 12-----01 \end{array}$
15		9	02	（02）	
16		16 $r=3$	02 01	02	
17		$\begin{aligned} & 16 \mathrm{~cm} / 16 \\ & Y C=8 \mathrm{~cm} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 02 \\ 01 \end{array}$	02	
18	i ii	2×1	$\begin{aligned} & 01 \\ & 01 \end{aligned}$	02	
19		$\begin{aligned} & \sigma_{7} .35000 \\ & p \times \frac{12}{100} \times 2=8400 \end{aligned}$	$\begin{aligned} & 02 \\ & 01 \end{aligned}$	02	
20		$\begin{array}{\|l\|} \hline \text { i } \times \\ \text { ii } \sqrt{ } \\ \text { ii } \times \\ \hline \end{array}$	02	02	งอぁが ఆ® 01
21		$\begin{aligned} & O P=\frac{1}{2} B C \text { ๑๐ई } f^{\circ} B C=2 O P \\ & O P / / B C \end{aligned}$	01 01	02	
22		5 cm $2 \times \frac{22}{7} \times 7 \times h=220$	02 01	02	
23			02	02	

24		5 cm	02	02		
25		80	02	02		
$2 \times 60+2 \times 80+2 \times x=360$	01					

	iv	$\begin{aligned} & 4800 \times 9 \\ & \sigma_{\tau} .43200 \end{aligned}$	$\begin{array}{\|l\|} \hline 01 \\ 01 \end{array}$	02		
	v	$\begin{aligned} & 43200-34000 \\ & \sigma_{\tau} .9200 \end{aligned}$	$\begin{array}{l\|} \hline 01 \\ 01 \end{array}$	02	10	
03	i	$\begin{aligned} & \frac{1}{8} \times 2 \times \frac{22}{7} \times 28 \\ & 22 m \end{aligned}$	01 01			
	ii	$\begin{aligned} & (28+50+22) \times 2 \\ & 200 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} \hline 01 \\ 01 \\ \hline \end{array}$			-6) ¢a m mbin
	iii	$\begin{aligned} & \left(\frac{1}{8} \times \frac{22}{7} \times 28 \times 28\right) \times 2 \\ & 616 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & 01+01 \\ & 01 \end{aligned}$			
	iv	$\begin{aligned} & \frac{616}{28}+50 \\ & 72 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 01+01 \\ & 01 \\ & \hline \end{aligned}$	03	10	
04	i		02	02		
	ii		01 01	02		
	iii iv	asposcosicias	01+01+01			
	v	$\begin{gathered} \frac{3}{5} \times \frac{2}{4}+\frac{2}{5} \times \frac{3}{4} \\ \frac{12}{20} \text { ๑थง } \frac{3}{5} \end{gathered}$	$01+01$ 01	03	10	

			$\begin{gathered} x=1500 \\ 2 y=3 \times 1500 \\ y=2250 \end{gathered}$	$\begin{array}{\|l\|} \hline 01 \\ 01 \\ 01 \end{array}$	05	10	
04			$\begin{gathered} \frac{1}{2} \pi(2 x-3)^{2}-\frac{1}{2} \pi x^{2}=\pi x^{2} \\ (2 x-3)^{2}-x^{2}=2 \times 15^{2} \\ 4 x^{2}-12 x+9-x^{2}=450 \\ 3 x^{2}-12 x-441=0 \\ x^{2}-4 x+147=0 \\ x^{2}-4 x=147 \\ x^{2}-4 x+4=147+4 \\ (x-2)^{2}=151 \\ x-2= \pm \sqrt{151} \\ x-2= \pm 12.29 \\ x-2=12.29 \text { ๑๒ァ } x-2=-12.29 \\ x=14.29 \text { ๑๐ァァ } x=-10.29 \\ x>0 \\ x=14.29 \end{gathered}$	$01+01+01$ 01 01 01 01 02 01 01		10	
05		i		$\begin{aligned} & 01 \\ & 01 \\ & 01 \end{aligned}$	03		
		ii	$\begin{gathered} \sin 64^{0}=\frac{c p}{100} \\ 0.8988=\frac{c p}{100} \\ c p=89.88 \\ c p=90 \mathrm{~m} \end{gathered}$	01 01 01	03		

 $f(x)=5-(x-2)^{2} \quad \equiv N$

 + Input.

