

## Second Term Test - Grade 12-2020

Index No : $\qquad$

Answer all the questions.

- In each of the question 1 to 50 ,pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross $(\mathrm{X})$ in accordance with the instructions given on the back of the answer sheet.

| Universal gas constant | R | $=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ | Avogadro constant | $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ |
| :--- | :--- | :--- | :--- | :--- |
| Plank's constant | h | $=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ | Velocity of light | $\mathrm{c}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ |

1. Consider the following statements I and II.

I - For degenerate orbitals, the lowest energy is attained when the number of electrons having the same spin is maximized.
II - The same set of quantum numbers can not exist for the both electrons of any atom.
The relevant rules given by the above statements I and II were stated by,

1. Ernest Rutherford and Henry Becquerel
2. Ernest Rutherford and Hund.
3. Niels Bohr wolfgang Pauli
4. Hund and wolfgang Pauli
5. Hund and De Broglie
6. For an atom maximum number orbitals possible for the principle quantum number $\mathrm{n}=4$ is?
7. 16
8. 14
9. 12
10. 9
11. 4
12. The number of resonance structures that can be drawn for nitronium ion. $\left[N^{+} O_{2} /(O-N-O)^{+}\right]$
13. 2
14. 3
15. 4
16. 5
17. 6
18. What is the IUPAC name of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ ?
19. iron(II) carbonate
20. iron carbonate
21. iron(II) dicarbontetroxide
22. iron(III) oxalate
23. iron(II) oxalate
24. Select the pair of elements which shows the maximum electronegativity difference.
25. C and P
26. C and N
27. Si and N
28. C and Si
29. B and Si
30. Consider the skeleton of the molecule $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ given below. $\left(\mathrm{H}-\mathrm{N}^{1}-\mathrm{C}^{2}-\mathrm{N}-\mathrm{H}\right)$

The electron pair geometry and the shape around $N^{1}$ and $C^{2}$ atoms respectively are,

|  | $N^{1}$ |  | $C^{2}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| $(1)$ | tetrahedral | Pyramidal | triangular planer | triangular planer |
| $(2)$ | tetrahedral | Pyramidal | triangular planer | angular |
| $(3)$ | Pyramidal | triangular planer | triangular planer | angular <br> andal <br> (4) |
| triangular planer | Pyramidal | triangular planer | triangular planer <br> (triangular planer |  |
|  | tetrahedral | Pyramidal | angular |  |

7. What is the false statement regarding ozone?
8. The central atom of ozone is $s p^{2}$ sybridized.
9. The two bond lengths of ozone are identical.
10. $O-O-O$ bond angle of ozone is smaller than $120^{\circ}$.
11. The resonance hybrid of ozone can be shown as follows.

12. All oxygen atoms of ozone lay in the same plane.
13. $\mathrm{MnO}_{2}$ reacts with conc. HCl to form $\mathrm{MnCl}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. When 43.5 g of pure $\mathrm{MnO}_{2}$ and 1.2 mol HCl solution are subjected to react, the reactant consumed completely (i.e. the limiting reagent) and the amount of $\mathrm{Cl}_{2}(g)$ formed respectively are. ( $\mathrm{Mn}=55 \mathrm{gmol}^{-1}, ~ O=16 \mathrm{gmol}^{-1}, H=1 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{Cl}=35.5$ )
14. $\mathrm{MnO}_{2}$ and 21.3 g
15. HCl and 21.3 g
16. $\mathrm{MnO}_{2}$ and 35.5 g
17. HCl and 35.5 g
18. HCl and 85.2 g
19. The ideal gas equation can be mentioned as $P=C R T$ Here, $C$ - concentration, $P$ - pressure ( $p a$ ) and $T$ - temperature ( $K$ ). $R$ is $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. The units of $C$ of the above equation is,
20. $\mathrm{mol} \mathrm{cm}^{-3}$
21. $\mathrm{mmol} \mathrm{dm}{ }^{-3}$
22. $\mathrm{mmol} \mathrm{m}{ }^{-3}$
23. $\mathrm{mol} \mathrm{dm}{ }^{-3}$
24. $\mathrm{mol} \mathrm{m}^{-3}$
25. Select the decreasing order of melting points of the hydrides.
26. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}$
27. $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{CH}_{4}$
28. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{HF}>\mathrm{CH}_{4}$
29. $\mathrm{CH}_{4}>\mathrm{NH}_{3}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}$
30. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{4}>\mathrm{NH}_{3}$
31. What is the correct increasing order of the electronegativity of $N$ atom in the species $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and $\mathrm{NCl}_{3}$,
32. $\mathrm{NH}_{2}^{-}<\mathrm{NH}_{3}<\mathrm{NH}_{4}^{+}<\mathrm{NCl}_{3}$
33. $\mathrm{NH}_{2}^{-}<\mathrm{NCl}_{3}<\mathrm{NH}_{3}<\mathrm{NH}_{4}^{+}$
34. $\mathrm{NH}_{2}^{-}<\mathrm{NH}_{3}<\mathrm{NCl}_{3}<\mathrm{NH}_{4}^{+}$
35. $\mathrm{NH}_{4}^{+}<\mathrm{NH}_{3}<\mathrm{NCl}_{3}<\mathrm{NH}_{2}^{-}$
36. $\mathrm{NH}_{4}^{+}<\mathrm{NCl}_{3}, \mathrm{NH}_{3},<\mathrm{NH}_{2}^{-}$
37. The ratio between the root mean square speeds of $H_{2}$ and $O_{2}$ at $25^{\circ} \mathrm{C}$ ? $(H=1, O=16)$
38. $\frac{1}{4}$
39. 16
40. $\frac{1}{16}$
41. 4
42. 2
43. The products of the following reaction are, $\mathrm{Mg}(\mathrm{s})+$ conc. $\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow$ products
44. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
45. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{NO}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
46. $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{aq})+\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
47. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{H}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
48. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
49. Select the true statement.
50. The bond angle of $\mathrm{H}_{2} \mathrm{~S}$ is larger than the bond angle of $\mathrm{H}_{2} \mathrm{O}$.
51. The maximum number of $\sigma$ bonds that can be formed by any element in group 15 is 5 .
52. All the elements of group 2 react with atmospheric $N_{2}$.
53. Li forms $\mathrm{Li}_{2} \mathrm{O}_{2}$ at the presence of excess $\mathrm{O}_{2}$ gas.
54. The compounds of $A l$ which have incomplete octets, form dimers in aqueous solutions.
55. Consider the following data at 298 K
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) \Delta H^{0}=90.25 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{0}=33.18 \mathrm{~kJ} \mathrm{~mol}^{-1}$
According to the above data, $\Delta H^{\theta}$ of the reaction, $\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g)$ is,
56. $-57.07 \mathrm{kJmol}^{-1}$
57. $\quad 57.07 \mathrm{kJmol}^{-1}$
58. $-123.43 \mathrm{kJmol}^{-1}$
59. $23.89 \mathrm{kJmol}^{-1}$
60. $123.43 \mathrm{kJmol}^{-1}$
61. The following equilibrium is established in the vaporization of the liquid A
$\mathrm{A}(\mathrm{l}) \rightleftharpoons A(g)$
The enthalpy change and the entropy change of this vaporization are $44.76 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $120.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively. The boiling point of that liquid is,
62. $493{ }^{\circ} \mathrm{C}$
63. $275.6^{\circ} \mathrm{C}$
64. $-272.6^{0} \mathrm{C}$
65. $373{ }^{\circ} \mathrm{C}$
66. $100^{\circ} \mathrm{C}$
67. What is the false statement regarding the allotropic forms of Carbon ( $C$ )?
68. Both diamond and graphite consist of homo atomic lattice structures.
69. Graphite is a good conductor of electricity as well as heat.
70. Graphite is a three dimensional lattice and its C atoms are $\mathrm{sp}^{2}$ hybridized.
71. $\mathrm{C}-\mathrm{C}$ bond length of graphite is less than $\mathrm{C}-\mathrm{C}$ bond length of diamond.
72. C atoms of fullerene are connected each other spherically.
73. At a certain temperature $\mathrm{SO}_{2}(g)$ reacts with, $\mathrm{O}_{2}(g)$ and forms only $\mathrm{SO}_{3}(g)$ At the relevent temperature and the constant pressure when $8 \mathrm{dm}^{3}$ of $\mathrm{SO}_{2}(\mathrm{~g})$ and $10 \mathrm{dm}^{3}$ are reacted, the final volume of the mixture is,
74. $18 \mathrm{dm}^{3}$
75. $10 \mathrm{dm}^{3}$
76. $20 \mathrm{dm}^{3}$
77. $14 \mathrm{dm}^{3}$
78. $13 \mathrm{dm}^{3}$
79. A mixture of $A(g)$ and $D(g)$ are placed in an evacuated rigid vessel at the temperature of $T$. At this temperature both $A(g)$ and $D(g)$ decompose according to the following reactions.
$2 A(g) \rightarrow B(g)+3 C(g)$
$D(g) \rightarrow B(g)+2 C(g)$
The initial pressure $P$ of the vessel is changed up to $2.7 P$ after the complete decomposition of the two reactants. At that temperature the ratio between the initial partial pressures of $A(g)$ and $D(g)$ is,
80. $2 / 1$
81. $\frac{10}{3}$
82. $\frac{1}{27}$
83. $\frac{3}{10}$
84. $\frac{3}{7}$
85. Which of the followings gives a blue violet colour to the flame test?
86. 87. LiCl
1. NaCl
2. $\mathrm{CaCl}_{2}$
3. CsCl
4. KCl
5. In acidic medium to oxidise $25 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution, $20 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KMnO}_{4}$ is required. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is,
$\left(\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}, \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}\right)$
6. $0.08 \mathrm{~mol} \mathrm{dm}^{-3}$
7. $0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
8. $0.125 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
9. $0.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
10. Consider the following molecules.
$N F_{3}, \mathrm{CF}_{2} \mathrm{Cl}_{2}, \mathrm{OCl}_{2}$
When H atoms are substituted instead of the other atoms around the central atoms of all the above molecules, the oxidation number of the central atom of the each molecule respectively is,
11. increasing, not changing, decreasing. 2. not changing, not changing, changing
12. decreasing, increasing, not changing
13. decreasing, decreasing, not changing
14. decreasing, decreasing, increasing
15. Select the incorrect statement.
16. The basicity of NaOH is greater than the basicity of $\mathrm{Mg}(\mathrm{OH})_{2}$.
17. When going down the first group the covalent nature of the hydroxide are increasing.
18. The water solubility of NaI is greater than NaCl
19. The hydroxide of $A l$ reacts with bases.
20. The hydroxide of $A l$ reacts with acids.
21. The concentration of a certain NaCl solution is $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. The composition of it in ppm is.

$$
(N a=23, C l=35.5) \quad\left(1 \mathrm{ppm}=1 \mathrm{mg} \mathrm{dm}{ }^{-3}\right)
$$

1. $58.5 \times 10^{-3}$
2. 0.585
3. 5.85
4. 58.5
5. 585
6. A solution prepared by dissolving 1 g of a sample containing $\mathrm{KIO}_{3}$ is treated with an acidic solution containing excess $K I$. The released iodine is reacted with $0.003 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The required volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is $25 \mathrm{~cm}^{3}$. The mass percentage of $\mathrm{KIO}_{3}$ present in the sample is, $\left(\mathrm{KIO}_{3}=214\right)$
$\mathrm{H}^{+} / \mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}_{2}, \quad \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}$ and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}$
7. $1.605 \times 10^{-2}$
8. 1.605
9. 3.21
10. $2.675 \times 10^{-3}$
11. $2.675 \times 10^{-1}$
12. Select the reaction step which does not include in the Born -Haber cycle relevant to the formation of $M g O$ ( $s$ ).
13. $M g(s) \rightarrow M g(g)$
14. $\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow O(\mathrm{~g})$
15. $M g^{2+}(a q)+O^{2-}(a q) \rightarrow M g O(s)$
16. $O(g)+e \rightarrow O^{-}(g)$
17. $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(\mathrm{s})$
18. Phase diagram of $\mathrm{CO}_{2}$ is given below.


The critical temperature of $\mathrm{CO}_{2}$ is,

1. $30.98^{0} \mathrm{C}$
2. $25.0^{0} \mathrm{C}$
3. $0^{0} \mathrm{C}$
4. $-56.4^{0} \mathrm{C}$
5. $-78.5^{0} \mathrm{C}$
6. At 300 K , Maxwell - Boltzmann speed distribution of four gases is given below.


These $A, B, C, D$ gases respectively are,

1. $\mathrm{H}_{2}(g), \mathrm{N}_{2}(g), \mathrm{O}_{2}(g), \mathrm{Cl}_{2}(g)$
2. $\mathrm{Cl}_{2}(g), \mathrm{O}_{2}(g), \mathrm{N}_{2}(g), \mathrm{H}_{2}(g)$
3. $\mathrm{H}_{2}(g), \mathrm{N}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$
4. $\mathrm{H}_{2}(g), \mathrm{Cl}_{2}(g), \mathrm{N}_{2}(g), \mathrm{O}_{2}(g)$
5. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$
6. Which of the followings is correct regarding the variation of the electron gaining enthalpy of the elements present in second and third periods?
7. The enthalpy change that occurs when a mole of electrons are gained by a mole of gaseous molecules in standard state to form a mole of uni negative ions in standard state.
8. Since $F$ is highly electronegative, it has the highest electron gaining enthalpy.
9. $C l$ has the highest electron gaining enthalpy.
10. This is identified as electron affinity.
11. Since the elements such as $M g$ has a halfly filled stable electron configuration the electron gaining enthalpy is a negative value.
12. Which of the following statements is correct?
13. If the whole thermochemical equation is multiplied by a certain number, the enthalpy change also should be multiplied by the same number.
14. The unit of the enthalpy change of a reaction is changed according to the number of moles participated for the reaction.
15. When a reaction is reversed both the sign of $\Delta H$ and its magnitude are changed.
16. The value of $\Delta H$ is not changed on the physical state of the reactant and products.
17. If the sign of $\Delta H^{\theta}$ is negative then the reaction is endothermic.

- For each of the questions 31 to 40 , one or more responses out of the four responses (a), (b), (c) and (d) given is /are correct. Select the correct response/responses in accordance with the instructions given on your answer sheet, mark
(1) If only (a) and (b) are correct.
(2) If only (b) and (c) are correct.
(3) If only (c) and (d) are correct.
(4) If only (d) and (a) are correct.
(5) If any other number or combination of responses is correct.

Summary of above Instructions,

| 1 | 2 | $\mathbf{3}$ | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| Only (a) and (b) <br> are correct | Only (b) and (c) <br> are correct | Only (c) and <br> (d) are <br> correct | Only (a) and (d) <br> are correct | Any other number <br> or combination of <br> responses is correct |

31. Which of the following statement/s is / are correct regarding the compounds formed by the elements of $s$ block ?
(a) All bicarbonate (Hydrogen Carbonate) are available in solid state.
(b) $\mathrm{LiHCO}_{3}$ is not available in solid state.
(c) All the carbonates of second group are thermally unstable.
(d) When $\mathrm{NaNO}_{3}$ is objected to thermal decomposition, $\mathrm{NO}_{2}(\mathrm{~g})$ can be obtained.
32. Which of the following statements is / are correct?
a) Enthalpy is a state function and an extensive property.
b) Heat is not a state function and an extensive property.
c) Density is an extensive property.
d) Molar enthalpy is a state function and an intensive property.
33. The correct equation and the relevant enthalpy change is / are mentioned in,
(a) The standard enthalpy of atomization, $\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(\mathrm{g})$
(b) The standard enthalpy of solution $\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(s)+$ water
(c) The standard enthalpy of neutralization $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
(d) The standard enthalpy of fusion $A l(s) \rightarrow A l(l)$
34. Among the following reactions the correct reaction / reactions is/ are ?
(a) $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NaH}(s)$
(b) $6 \mathrm{Na}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{3} \mathrm{~N}(\mathrm{~s})$
(c) $4 \mathrm{NaNO}_{3}(s) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
(d) $2 \mathrm{LiNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{LiNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
35. Which is / are correct regarding the solubility of the salts of the second group?
(a) Except $\mathrm{BeCO}_{3}$ all the carbonates are insoluble.
(b) All the sulphates are insoluble.
(c) When going down the group the solubility of sulphates is decreasing.
(d) All the nitrates are soluble.
36. Select the extensive property / properties.
(a) volume
(b) amount of moles
(c) Temperature
(d) molar volume
37. Which of the following statements is / are correct regarding the electromagnetic radiation?
(a) Travel in the velocity of light through the vacuum.
(b) The oscillation of the electric and magnetic fields of them are parallel to the direction of the waves.
(c) The various electromagnetic radiations are differed each other since their speeds are different each other.
(d) These are periodic.
38. Select the modecule/s which is / are containing all covalent ionic and dative bonds.
(a) $\mathrm{NaNO}_{2}$
(b) $\mathrm{NaNO}_{3}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
(d) $\quad \mathrm{NH}_{3} B F_{3}$
39. Which of the followings is / are true for the thermochemical equation given below.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \quad \Delta H^{\theta}=-483.7 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) 483.7 kJ is released per one mole of reaction.
(b) 483.7 kJ is released per two moles of consumed $\mathrm{H}_{2}(\mathrm{~g})$.
(c) 483.7 kJ is released per one mole of consumed $\mathrm{H}_{2}(\mathrm{~g})$.
(d) 483.7 kJ is released per one mole of water vapours formed.
40. Select the correct statement/s regarding the metallic bonds.
(a) When the positive ions become large the electron density of the metallic bond is increasing.
(b) The cloud of mobile electrons are moving steadily all over the lattice to stabilize the lattice.
(c) When the number of electrons provided by an atom is increasing then the metallic bond strength is increasing.
(d) The ionic nature of alkali metals and alkaline earth metals is affected highly for the metallic bonds.
－In question numbers 41 to 50，two statements are given in respect of each question．From the table given below，select the response out of the responses（1），（2），（3），（4）and（5）that best fits the two statements and mark appropriately on your answer sheet．

| $\mathbf{1}^{\text {st }}$ Statement | $\mathbf{2}^{\text {nd }}$ Statement | Response |
| :--- | :--- | :--- |
| True | True and explains the $1^{\text {ststatement correctly }}$ | 1 |
| True | True but does not explain the first statement correctly | 2 |
| True | False | 3 |
| False | True | 4 |
| False | False | 5 |


|  | First statement | Second statement |
| :--- | :--- | :--- |
| 41. | The boiling point of $I C l$ is greater than $B r_{2}$. | $B r_{2}$ is a non－polar molecule．ICl is a polar <br> molecule．Therefore dipole dipole attractions <br> are existing． |
| 42. | cathode rays are deflected towards the <br> magnetic poles at the presence of a magnetic <br> field． | Cathode rays are negatively charged ． |
| 43. | Wave length of the first line of the Balmer <br> series is longer than the wave length of the <br> first line of the Lymann Series． | When lymann and Balmer series are considered <br> Lyman series belongs to a region with higher <br> wave lengths． |
| 44. | Across a same period left to right shielding <br> effect is increasing due to the increasing of <br> number of electrons． | When going from left to right in the same period <br> the effective nuclear charge is decreasing， <br> because the atomic radius is decreasing． |
| 45. | Valence shell electrons participate for the <br> chemical bond formations． | Covalent bonds are formed by sharing the <br> electrons． |
| 46. | In a balanced chemical equation，the number <br> of molecules and the charges of both sides <br> should be equal． | The masses of the both sides of a balanced <br> chemical equation should be equal． |
| $47 .$Liquid takes the shape of its container but it <br> does not spread all over the container． | The shape of liquid depends on the gravitational <br> force． |  |
| 48. | Volumetric flasks are used for the <br> preparations of the solutions with a known <br> concentration． | In dilution of an acid，water is added to a known <br> volume of an acid． |
| 49. | The enthalpy of neutralization of strong acids <br> and strong bases is constant． | The enthalpy of neutralization of weak acids <br> and weak bases is quite different than that of the <br> strong acids and strong bases． |
| 50. | $s$ block elements acts as reducing agents． | Under certain conditions，the metals of the <br> group I of $s$ block undergo reduction by <br> gaining electrons． |


| 1 | 1 |  அவர市历サ அ்டவఱை |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | H |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 10 <br> Ne |
|  | ${ }_{4}^{3}$ | ${ }_{4}^{4}$ | Periodic Table |  |  |  |  |  |  |  |  |  | 5 <br> $\mathbf{B}$ | 6 | 7 N | $\begin{aligned} & 8 \\ & 0 \end{aligned}$ | 9 |  |
| 3 | $\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$ | $\begin{gathered} 12 \\ \mathrm{Mg} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r}13 \\ \text { A1 } \\ \hline 1\end{array}$ | 14 | $\begin{aligned} & 15 \\ & \mathbf{P} \end{aligned}$ | 16 | 17 | 18 Ar r r |
| 4 | $\begin{aligned} & 19 \\ & \mathrm{~K} \\ & \hline \end{aligned}$ | $\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$ | $\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$ | $\begin{aligned} & 22 \\ & \pi \end{aligned}$ | $\begin{aligned} & 23 \\ & \mathbf{y} \end{aligned}$ | $\begin{aligned} & 24 \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$ | $\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$ | $\begin{aligned} & 27 \\ & \mathrm{C}_{0} \end{aligned}$ | $\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$ | $\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$ | $\begin{array}{r} 30 \\ \mathrm{Zn} \end{array}$ | 31 <br> G ； <br> 1 | 32 | $\begin{aligned} & 33 \\ & \mathrm{As} \end{aligned}$ | $\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$ | $\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$ | 36 <br> Kr |
| 4 | $37$ | $38$ | $39$ | $\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$ | $41$ $\mathrm{Nb}$ | $42$ | $43$ | 44 <br> Rn | $45$ $\mathbf{R h}$ | $\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$ | 47 | $\begin{aligned} & 48 \\ & \mathrm{Cd} \\ & \hline \end{aligned}$ | 498 | So Sn | $51$ | 52 | 53 | S |
| 5 | $55$ Cs | $56$ | La－ Lu | $72$ $\mathrm{Hf}$ | $73$ | $74$ | $\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$ | $\begin{aligned} & 76 \\ & 08 \end{aligned}$ | $\begin{aligned} & 77 \\ & \mathrm{Ir} \end{aligned}$ | 78 Xt | 79 Au 121 | $\mathrm{CHg}^{\mathrm{HO}}$ | 17 12 | 82， | 83 | 84 | 85 | 86 |
| 7 | $\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & \hline \end{aligned}$ | $\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$ | $A c$ $\mathbf{L r}$ | $\begin{gathered} 104 \\ \text { Rf } \end{gathered}$ | $\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$ | $\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$ | $\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$ | $\begin{aligned} & 108 \\ & \mathrm{H}_{5} \end{aligned}$ | $\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$ | $\begin{aligned} & 110 \\ & \text { Uun } \end{aligned}$ | $\begin{aligned} & 111 \\ & \text { Uuu } \end{aligned}$ | $\begin{aligned} & 112 \\ & \mathrm{Uub} \end{aligned}$ | $\begin{aligned} & 113 \\ & \text { Unt } \end{aligned}$ |  |  |  |  |  |
|  |  |  | $\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$ | $\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$ | $59$ | $\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$ | $\begin{array}{\|c} 61 \\ \mathbf{P m} \end{array}$ | $\begin{gathered} 62 \\ \mathrm{Srm} \\ \hline \end{gathered}$ | $\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$ | $\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$ | $\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$ | $\begin{aligned} & 66 \\ & \mathrm{Dy} \end{aligned}$ | $\begin{array}{\|l} \hline 67 \\ \text { Ho } \end{array}$ | $\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$ | $\overline{\mathrm{Tm}}$ | $\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$ | $\begin{aligned} & \hline 71 \\ & \mathrm{Ku} \\ & \hline \end{aligned}$ |  |
|  |  |  | $\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$ | $\begin{aligned} & 90 \\ & \text { Thin } \end{aligned}$ | $\begin{aligned} & 91 \\ & \text { Pe } \end{aligned}$ | $\begin{aligned} & 92 \\ & \mathbf{U} \end{aligned}$ | $\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$ | $\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$ | $\begin{aligned} & 95 \\ & \text { Am } \end{aligned}$ | $\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$ | $\begin{aligned} & 97 \\ & \text { Bk } \end{aligned}$ | $\begin{aligned} & 98 \\ & \mathrm{Cr} \end{aligned}$ | $\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$ | $\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$ | $\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$ | $\begin{aligned} & 102 \\ & \text { No } \\ & \hline \end{aligned}$ | $\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$ |  |



Index No :

## Chemistry II

* A Periodic Table is provided
* Use of calculators is not allowed.
* Universal gas constant. $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
* Avogadro constant, $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

| Plank's constant | $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ |
| :--- | :--- |
| Velocity of light | $\mathrm{c}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ |

- PART A - Structured Essay
* Answer all the questions on the question paper itself.
* Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.
- PART B and PART C - Essay
* Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
* At the end of the time allotted for this paper, tie the answers to the three Parts $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$ together so that Part $\mathbf{A}$ is on top and hand them over to the Supervisor.
* You are permitted to remove only Parts $\mathbf{B}$ and $\mathbf{C}$ of the question paper from the Examination Hall.

For Examiner's Use Only

| Part | Question No. | Marks |
| :---: | :---: | :---: |
| A | 1 |  |
|  | 2 |  |
|  | 3 |  |
|  | 4 |  |
| B | 5 |  |
|  | 6 |  |
|  | 7 |  |
|  | 9 |  |
|  | 10 |  |
| Total |  |  |
| Percentage |  |  |

Final Mark

| In Numbers |  |
| :--- | :--- |
| In Letters |  |

Code Numbers

| Examiner |  |
| :--- | :--- |
| Checked by | 1 |
|  | 2 |
| Supervised by |  |

## Part - A - Structured Essay

(01) a. I. The following questions are relevant to the elements of the third period of the periodic table. When answering part (i) to (vi) write the symbol of the element in the blanks given below.
i. Identify the least electronegative element. (Ignore the noble gas.)
$\qquad$
ii. Identify the uni atomic ion with the smallest size. (This ion should be stable.)
$\qquad$
iii. Identify the element which has a stable configuration although it does not have $P$ electrons.
$\qquad$
iv. Identify the element which has highest first ionization energy secondly.
$\qquad$
v. Identify the element which forms electron deficient compounds and existing as dimers in gaseous state.
(b) Draw the most acceptable Lewis dot - dash structure can be drawn for the ion $\mathrm{CH}_{2} \mathrm{NO}_{2}^{-}$. The Skelton of it is given below.
I.

II. The most acceptable lewis dot - dash structure for the molecule $\mathrm{H}_{3} \mathrm{CN}_{2} \mathrm{O}$ is given below. Draw another two Lewis dot - dash structures. Write as 'unstable' under the most unstable structure which is drawn by you.

$$
H-\ddot{O}-\underset{\substack{H \\ 1 \\ H}}{\stackrel{H}{N}}=\ddot{N}-\stackrel{N}{N}-H
$$

III. By considering the Lewis dot dash structure given below mention the followings for the atoms $C, N$ and $O$,
i. $V S E P R$ pairs around atoms.
ii. The electron pair geometry around the atom.
iii. shape around the atom.
iv. Mention the hybridization of the atoms.
v. Mention the oxidation number of the atoms.


Atoms are numbered as follows.


|  | $O^{1}$ | $C^{2}$ | $C^{3}$ | $N^{5}$ |
| :--- | :--- | :--- | :--- | :--- |
| VSEPR pairs |  |  |  |  |
| Electron pair geometry |  |  |  |  |
| shape |  |  |  |  |
| Hybridization |  |  |  |  |
| Oxidation Number |  |  |  |  |

IV. Identify the atomic / hybrid orbitals which are participated to form the following $\sigma$ bonds, present in the Lewis dot dash structure of part (iii) above. [The numbering of the atoms is the same as in part (iii)]
I. $H-O^{1}$ $\qquad$ $O^{1}$ $\qquad$
II. $O^{1}-C^{2}$
$O^{1} \ldots \ldots \ldots \ldots$................. $\qquad$
III. $C^{2}-C^{3}$ $\qquad$ $C^{3}$ $\qquad$
IV. $C^{3}-C^{4}$
$C^{3}$
$C^{4}$ $\qquad$
Vi. $C^{4}-N^{5}$
$C^{4} \ldots \ldots \ldots \ldots$
$N^{5} \ldots \ldots$... ............. ...
Vi. $C^{4}-O$
$C^{4}$
0 $\qquad$
V. Identify the atomic orbitals which are participated for the formation of the following $\pi$ bonds present in the Lewis dot - dash structure given in above (iii) [The numbering of the atoms is the same as in the above (iii)]
I. $C^{2}-C^{3}$
$C^{2}$ $\qquad$ $C^{3}$ $\qquad$
II. $C^{4}-O^{6}$
$C^{4}$
... ... ... ... ... ... ... ... ... $0^{6}$ $\qquad$
VI. i. What is the orientation of the two $\pi$ bonds in the triple bond of the Lewis dot dash structure in part (iii) above.
$\qquad$
$\qquad$
ii. Give an example for a molecule / an ion which is having a triple bond between 2 different atoms.
$\qquad$
$\qquad$
N.B. - Your example should not contain more than 3 atoms. The element present in your example should be limited to first and second periods of the periodic table.
(c) i. The atomic orbitals are described by the 3 quantum number $n, l$ and $m_{l}$. Write the relevant quantum number and the name of the atomic orbital in the cages, given below.
1.

$-1 \quad 4 P$
2.

2

3. $\square$
$\square$
 $3 s$
ii. Arrange the following in to the increasing order of the property mentioned inside the parenthesis is,
I. $\mathrm{BeCO}_{3}, \mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ (decomposition temperature)
$\qquad$ < $\qquad$ $<$ $\qquad$
II. $\mathrm{N}^{+} \mathrm{O}_{2}, \mathrm{NO}_{2}, \mathrm{NO}_{2}^{-}(\mathrm{O} \widehat{\mathrm{NO}}$ bond angle $)$
$\qquad$ $<$ $\qquad$ $<$ $\qquad$
III. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{C}-\mathrm{C}$ bond length $)$
$\qquad$ $<$ $\qquad$ $<$ $\qquad$
(02) a. $\quad \mathrm{X}$ is an element of $S-$ block in the periodic table. The first second and third ionization energies of $X$ are $519,7300,11800$ in $\mathrm{kJ} \mathrm{mol}^{-1}$ respectively. $X$ occurs a reaction which is not strong with water forming its hydroxides and liberating $\mathrm{H}_{2}(g)$. The hydroxide is basic. When $X$ reacts with dilute acids, $H_{2}(g)$ gas is released. $X$ is combusted in air, a mixture of two solid compounds are formed. When those two compounds are added to water the basic gas $Y$ is evolved.
i. Identify $X$.
ii. Write the electron configuration of the ground state of $X$.
iii. Write the chemical formulae of the compounds formed in combustion of $X$ in air. and $\qquad$
iv. Consider the following compounds of the elements of the other group except the group of $X$ in $S$ block. Inside the given cages, mention whether the given properties below are increasing or decreasing when going down the group.

1. The water solubility of sulphites.
2. The water solubility of hydroxids
3. Thermal stability of metal nitrates.


Give reasons for your answer for (III)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
v. Identify the element of $s$ block which does not belong to the group of $x$ of the periodic table, but reacts with $H_{2}(g), O_{2}(g)$ and $N_{2}(g)$ in a more similar way to $x$.
$\qquad$
vi. What is the basic gas $y$ ?
$\qquad$
vi. Give an experiment to identify $y$ ?
vii. What is the observation of the above experiment?
(b) The test tubes labelled as $A$ to $E$ contain the aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{3}$, $\mathrm{NaOH}, \mathrm{K}_{2} \mathrm{CrO}_{4}$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (not in order) The relevant tests carried out for each of these test tubes $A$ to $E$ and the relevant observations are given below.

| Test Tube | Test | Observation |
| :---: | :--- | :--- |
| A | Add $1 \mathrm{~cm}^{3}$ of $\mathrm{BaCl}_{2}$ then add dil. HCl. | A white colour precipitate is <br> formed and then it is dissolved. |
| B | Add $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution. | A white color precipitate is <br> obtained. |
| C | Add about $1 \mathrm{~cm}^{3}$ of $\mathrm{BaCl}_{2}$ solution then <br> add dil. HCl. | A white colour precipitate is <br> formed. it does not dissolve. |
| D | Add about $1 \mathrm{~cm}^{3}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution <br> then add dil. HCl. | A white colour precipitate is <br> obtained. |
| E | Add $1 \mathrm{~cm}^{3}$ of $\mathrm{BaCl}_{2}$ solution | A yellow colour precipitate is <br> formed. |

(i) Identify the solutions present in test tubes $A$ to $E$.

A $\qquad$ B $\qquad$
C $\qquad$ D $\qquad$
E $\qquad$
(ii) Write the balanced chemical / ionic equations for the reactions taking place in $A, B, C, D$ and $E$.
(03) (a) I. To prepare $250 \mathrm{~cm}^{3}$ of 1 moldm ${ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution in the laboratory, $\mathrm{Na}_{2} \mathrm{CO}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ is provided. $(N a=23, C=12, O=16, H=1)$
i. Calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required.
ii What is the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ that should be weighed?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iii. What is known as a standard solution.
$\qquad$
$\qquad$
iv. What is known as a primary standard solution?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
v. Give 2 examples for the primary standards?
$\qquad$
$\qquad$
vi. Why is it impossible to prepare a standard NaOH solution with an accurate concentration?
$\qquad$
$\qquad$
$\qquad$
vii. The concentration of $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution prepared above can be changed slightly. Give 2 reasons for that.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
viii. What is the glassware which is used to prepare a solution with a known concentration?
$i x$. Calculate the volume should be measured from the above $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to prepare $100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(04) In a certain compound, $30.46 \%$ of oxygen and $69.54 \%$ of nitrogen are present by mass. The relative molecular mass of the compound is within 90-95.
i. Determine the empirical formula of the compound. $(N=14, O=16)$
ii. Determine the molecular formula of the compound.
iii. Calculate the accurate molar mass of the compound.
(b) I. $\mathrm{KMnO}_{4}$ is a colourful compound.
i. Write the IUPAC name of $\mathrm{KMnO}_{4}$.
$\qquad$
$\qquad$
ii. Write the chemical formula of the oxide derived from the oxidation number of $M n$ in $\mathrm{KMnO}_{4}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iii. Write the election configuration of $M n$ as $1 s^{2} 2 s^{2} \ldots \ldots \ldots$
$\qquad$
$\qquad$
iv. In acidic medium $\mathrm{KMnO}_{4}$ reacts with $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}\right)$
$\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}\right)$

1. Write the oxidation half reaction.
$\qquad$
2. Write the reduction half reaction.
$\qquad$
$\qquad$
3. Write the balanced ionic reaction.
$\qquad$
$\qquad$
4. Write the balanced chemical equation if dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used as the acidic medium.
(c) At 298 K , for the reaction $2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$, the standard molar enthalpy is $90 \mathrm{kJmol}^{-1}$. At 298 K the standard entropy change $250 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
i. Calculate $\Delta G^{\theta}$ for the reaction.
ii. Explain the spontaneity of the reaction at 298 K .
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iii. Calculate the minimum temperature required, for the reaction to be spontaneous.

## Second Term Test - 200 <br> Chemistry - Grade 12 <br> Part B - Essay

## - Answer two questions only

(05) (a) $\mathrm{Cl}_{2}$ gas contains in a closed rigid vessel with the volume of $8.314 \mathrm{dm}^{3}$ under $2.4 \times 10^{5}$ pa pressure. $\mathrm{NH}_{3}$ gas contains in another closed rigid vessel with the volume of $4.157 \mathrm{dm}^{3}$ under $1.6 \times 10^{5}$ pa pressure. Both of these vessels are kept at $127^{0} \mathrm{C}$ temperature and they are conected each other using a thin glass tube.

(i) Calculate the number of moles of gases exist in each of the vessels separately before open the tap.
(ii) The tap is opened and let both gases to mix each other. Then $\mathrm{NH}_{3}$ and $\mathrm{Cl}_{2}$ gases are reacted each other according to the following reaction.
$\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g})$

1. Calculate the total number of moles present in the vessels after completing the reaction.
2. Calculate the total pressure of the system after completing the reaction.
3. What happen to the pressure inside the system, when 0.4 mol of $\mathrm{NH}_{3}(g)$ is added to the system without allowing the inner gases to come outside. Explain by giving reasons.
4. Calculate the final pressure in the system.
(b) An experiment is planned by a student to determine the relative molecular mass of Mg experimentally, using molar volume of $H_{2}$ in the laboratory.
(i) Draw and label the experimental set up that can be used to this experiment which is carried out using Mg and dil. HCl .
(ii) In this experiment which is carried out by the student the following results are obtained.

Room temperature $\quad=27^{\circ} \mathrm{C}$
Atmospheric pressure $=1.013 \times 10^{5} \mathrm{~Pa}$
Vapour pressure of water $\quad=0.036 \times 10^{5} \mathrm{~Pa}$
the volume $H_{2}$ produced $=50 \mathrm{~cm}^{3}$
mass of $\mathrm{Mg} \quad=0.05 \mathrm{~g}$
(i) Write the balanced chemical equation for the reaction between Mg and dil. HCl .
(ii) Calculate the r.a.m. using the above data.
(iii) Mention the assumptions you have used.
(c) (i) Mention the postulates of kinetic molecular theory.
(ii) Write the equation of the kinetic molecular theory and introduce its terms.
(06)(a) Write the balanced chemical equations relevant to the following enthalpy changes.
(i) The standard enthalpy of combustion of $C(s)\left(\Delta H_{f}^{\theta}\right)$
(ii) The standard enthalpy of sublimation of $\mathrm{Na}(s)\left(\Delta H_{s}^{\theta}\right)$
(iii) The standard enthalpy of bond dissociation of $O_{2}(g)\left(\Delta H_{D}^{\theta}\right)$
(iv) The standard enthalpy of atomization of Chlorine $\left(\Delta H_{a t m}^{\theta}\right)$
(v) The standard lattice dissociation enthalpy $\mathrm{MgCl}_{2}(s)\left(\Delta H_{L E}^{\theta}\right)$
(b) At $25^{\circ} \mathrm{C}$ using the following data for the following reaction, $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(i) Calculate the standard enthalpy change.
(ii) Calculate the standard entropy change.
(iii) predict that the reactions is spontaneous or non - spontaneous?

The standard bond dissociation enthalpy of $\mathrm{H}-\mathrm{H}=+432 \mathrm{kJmol}^{-1}$
The standard bond dissociation enthalpy of $\mathrm{O}=\mathrm{O}=+494 \mathrm{kJmol}^{-1}$
The standard bond dissociation enthalpy of $\mathrm{O}-\mathrm{H} \quad=+460 \mathrm{kJmol}^{-1}$

| Compound | $s^{\theta} /{J k^{-1} \mathrm{~mol}^{-1}}^{\mathrm{H}_{2} \mathrm{O}(g)}$ |
| :---: | :---: |
| $\mathrm{H}_{2}(\mathrm{~g})$ | +188.8 |
| $\mathrm{O}_{2}(\mathrm{~g})$ | +130.7 |

(c) Calculate the stand lattice enthalpy of by drawing a Born - Haber cycle using the following thermochemical data.
The standard enthalpy of sublimation of $M g(s) \quad=+148 \mathrm{kJmol}^{-1}$
The standard enthalpy of first ionization of $M g(g) \quad=+738 \mathrm{kJmol}^{-1}$
The standard enthalpy of second ionization of $M g(g)=+1451 \mathrm{kJmol}^{-1}$
The standard enthalpy of bond dissociation of $\mathrm{Cl}_{2}(\mathrm{~g})=+244 \mathrm{kJmol}^{-1}$
The standard enthalpy of formation of $\mathrm{MgCl}_{2}(s) \quad=-641 \mathrm{kJmol}^{-1}$
The standard enthalpy of first electron gaining of $\operatorname{Cl}(\mathrm{g})=-349 \mathrm{kJmol}^{-1}$
(07) (a) The data which is obtained in a certain experiment by a student is given below.
$125 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ dil. $\mathrm{HNO}_{3}$ solution and $125 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}$ solution are mixed inside a plastic cup. It is observed that the system is reached a maximum temperature of $40^{\circ} \mathrm{C}$. Before mixing all the solutions they are at $27^{\circ} \mathrm{C}$ as the initial temperature. (Specific heat capacity of water $=4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ density of water $=1 \mathrm{gcm}^{-3}$ )
(i) Write the balanced chemical equations for the reaction between dil. $\mathrm{HNO}_{3}$ and KOH .
(ii) Calculate the heat change (Q) for the reaction between $\mathrm{HNO}_{3}$ and KOH .
(iii) Calculate the standard enthalpy of neutralization for the reaction between $\mathrm{HNO}_{3}$ and KOH .
(iv) Write two assumptions that is used in this experiment.
(v) What are the reasons to differ the experimentally obtained value here for the standard enthalpy of neutralization, from its standard value.
(vi) How to deviate standard enthalpy value of the reaction between $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{NaOH}(a q)$ and the standard enthalpy value of the reaction between $\mathrm{Ba}(\mathrm{OH})_{2}(a q)$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ from the standard enthalpy of neutralization.
(b) A solution is formed by dissolving the solid residue obtained in the incomplete thermal decomposition of 1.55 g of $\mathrm{KNO}_{3}(s)$ and by adding water up to $250 \mathrm{~cm}^{3}$ of total volume. $25 \mathrm{~cm}^{3}$ of this is titrated with $0.015 \mathrm{moldm}^{-3}$ acidified $\mathrm{KMnO}_{4}$ solution. Here the consumed $\mathrm{KMnO}_{4}$ volume is $30 \mathrm{~cm}^{3}$.
$\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
$\mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-}$
(i) Write the balanced chemical equations for all the relevant reactions.
(ii) Calculate the remaining mass of $\mathrm{KNO}_{3}$ after the thermal decomposition.
( $K=39, M n=55, O=16, N=14$ )
(C) (i) Write the balanced half ionic reactions relevant to the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion to $\mathrm{Cr}^{3+}$ in acidic.
(ii) Write he balanced half ionic reaction relevant to the reduction of $\mathrm{MnO}_{4}^{-}$ion to $\mathrm{MnO}_{2}$ in basic medium.
(iii) Write the balanced chemical reaction of $I_{2}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

$$
\begin{aligned}
& I_{2} \rightarrow I^{-} \\
& S_{2} O_{3}^{2-} \rightarrow S_{4} O_{6}^{2-}
\end{aligned}
$$

## Part C - Essay

## - Answer two questions only

(08) (a) Write the balanced chemical equations relevant to the decomposition of the following compounds.
(i) $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(s) \vec{\Delta}$
(ii) $\mathrm{NaNO}_{3}(s) \xrightarrow[\Delta]{\rightarrow}$
(iii) $\mathrm{NaHCO}_{3}(s) \xrightarrow[\Delta]{\rightarrow}$
(iv) $\mathrm{LiNO}_{3}(s) \underset{\Delta}{\rightarrow}$
(v) $\mathrm{CaCO}_{3}(s) \vec{\Delta}$
(b) The tests which were carried out with a salt Q and the relevant observations are given below.

| Tests | Observation |
| :--- | :--- | :--- |
| (i)$\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution is added to an <br> aqueous solution of $Q$. | A white precipitate is formed and that <br> precipitate is insoluble in dil. $\mathrm{HNO}_{3}$ |
| (ii) Salt Q is heated. | A brown colour gas is evolved. |
| (iii)Salt Q is subjected to the flame <br> test. A yellowish green flame is obtained. |  |

(i) Mention the conclusions of each of the above tests.
(ii) Identify the salt Q .
(iii) Write the balanced chemical equations relevant to the tests (i) and (ii) above.
(c) (i) When 2.48 g of a mixture containing only $\mathrm{KNO}_{3}$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ was subjected to complete thermal decomposition, the mass of the solid residue obtained was 1.98 g . Calculate the mass percentages of $\mathrm{KNO}_{3}$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ present in the mixture.
( $C a=40, K=39, N=14, O=16$ )
(ii) Mention an observation can be seen upon heating this mixture.
(09) (a) Arrange the followings in to the increasing order of the given property. Explain the reasons for your answers.
i. Thermal stability of $\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
ii. Basicity of $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}$
iii. The electro negativity of P in $\mathrm{PF}_{3}, \mathrm{PCl}_{3}, \mathrm{PI}_{3}$
iv. The boiling point of $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$
(b) Distinguish the following compounds using only the given method in front of them.

$$
\begin{aligned}
& \left.\begin{array}{c}
\mathrm{Na}_{2} \mathrm{CO}_{3}(a q) \\
\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \\
\mathrm{BaCl}_{2}(a q) \\
\mathrm{NaNO}_{3}(a q)
\end{array}\right\} \\
& \left.\begin{array}{c}
\mathrm{Na}_{2} \mathrm{CrO}_{4}(a q) \\
\mathrm{MgCl}_{2}(a q) \\
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})
\end{array}\right\} \text { By mixing only two solutions together. } \\
& \text { iii. } \left.\begin{array}{c}
\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
\mathrm{NaNO}_{3}(\mathrm{aq}) \\
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})
\end{array}\right\} \text { By heating (the relevant chemical equations for heating should be mentioned) }
\end{aligned}
$$

(c) Write the IUPAC names of the following compounds.
(i) $\mathrm{NaHCO}_{3}$
(ii) $\mathrm{CuSO}_{4}$
(iii) CuCl
(iv) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(v) $\mathrm{KMnO}_{4}$
(10) (a) Deduce the shapes of following molecules / ions using VSEPR theory.
(i) $\mathrm{XeF}_{4}$
(ii) $P F_{5}$
(iii) $\mathrm{NCl}_{3}$
(iv) $\mathrm{ClO}_{4}^{-}$
(v) $\mathrm{NO}_{3}^{-}$
(b) When the inorganic salt $X$ is subjected to complete thermal decomposition, 1.52 g of $\mathrm{Cr}_{2} \mathrm{O}_{3}, 0.72 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$ and 0.28 g of $\mathrm{N}_{2}$ are obtained.
i. Deduce the empirical formula of $X .(C r=52, N=14, O=16, H=1)$
ii. If $X$ contains 2 moles of Cr and does not contain any $\mathrm{H}_{2} \mathrm{O}$ molecule, determine the molecular formula of $X$.
(c) A solution is prepared by dissolving 200 mg of a sample of impure $\mathrm{KMnO}_{4}$ in $100 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O} .15 \mathrm{~cm}^{3}$ of $0.02 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ acidified oxalate $\left[\mathrm{C}_{2} \mathrm{O}_{4}^{-}\right.$] solution is consumed to titrate $25 \mathrm{~cm}^{3}$ of the above solution. Calculate the mass percentage of $\mathrm{KMnO}_{4}$ present in the above $\mathrm{KMnO}_{4}$ sample.

$$
(K=39, M n=55, O=16, C=12)
$$

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+} \\
& \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}
\end{aligned}
$$




Second Team Test - Grade 12-2020
Chemistry Answer Script - Part A

## Part I

| $(1)-4$ | $(11)-3$ | $(21)-2$ | $(31)-2$ | $(41)-1$ |
| :--- | :--- | :--- | :--- | :--- |
| $(2)-1$ | $(12)-4$ | $(22)-4$ | $(32)-4$ | $(42)-4$ |
| $(3)-2$ | $(13)-1$ | $(23)-2$ | $(33)-3$ | $(43)-5$ |
| $(4)-5$ | $(14)-3$ | $(24)-4$ | $(34)-5$ | $(44)-5$ |
| $(5)-3$ | $(15)-1$ | $(25)-5$ | $(35)-5$ | $(45)-2$ |
| $(6)-1$ | $(16)-5$ | $(26)-3$ | $(36)-1$ | $(46)-4$ |
| $(7)-4$ | $(17)-3$ | $(27)-1$ | $(37)-4$ | $(47)-1$ |
| $(8)-2$ | $(18)-4$ | $(28)-2$ | $(38)-2$ | $(48)-3$ |
| $(9)-5$ | $(19)-5$ | $(29)-3$ | $(39)-1$ | $(49)-2$ |
| $(10)-3$ | $(20)-4$ | $(30)-1$ | $(40)-2$ | $(50)-3$ |

## Chemistry Answer Script - Part B

## Part - A - Structured Essay

(01) a. I. The following questions are relevant to the elements of the third period of the periodic table. When answering part (i) to (vi) write the symbol of the element in the blanks given below.
i. Identify the least electronegative element. (Ignore the noble gas.)
$\qquad$
ii. Identify the uni atomic ion with the smallest size. (This ion should be stable.)
..............Al
1
iii. Identify the element which has a stable configuration although it does not have $P$ electrons.
$\qquad$
Mg.
iv. Identify the element which has highest first ionization energy secondly
$\qquad$
Cl
v. Identify the element which forms electron deficient compounds and existing as dimers in gaseous state.
Al
$(5 \times 04$ marks $=20)$
(b) Draw the most acceptable Lewis dot - dash structure can be draw $\stackrel{n}{ }$ for the ion $\mathrm{CH}_{2} \mathrm{NO}_{2}^{-}$. The Skelton of it is given below.
I.


II. The most acceptable lewis dot - dash structure for the molecule $\mathrm{H}_{3} \mathrm{CN}_{2} \mathrm{O}$ is given below. Draw another two Lewis dot - dash structures. Write as 'unstable' under the most unstable structure which is drawn by yourself.

$$
\begin{aligned}
& H-\underset{O}{O}-\underset{\substack{\mathrm{C} \\
\mathrm{C}}}{\mathrm{C}}=\ddot{\mathrm{N}}-\stackrel{1}{\mathrm{~N}}-\mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (04 marks) } \\
& \text { (04 marks) } \\
& \text { unstable cozmarks) }
\end{aligned}
$$

III. By considering the Lewis dot dash structure given below mention the followings for the atoms $C, N$ and $O$,
i. $V S E P R$ pairs around atoms.
ii. The electron pair geometry around the atom.
iii. shape around the atom.
iv. Mention the hybridization of the atoms.
v. Mention the oxidation number of the atoms.


Atoms are numbered as follows.

$$
\mathrm{H}-\mathrm{O}^{1}-\mathrm{C}^{2}-\mathrm{C}^{3}-\mathrm{C}^{\mathrm{C}^{6}}-\stackrel{N^{5}}{\substack{\text { L }}}-\mathrm{Cl}
$$

|  | $O^{1}$ | $C^{2}$ | $C^{3}$ | $N^{5}$ |
| :--- | :---: | :---: | :---: | :---: |
| VSEPR pairs | 4 | 2 | 2 | 4 |
| Electron pair geometry | tetrahedral | linear | linear | tetrahedral |
| shape | angular | linear | linear | trigonal |
| pyramidal |  |  |  |  |$|$| Sp |
| :--- | :---: |

IV. Identify the atomic / hybrid orbitals which are participated to form the following $\sigma$ bonds, present in the Lewis dot dash structure of part (iii) above. [The numbering of the atoms is the same as in part (iii)]
I. $H-O^{1}$
H......................
$0^{1} \ldots P^{3}$...................
II. $O^{1}-C^{2}$
$0^{1} \ldots \ldots \rho^{3} \quad h \cdot 0 .$.
$C^{2} \ldots s p$ h.
III. $C^{2}-C^{3}$
$C^{2} \ldots \ldots$...................
$C^{3} \ldots \ldots S P$...... $h, \ldots$,
IV. $C^{3}-C^{4}$
$C^{3}$... ... S..P... h., O......
$C^{4} \ldots s p^{2} \ldots \quad n \cdot 0$,
Vi. $C^{4}-N^{5}$
$C^{4} \ldots \ldots p^{2}$.............
$N^{5} \quad{ }^{S} \rho^{3} \quad$ h................
Vi. $C^{4}-O$
$C^{4} \ldots \ldots \rho^{2}$ h. ........... ( $12 \times 01$ mark $=12$ )
$2 p \ldots \ldots .{ }^{a} . \ldots$ or
$s p^{2}$ hoo.
V. Identify the atomic orbitals which are participated for the formation of the following $\pi$ bonds present in the Lewis dot - dash structure given in above (iii) [The numbering of the atoms is the same as in the above (iii)]
I. $C^{2}-C^{3}$
$C^{2} \ldots \quad 2 p . a \cdot 0 . .$.

II. $C^{4}-O^{6}$
$C^{4} \ldots \ldots$..............
$0^{6} \ldots 2 p$ a. 0 .
$4 \times 01$ monk $=4$ )
VI. i. What is the orientation of the two $\pi$ bonds in the triple bond of the Lewis dot dash structure in part (iii) above.
perpendicularly to each other. (02 monks)
ii. Give an example for a molecule / an ion which is having a triple bond between 2 different atoms.
............... HCN or any correct answer.........................................................................................
N.B. - Your example should not contain more than 3 atoms. The element present in your example should be limited to first and second periods of the periodic table.
(c) i. The atomic orbitals are described by the 3 quantum number $n, l$ and $m_{l}$. Write the relevant quantum number and the name of the atomic orbital in the cages, given below.

1. $\square$ $-1 \quad 4 P$
2. 


4
2
0 $\square$
3.


$$
(\sigma \times 01 \mathrm{mank}=6)
$$

ii. A Arrange the following in to the increasing order of the property mentioned inside the parenthesis is,
I. $\mathrm{BeCO}_{3}, \mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ (decomposition temperature)

$$
\mathrm{MOCO}_{3} \ldots \ldots . . \mathrm{MgCO}_{3}<\ldots . . . . . . .
$$

II. $\mathrm{N}^{+} \mathrm{O}_{2}, \mathrm{NO}_{2}, \mathrm{NO}_{2}^{-}$( $O \widehat{\mathrm{~N} O}$ bond angle)

III. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$ ( $\mathrm{C}-\mathrm{C}$ bond length $)$

$$
\mathrm{C}_{2} \mathrm{H}_{2}<\mathrm{C}_{2} \mathrm{H}_{4}
$$

(02) a. X is an element of $S$ - block in the periodic table. The first second and third ionization energies of $X$ are $519,7300,11800$ in $\mathrm{kJ} \mathrm{mol}^{-1}$ respectively. $X$ occurs a reaction which is not strong with water forming its hydroxides and liberating $H_{2}(g)$. The hydroxide is basic. When $X$ reacts with diluted acids, $H_{2}(g)$ gas is released. $X$ is combusted in air, a mixture of two solid compounds are formed. When those two compounds are added to water the basic gas $Y$ is evolved.
i. Identify $X$.

Li (of marks)
ii. Write the electron configuration of the ground state of $X$.
.......................................................................................
iii. Write the chemical formulae of the compounds formed in combustion of $X$ in air.

iv. Consider the following compounds of the elements of the other group except the group of $X$ in $S$ block. Inside the given cages, mention whether the given properties below are increasing or decreasing when going down the group.

1. The water solubility of sulphites.
2. The water solubility of hydroxids
3. Thermal stability of metal nitrates.


Give reasons for your answer for (III)

$\qquad$
$\qquad$
$\qquad$
$\qquad$
v. Identify the element of $s$ block which does not belong to the group of $x$ of the periodic table, but reacts with $H_{2}(g), O_{2}(g)$ and $N_{2}(g)$ in a more similar way to $x$.
Mg
(o. 4 marks.)
vi. What is the basic gas $y$ ?

$$
\mathrm{NH}_{3}
$$

vi. Give an experiment to identify $y$ ?



To award marks for (i) to (v), (i) should be correct. To award marks for (vi) to (viii), (vi) should be correct.
(b) The test tubes labelled as A to E contain the aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{3}$, $\mathrm{NaOH}, \mathrm{K}_{2} \mathrm{CrO}_{4}$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (not in order) The relevant test ${ }^{\mathrm{S}}$ carried out for each of these test tubes $A$ to $E$ and the relevant observations are given below.

| Test Tube | Test | Observation |
| :---: | :--- | :--- |
| A | Add $1 \mathrm{~cm}^{3}$ of $\mathrm{BaCl}_{2}$ then add dil. HCl. | A white colour precipitate is <br> formed and then it is dissolved. |
| B | Add $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution. | A white color precipitate is <br> obtained. |
| C | Add about $1 \mathrm{~cm}^{3}$ of $\mathrm{BaCl}_{2}$ solution then <br> add dil. HCl. | A white colour precipitate is <br> formed. it does not dissolve. |
| D | Add about $1 \mathrm{~cm}^{3}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution <br> then add dil. HCl. | A white colour precipitate is <br> obtained. |
| E | Add $1 \mathrm{~cm}^{3}$ of $\mathrm{BaCl}_{2}$ solution | A yellow colour precipitate is <br> formed. |

(i) Identify the solutions present in test tubes $A$ to $E$.

(ii) Write the balanced chemical / ionic equations for the reactions taking place in $A, B^{C}, D$ and $E$.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{BaCl}_{2} \longrightarrow \mathrm{BaSO}_{3}+2 \mathrm{NaCl} \\
& 2 \mathrm{NaOH}+{\mathrm{Mg}\left(N O_{3}\right)_{2}}^{\mathrm{NaCOH}} 2+2 \mathrm{NaNO}_{3} \text {. } \\
& \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl} \\
& \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaNO}_{3} \\
& \mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{CrO}_{74} \rightarrow \mathrm{BaCrO}_{4}+2 \mathrm{KCl} \\
& \text { ( } 5 \times 05 \text { marks) }=25 \text { ) }
\end{aligned}
$$

(03) (a) I. To prepare $250 \mathrm{~cm}^{3}$ of 1 moldm ${ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution in the laboratory, $\mathrm{Na}_{2} \mathrm{CO}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ is provided. ( $N a=23, C=12, O=16, H=1$ )
i. Calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required.

$$
\begin{aligned}
n & =c \cdot v \\
& =1 \mathrm{moldm} m^{-3} \times 250 \times 10^{-3} \mathrm{dm}^{3} v v \\
& =0.25 \mathrm{~mol} \quad(5 \times 2 \text { montes }=10)
\end{aligned}
$$

should
ii What is the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ that can be weighed?

$$
M\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 5 \mathrm{H}_{2}\right)=(23 \times 2)+12+(16 \times 3)+(5 \times 18)=196
$$

$$
\begin{aligned}
& m=n \cdot M \quad \int=0.25 m 01 \quad x 196 \mathrm{~g}^{2} \text { mot. } \\
& m=49 g \\
& 02 \text { mr los } \times 7=14
\end{aligned}
$$

for the unit $=1$
of the final answer en......................................... 15 mans.)
iii. What is known as a standard solution.
$\qquad$
A solution
with a ka own
concentration
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$a$
iv. What is known as primary standard solution?

For the preparation of aptandard solution if extremely



v. Give 2 examples for the primary standards? (05 monks) solution
CTs
$\mathrm{NaCO}_{3}, \mathrm{Ka}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{KIO}_{3}$ (is'manlas)

For any E is known as a priming studand
$\qquad$
$\qquad$
$\qquad$
vi. Why is it impossible to prepare a standard NaOH solution with an accurate concentration?
$\qquad$ the dissolution of $\mathrm{CO}_{2}$
$\qquad$
vii. The concentration of $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution prepared above can be changed in slightly small value. Give 2 reasons for that.



viii. What is the glassware which is used to prepare a solution with a known concentration?
$\qquad$
$\qquad$
$\qquad$
ix. Calculate the volume should be measured from the above $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to prepare $100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
$C_{1} v_{1}=C_{2} v_{2}$ ( 5 marks) $\quad *$ if calculated using $1 \mathrm{moldm}^{-3} \times v=0.25 \mathrm{moldm}^{3} \times 100 \mathrm{~cm}^{3}(04+1)$ marks
(04) In a certain compound, $30.46 \%$ of oxygen and $69.54 \%$ of nitrogen are present by mass. The relative molecular mass of the compound is within 90-95.
i. Determine the empirical formula of the compound. $(N=14, O=16)$
$30 .{ }^{N}$
mass
$30.46 \%$
0
$n=\frac{m}{M}$

$$
\begin{aligned}
& 30.46 \\
& 30 . \frac{46}{14 \mathrm{~g} \mathrm{~mol}^{-1}}
\end{aligned}
$$

$$
69.54
$$

$$
69.54 / 16 \mathrm{gmoi} 1
$$



$$
2.17 \mathrm{~mol}
$$

4.34 mol
ratio
1
2
ii. Determine the molecular formula of the compound.

iii. Calculate the accurate molar mass of the compound.

$$
\begin{aligned}
\mathrm{N}_{2} \mathrm{O}_{4}= & {[(14 \times 2)+(16 \times 4)] \mathrm{gmol}^{1} } \\
= & 92 \mathrm{gmoi}^{-1}
\end{aligned}
$$

(b) I. $\mathrm{KMnO}_{4}$ is a colourful compound.
i. Write the IUPAC name of $\mathrm{KMnO}_{4}$.
potassillm permanganate (os monks)
ii. Write the chemical formula of the oxide derived from the oxidation number of Mn in $\mathrm{KMnO}_{4}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iii. Write the election configuration of $M n$ as $1 s^{2} 2 s^{2} \ldots \ldots \ldots$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}
$$

$\qquad$
iv. In acidic medium $\mathrm{KMnO}_{4}$ reacts with $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
& \left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}\right) \\
& \left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}\right)
\end{aligned}
$$

1. Write the oxidation half reaction. $\qquad$
$\qquad$
$\qquad$
2. Write the reduction half reaction. $\qquad$
$\qquad$
$\qquad$
3. Write the balanced ionic reaction. $\qquad$ (05 macs)
$\qquad$
$\qquad$
4. Write the balanced chemical equation if dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used as the acidic medium.
$\qquad$

$$
+4 \mathrm{~K}_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{O}
$$

cos marks)

For the reaction,
(c) At $298 \mathrm{~K}_{\mathrm{g}} 2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$, the standard molar enthalpy is $90 \mathrm{kJmol}^{-1}$. At 298 K the standard entropy change $250 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
i. Calculate $\Delta G^{\theta}$ for the reaction.

$$
\begin{aligned}
& =\Delta H^{\theta}-7 \Delta S^{\theta} \quad \text { (05manks) } \\
& \left.\left.=(90 k] m^{-1}-298 k \times 250 \times 10^{-3} k\right] \operatorname{mol}^{-1} k^{-1}\right) \\
& =15.5 \mathrm{~kJ} \mathrm{Jmol}^{-1} \quad(0 .
\end{aligned}
$$

ii. Explain the spontaneity of the reaction at 298 K .
$\qquad$
$\qquad$
(0S marks)
$\qquad$
$\qquad$
$\qquad$
iii. Calculate the minimum temperature required, for the reaction to be spontaneous.
$\qquad$
$\Delta s$

$$
\begin{gathered}
\frac{90 k J \operatorname{mas}}{6.25 k J \operatorname{mat} K^{-1}}<T \quad(02+1) \text { marks } \\
360 k<T \quad(33 \text { mark } \Rightarrow)
\end{gathered}
$$

Chemistry - 2020
Grade $-12-2^{\text {nd }}$ term test
Answers - Essay
(5) (a) (i). Applying, $P V=$ RRT to the vessel $A$,

$$
1.6 \times 10^{5} \mathrm{Nm}^{-2} \times 4.157 \times 10^{-3} \mathrm{~m}^{3}=D_{A^{*}} 8.314 \mathrm{Jmol}^{-1} \times 400 \mathrm{~K}
$$

moles of $\mathrm{NH}_{3} \quad\left(n_{A}\right)=0.2 \mathrm{~mol}$,
To the vessel $B$,

$$
2.4 \times 10^{5} \mathrm{Nm}^{-2} \times 8.314 \times 10^{-3} \mathrm{~m}^{3}=n_{13} \times 8.314 \mathrm{Jmol}^{-1} \times 400 \mathrm{k}
$$

moles of Cl $\quad\left(n_{B}\right)=0.6 \mathrm{~mol}$.

$$
(5 \times 3 \text { marks }=15)
$$

| (ii). I. | $\mathrm{NH}_{3}(9)+3 \mathrm{Cl}_{2}(9) \rightarrow \mathrm{NCl}_{3}(1)+3 \mathrm{HCl}$ (9) |  |  |
| :---: | :---: | :---: | :---: |
| Initial <br> moles | 0.2 | 0.6 | - |
| Final <br> moles | - | - | 0.2 |

Total number, of gaseous moles $\}=0.6 \mathrm{~mol}$
in the vessels
II. Apply $P V=$ DRT to the $(3 \times 5$ wanks $=15)$. final systems $p \times 12.471 \times 10^{-3} \mathrm{~m}^{3}=0.6 \mathrm{~mol} \times 8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \times 400 \mathrm{~K}$ $p=1.6 \times 10^{5} \mathrm{pa}$.
(2 0marks)
III. All $\mathrm{C}_{2}\left(9\right.$, and $\mathrm{NH}_{3}(g)$ ware reacted completely inside the system, when $\mathrm{NH}_{3}(9)$ is added since unreacted is not existing, a reaction doesnot take place. But because of the addition of 0.4 mol of $\mathrm{NH}_{3}(9)$, its partial pressure adds to the total pressure. "The total pressure is increasing, IV.
$P V=n R T$ to the system, (10 marks)

$$
\begin{aligned}
p \times 12.471 \times 10^{-3} \mathrm{~m}^{3} & =1 \mathrm{~mol} \times 8.314 \mathrm{Jmol}^{-1} \mathrm{k}^{-1} \times 400 \mathrm{k} \\
p= & 2.66 \times 10^{5} \mathrm{Nm}^{-2} \sim \mathbb{C} \quad(\text { marks })
\end{aligned}
$$

(b) (i).

(20 marks)
(ii)

$$
\begin{aligned}
& M g(s)+2 H C l_{(a q)} \rightarrow \mathrm{MgCl}_{2}(a 4) \mathrm{H}_{2}(9) \quad \text { ( } 5 \text { marks) } \\
& D=D
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P_{H_{2}} & =P_{T}-P_{\mathrm{H}_{2} \mathrm{O}} \\
& =1.013 \times 10^{5} \mathrm{~Pa}-0.036 \times 10^{5} \mathrm{~Pa} . \\
& =0.977 .10^{5} \mathrm{~Pa}
\end{aligned}
$$

To $H_{2}$ (q), $\quad P V=$ NRT.

$$
\begin{array}{r}
0.977 \times 10^{5} p a \times 50 \times 10^{-6} \mathrm{~m}^{3}=n \times 8.314 \mathrm{Jmol}^{-1} \times 300^{-1} \\
n=0.002 \mathrm{~mol} .(0.0019)
\end{array}
$$

molar ratio, $\mathrm{Mg}: \mathrm{H}_{2}$
is 1.1 so,
moles of $M g=0.002 \mathrm{~mol}$

$$
\begin{aligned}
& \text { mase of } \quad=\frac{M y g_{m a s s}}{M g_{r \cdot a \cdot m}} \\
& \begin{array}{l}
0.002 \mathrm{~mol}=\frac{0.05 g}{M g_{\text {r.a.m. }} \quad \quad(5 \times 5 \text { manks }=25)} .
\end{array} \\
& \text { (iv) }
\end{aligned}
$$

Assumption - $H_{2}$ gas behakès ideally.
. ( 5 marks)
marks-55
(c) (i) Assumptions:-

* The true volume of the particles are very smalle relative to the empty spaces existing among them. * All gas molecules travel in straight lines until they collide with each other or collide with the wall of the vessel.
* The collisions of the gas molecules molecules or the collisions occurred with the walls of the container is perfectly elastic.
* The attractive forces or repulsive forces donot exist among the gas particles
*. A pressure is exererted by the gas because of the all collisions occurred by the gas molecules with the walls of the container. (marks $2 \times 5=10$ )

$$
\text { (ii) } \quad P V=\frac{1}{3} m N \overline{c^{2}} \quad \text { (05 marks) }
$$

$$
P=\text { Pressure. }
$$

$$
V \text { = volume of the gas. }
$$

$$
m=\text { mass of a partiteelmolecule of the gas. }
$$

$$
N=\text { the total number of gas particles } 1 \text { molecules. }
$$

$$
\overline{c^{2}}=\text { Mean square speed }
$$

$$
\begin{aligned}
& \text { (05 marks) } \\
& 20 \text { marks }
\end{aligned}
$$

(6) (a).
(i) $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{q}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}): \mathrm{AH}_{\mathrm{f}}^{\mathrm{O}}$
(ii). Na (s) $\longrightarrow \mathrm{Na}$ (9); $\Delta H_{\text {S. }}^{\circ}$
(iii) $\mathrm{O}_{2}(9) \rightarrow 20(9) ; \Delta H_{D}^{\theta}$
(iv) $\frac{1}{2} C l_{2}(9) \rightarrow C l$ (g) ; $\Delta H_{a+m}^{\theta}$ $(5 \times 5$ manks. 25).
(b). (i). $2 \mathrm{H}_{2}(9)+\mathrm{O}_{2}$ (9) $\stackrel{\Delta H_{f}^{\theta}}{f} 2 \mathrm{H}_{2} \mathrm{O}$ (q) marks - 25


By applying Hess's law,

$$
\begin{gathered}
\Delta H_{f}^{\theta}+4 \times 460 \mathrm{kJmol}^{-1}=2 \times 432 \mathrm{~kJ} \mathrm{~mol}^{-1}+494 \mathrm{k}_{\mathrm{Jmol}} \mathrm{Jm}^{-1} \\
\Delta H_{f}^{\theta}+1840
\end{gathered} \begin{aligned}
& \Delta H_{f}^{\theta}=864+494 \\
& \Delta 58-1840
\end{aligned}
$$

OR

$$
\frac{\Delta H^{0}=-482 k \mathrm{Jmol}^{-1}}{(2 \times 5 \operatorname{marks}=10)}
$$

$$
\begin{aligned}
\Delta H_{f}^{\theta} & =\sum \Delta H_{D}^{\theta}\left(y r \text { ngom }-\sum \Delta H^{\theta}\right. \\
& =2 \times 432 k \mathrm{Kmol}^{-1}+494 \mathrm{kJmol}^{-1}-4 \times 460 \mathrm{kJmol} \\
& =864+494-1840
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\Delta S_{r}^{\theta} & =S_{\text {(products) }}^{\theta} S_{\text {Reactants })^{2}}^{\theta} \\
& =2 \times 188.8 \mathrm{Jk}^{-1} \mathrm{~mol}-\left\{2 \times 130.7 \mathrm{~J}^{-1} \mathrm{~mol}^{-1}+205.1 \mathrm{Jkmol}^{-1}\right\} \\
& =377.6-\{261.4+205.1\} \\
& =377.6-466.5 \\
& =-88.9 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

(iii).

$$
\begin{aligned}
\Delta G_{r}^{\theta} & =\Delta H_{r}^{\theta}-T \Delta S_{r}^{\theta} \\
& =-482 k \mathrm{Jmol}^{-1}-298 \mathrm{k} \times\left(-88 \cdot 9 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right) \\
& =-482 \mathrm{kJmol}^{-1}+26492.2 \mathrm{Jmol}^{-1} . \\
& =(-482+26.49) \mathrm{kJol}^{-1} \\
& \left.=-455.51 \mathrm{kJmol}-1-2 \times 2 \mathrm{JmarkS}^{-1}=10\right)
\end{aligned}
$$

Since $\Delta G_{r}^{\theta}<0, \quad$ ( 05 marks) 55 marks
Reaction is spontaneous.
(C).

(7) (a)
(i)

$$
\begin{aligned}
& \mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O} \text { ( } 5 \text { marks) } \\
& \text { (ii) } Q=m C \Delta T \text { (marks) } \\
& =25^{2} \mathrm{Cm}^{3} \times 1 g^{2} \operatorname{cm}^{3} \times 4.2 \mathrm{~J}^{-1} g^{-1} \times\left(313^{2}-300\right) \mathrm{k} \\
& =13650 \mathrm{~J} \\
& =13.65 \mathrm{~kJ} .
\end{aligned}
$$

$$
(5 \times 2 \text { marks }=10)
$$

(iii).

Heat liberated

$$
\text { by } 0.25 \mathrm{~mol} \mathrm{OF} \cdot \mathrm{HNO}_{3}=13.65 \mathrm{~kJ}
$$

Heat liberated by inol of NOs $=\frac{13.65 \mathrm{~kJ}}{0.25 \mathrm{mul}}$

$$
=54.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\therefore$ The standard enthalpy of neutralisation $=-54.6<\mathrm{Jmol}^{-1}$
(iv) 1. The . $\quad(3 \times 5$ marts $=15$ )

To total heat eased by the reaction is absorbed by the completely by the solution. (not heat loss to the surroundings and the plastic vessel is heat insulated.)
II. The consideration of the density of the final solution is equal to that density wo water and S.h.C of the solution is equal to the s.h.C. OF the water.
(v) The reasons to deviate ( $\quad$ arks $5 \times 2=10$ ) the heat loss surrounding are toss to the surrounding and a part af the heat evolved by the reaction exchanges to the viastic vessel.
(Vi) $\mathrm{CH}_{3}\left(\mathrm{COH}_{\text {cap }}+\mathrm{NaOH}\right.$ (aq) $\rightarrow \mathrm{CH}_{3} \mathrm{COONa}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ since acetic acid is a weak acid the a part of the heat evolved is gained to its dissociation. Then the standard enthalpy OF neutralisation takes a lower value than -57 KJmol

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{Ba}^{(\mathrm{OH})_{2}(a q)} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O} \text { (l) }
$$

Here the standond enthalpy takes value igreater than -114 kgmos because of the formation of 2 moles of $\mathrm{H}_{2} \mathrm{O}(l)$ 6 marks and the precipitation of $\mathrm{BaSO}_{4}$ (s)
(b) (i) $2 \mathrm{KNO}_{3}$ (s) $\xrightarrow{\Delta} 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(9)$

$$
\begin{array}{r}
5 \mathrm{NO}_{2}^{-}+6 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \rightarrow 5 \mathrm{NO}_{3}^{-}+2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \\
\\
\quad\left(2 \mathrm{NO}_{0}\right.
\end{array}
$$

$$
\text { (ii) moles of } K M n o+\text { required }=\frac{0.015}{1000} \times 30 .(2 \times 10 \text { marks } 20)
$$

$$
=4.5 \times 10^{-4} \mathrm{~mol}
$$

$$
\begin{aligned}
& \therefore \text { number of moles of } \mathrm{NO}_{2}^{-} \text {Present } E=\frac{4.5 \times 10^{-4} \mathrm{~mol} \times 5}{2} \\
& =11.25 \times 10^{-4} \mathrm{~mol} \\
& \left.\begin{array}{c}
\text { number of moles of } \mathrm{NO}_{2}^{-} \text {present } \\
\text { in } 250 \mathrm{~cm}^{3} \text { of the solution }
\end{array}\right\}=\frac{11.25 \times 10^{-4} \mathrm{~mol}}{25} \times 250 \\
& =11.25 \times 10^{-3} \mathrm{~mol} \\
& =11.25 \times 10^{-3} \mathrm{~mol} \\
& \therefore \text { moles of. } \mathrm{KNO}_{2}
\end{aligned}
$$

The number of moles of $\mathrm{KNO}_{3}$, decomposed $=11.25 \times 10^{-3} \mathrm{~mol}$.

$$
\begin{array}{r}
\left.\therefore \quad \text { The mass of } \mathrm{KNO}_{3},\right\} \\
\text { decomposed }
\end{array}
$$ de composed

Remaining:". mass of $\mathrm{KNO}_{3}$

$$
\begin{aligned}
& =1.55 \mathrm{~g}-1.13 \mathrm{~g} \\
& =\frac{0.42 \mathrm{~g}}{(10 \times 3 \text { marks }=30)}
\end{aligned}
$$

(c) (i) $\mathrm{Ce}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{HO}_{2}+\mathrm{MnO}_{4}+3 \mathrm{C} \longrightarrow \mathrm{MnO}_{2}+4 \overline{\mathrm{OH}}+(10$ marks $]$
(iii).

$$
\begin{array}{rl}
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \\
(15 \text { marks })
\end{array}
$$

(8) (a)
(i) $2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ (s) $\longrightarrow 2 \mathrm{MgO}$ (s) $+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}$ (g)
(ii) $2 \mathrm{NaNO}_{3}$ (s) $\vec{\triangle} 2 \mathrm{NaNO}_{2}$ (s) $+\mathrm{O}_{2}$ (g)
(iii) $2 \mathrm{NaHCO}_{3}$ (s) $\triangle \mathrm{NaCO}_{2}\left(\right.$ (s) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}$ (g) .
(iv) $4 \mathrm{LiNO}_{3}$ (s) $\vec{\Delta} 2 \mathrm{LiO}_{2}$ (s) $+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}$ (g)
(v) $\mathrm{CaCO}_{3}(\mathrm{~s}) \vec{\Delta} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(b) Ii ${ }^{\text {(i) }}$ it contains $\mathrm{Ba}^{2+}$ or $\quad(5 \times 10 \text { marks }=50)^{\sim}$ 50 mask
(ii) The gas is $\mathrm{NO}_{2} \rightarrow$

The satt should be $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ or $\left.\mathrm{srCNO}_{3}\right)_{2}$.
(iii) $\mathrm{Ba}^{2+}$ ion gives a yellowish green to the flame

$$
(6 \times 5 \text { monks }=30)
$$

II. Salt - $\left.\mathrm{Ba}_{\text {INO }}^{3}\right)_{2}$ (10 marks)
III. i. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaNO}_{3}$
ii. $\left.2 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{CS}\right) \xrightarrow[\Delta]{ } \quad 2 \mathrm{BaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

$$
(2 \times 10 \text { marks }=20)
$$

bo marks
(c)

$$
\begin{aligned}
& \text { (i) } \begin{array}{r}
2 \mathrm{KNO}_{3}(\mathrm{~s}) \\
x \mathrm{mOl}
\end{array} \xrightarrow[\Delta]{ } \quad 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \begin{array}{c}
2\left(a\left(\mathrm{NO}_{3}\right)_{2 \mathrm{CS}}\right. \\
y \mathrm{~mol}
\end{array} \xrightarrow[\Delta]{ } \quad 2 \mathrm{CaOCs}_{\mathrm{cs}}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \quad 2 \\
& (2 \times 3 \mathrm{mcm} / \mathrm{s}=6)
\end{aligned}
$$

'moles of $\mathrm{KNO}_{3}=x \mathrm{~mol}$
moles of $(\mathrm{CaCNO})_{2}=y \mathrm{~mol}$

$$
\begin{align*}
101 x+164 y & =2.84  \tag{1}\\
85 x+56 & =1.98 \\
\text { (1) } \times 85 & (2)
\end{align*}
$$

-(2) $\times 101$,
mass of

$$
\begin{aligned}
\therefore\left(\mathrm{CaCNO}_{3}\right)_{2} & =0.005 \mathrm{~mol} \times 164 \mathrm{gmos}^{3} \\
& =0.82 \mathrm{~m}
\end{aligned}
$$

mass percentage of

$$
\begin{aligned}
\left(u\left(\mathrm{NO}_{3}\right)\right. & =\frac{0.82 \mathrm{~g}}{2.84 \mathrm{~g}} \times 100 \% \\
& =28.87 \%
\end{aligned}
$$

$\therefore$ mass percentage $0 f \mathrm{KNO}_{3}=100-28.87$

$$
=71.13 \%
$$

(ii)

$$
(6 \times 3 \text { marks }=18)
$$

The evolution of a brown colour gas
( 8marks)

40 marks

09 (a) (i)
Here the anion is common $\left(\mathrm{NO}_{3}^{-}\right) \checkmark$ radius of cations varies as, $\mathrm{Be}^{2+}<\mathrm{Mg}^{2+} \mathrm{<Ca}^{2+}$

$$
\therefore \text { polarizing power, } \mathrm{Be}^{2+}>\mathrm{Mg}^{2+}>\mathrm{Ca}^{2+}
$$

$\left.\begin{array}{ll}\text { covalent character, } & \mathrm{BeCO}_{3}>\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3} \\ \text { ionic character, } & \mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}\end{array}\right\}$
$\therefore$ The thermal stability, $\mathrm{BeCO}_{3}<\mathrm{MgCO}<\mathrm{CaCO}_{3}$

$$
(5 \times 2 \text { monks }=10)
$$

(ii) NaOH

Here $\mathrm{OH}^{-}$anion is common
cationic radius $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{K}^{+} \sim$
$\because$ polarizing. power $\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{K}^{+} \vee$
$\left.\begin{array}{l}\therefore \text { the covalent character, } \mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{NaOH}>\mathrm{KOH} \\ \text { ionic character, } \mathrm{Mg}(\mathrm{OH})_{2}<\mathrm{NaOH}<\mathrm{KOH}\end{array}\right\} \geqslant$
$\therefore$ the basicity., $\mathrm{Mg}(\mathrm{OH})_{2}<\mathrm{NaOH}<\mathrm{KOH}$
*. The correct answer can be obtained based on the thelectronegativity values

$$
(5 \times 2 \text { marks }=10)
$$

$$
P F_{3} \quad \mathrm{PCl}_{3}
$$

$$
\mathrm{PI}_{3}
$$

| hybridization | $S p^{3}$ | $s p^{3}$ | $S p^{3} \sim$ |
| :--- | :---: | :---: | :---: |
| charge | 0 | 0 | 0 |
| Oxidation | +3 | +3 | +3, |

therefore to compare the electoringativities, of $P$, the electrongativity, of the other atoms bonded to $P$ should be considered.

$$
\begin{gathered}
\text { The electronegativity } \\
\text { varies as }
\end{gathered}, \quad \mathrm{F}>\mathrm{Cl}>\mathrm{Br}
$$

$$
\text { So st of } P \text { is increasing as, } \mathrm{PF}_{3}>P C_{3}>P I_{3}
$$ $\therefore$ The electroviegatint), $\mathrm{PF}_{3}>\mathrm{PC}_{3}>P \mathrm{I}_{3}$, - ( $7 \times 2$ monks $=14$ )

(iv). Hydrogen bonds. are present in $\mathrm{H}_{2} \mathrm{O}$. $V$ Dipole-pipole attractions are present among the molecules of $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$.

But since the molar mass of $H_{2} s e$ is greater than that of $\mathrm{H}_{2} \mathrm{~S}$, dipole-dipole interactions $O P$ $\mathrm{H}_{2} \mathrm{Se}$ is greater than that of $\mathrm{H}_{2} \mathrm{~S}$. Since present in tho is stranger than the dipole-dipule
attractions present in $H_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$, it is difficult to vapourize.
$\cdots$ boiling points vary $\mathrm{CS}, \mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$

$$
\begin{aligned}
& \quad(6 \times 2.5 \text { marks }=15) \\
& \text { total marks } 49
\end{aligned}
$$

(b) (i)

In mixing solution pains as above (womarks) is added, two white colour $f$, when $\mathrm{BaCl}_{2}(\mathrm{ag})$ obtained when precipatertes are ${ }_{3}$ is added, if the White precipitates formed, are insoluble it should be $\mathrm{BaSO}_{4}$ (s), the presence of $\mathrm{NaSO}_{4}$ can be Concluded:

If the white precipitate dissolves in dill $\mathrm{HNO}_{3}$, At can be concluded that $\mathrm{BaCO}_{3}(\mathrm{~s})$ is preient and the solution contains $\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)$. Bine solution pairs are mixing as above, $\mathrm{NaNO}_{3}$ does not give any precipitate.

$$
(7 \times 2 \text { marks }=14)
$$

(c) (i) $\mathrm{NaHCO}_{3} \ldots$ Sodium hydy'gen carbonate
(ii) $\mathrm{CuSO}_{4}$ - copper(iI) sulfate.
( 181 )
(iv) $\mathrm{Fe}_{2}\left(\mathrm{CSO}_{4}\right)_{3}-\operatorname{Iron}($ III) sulfate
(v)
potassium permanganate $V$

$$
(5 \times 5 \text { marks }=25)
$$

(b) ii


In mixing solution pairs as above, if only a yellow
colour precipitate is formed , the added formed, solution should be $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ lag. If only a white colour precipitate is is obtained it is $\mathrm{MgCl}_{2}(\mathrm{aq})$
solution two precipitates are formed, the added Should be $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{Caq}$. upon the addition of $\left.\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{Ga}\right) \mathrm{a}$ white colour precipitate and a yellow colour precipitate is are formed

$$
(9 \times 2 \text { marks }=18)
$$

(iii) $\left.2 \mathrm{Mg}_{\mathrm{CO}}^{3}\right)_{2}$ (ag) $\xrightarrow[\Delta]{\longrightarrow} 2 \mathrm{MgO}_{\text {(g) }}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2}(\mathrm{~g})$ ~ $2 \mathrm{NaNO}_{3}(\mathrm{aq}) \xrightarrow[\Delta]{ } 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \sim$ $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \quad \xrightarrow[\Delta]{ } \quad X$

In heating, $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$ does not si occur any change. If a brown colour gas is evolved upon heating that is $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ . When it is heating, a solid residue and a colourless gas is given by $\mathrm{NaNO}_{3}(\mathrm{aq})$
(C) (4) NaHCO, Sodium hydrogen, carbonate r $\begin{aligned} & (6 \times 4 \text { murks }=24) \\ & \text { total marls }=76)\end{aligned}$
(ii). $\mathrm{CuSO}_{4}$ - capper (II) sulfate $\checkmark$
(iii) Cull - capper (I) Chloride $\checkmark$
(iv). $\left.\mathrm{Fe}_{2} \mathrm{CSO}_{4}\right)_{3}-\operatorname{Iron}$ (III) Sulfate $\sim$
(v). $\mathrm{KMnO}_{4}$ - Potassium permanganate $v$

$$
(5 \times 5 \text { marks }=25)
$$

(10)
(a).
(i) $\mathrm{XeF}_{4}$


Total number of electron pairs if $\therefore$

$$
\text { VSEPR pains the central atom }=6 .
$$

$\sigma$ bands
lone pairs

$\therefore$ the shape is square planer.
(ii). $\mathrm{PF}_{5}$


(iii). $\mathrm{NCl}_{3}$
$\therefore$ the shape is trigonal
kipyrasidal

$\left.\begin{array}{c}\text { The total number of } e \text { pairs } \\ \text { around } N\end{array}\right\}=4$ VSEPR pairs $=4$ Obonds $=4$ lone pairs $=0$

- The shape is
trigonal pyramidal
(iv). $\left.\mathrm{ClO}_{4}^{-} \quad \begin{array}{c}\text { The number of total } \\ e \text { pairs around el }\end{array}\right\}=7$

$\begin{aligned} \text { VSEPR pairs } & =4 \\ \text { O bondS } & =4 \\ \text { lone pairs } & =0\end{aligned}$
$\therefore$ The shape is tetrahedral
$\begin{gathered}\text { The total number } O F \text { epairs? } \\ \text { around } N\end{gathered}=4$
(v) $\because \because \because$

VSEPR Parrs $=3$
a bonds $=3$
lone pairs $=0$
(b)

$$
\begin{aligned}
\mathrm{m} \text { oles of } \mathrm{E}_{2} \mathrm{O}_{3} & =\frac{1.52 \mathrm{~g}}{152 \mathrm{gmol}^{-1}} \\
\text { moles of } \mathrm{H}_{2} \mathrm{O} & =0.01 \mathrm{~mol} \\
& =\frac{0.72 \mathrm{~g}}{18 \mathrm{gmol}^{-1}} \\
& =0.04 \mathrm{~mol} \\
\text { moles of } \mathrm{N}_{2} & =0.28 \mathrm{~g} \\
& =0.8 \mathrm{gmol}^{-1} \\
& =0.01 \mathrm{~mol}^{2}
\end{aligned}
$$

molar ratio of,

$$
\begin{aligned}
& C \mathrm{~V}_{2} \mathrm{O}_{3}: H_{2} O: N_{2} \\
& 0.01: 0.04: 0.01
\end{aligned}
$$

$$
1 \because 4
$$


$\therefore$ Empirical Formula $\mathrm{Cr}_{2} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$.

$$
(5 \times 4 \text { marts }=20)
$$

molecular formula of $X_{3} \mathrm{Cr}_{2} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$

$$
\left.\mathrm{NH}_{4}\right) \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

(10 marks)

30 mares'
(C). $2 \mathrm{KMnO}_{4}+\mathrm{SC}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ $(15$ marks $)+2 k^{+}$.
molar ratio, $\mathrm{KMnO}_{4}: \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

$$
2: 5
$$

number of moles of $\mathrm{C}_{2} \mathrm{O}_{4}^{2}$ consumed to titrate, $\quad Z_{\%}^{25 \mathrm{~cm}^{3} \text { of the solution }}=\frac{0.02}{1000} \times 15$
$\therefore$ The number of krano $=3 \times 10^{-4} \mathrm{~mol}$

$$
\left.\begin{array}{rl}
\text { in } 25 \mathrm{~cm}^{3} \text { of } \\
\text { The solution }
\end{array}\right\}=\frac{3 \times 10^{-4} \mathrm{~mol}}{5} \times 2
$$

The number of moles of $\left.\begin{array}{l}\mathrm{KMnO}_{4} \\ \text { in } 100 \mathrm{~cm}^{3} \text { of the solution }\end{array}\right\} \frac{1.2 \times 10^{-4} \mathrm{~mol}}{25 \mathrm{~cm}^{3}} \times 1.00 \mathrm{~cm}^{3}$

$$
=4.8 \times 10^{-4} \mathrm{~mol}
$$

$\therefore$ The mass of $\mathrm{KMnO}_{4}$ present in the sample. $=4.8 \times 10^{-4} \mathrm{~mol} \times 158 \mathrm{gmol}^{-1}$

$$
\begin{aligned}
& =0.07584 g \\
& =75.84 \mathrm{mg} \\
& =\frac{75.84 \mathrm{mg} \times 100}{200 \mathrm{mg}} \\
& =37.92^{\circ} \%_{0} \\
& \left(11 \times 5 \text { marks }=55^{\circ}\right) \\
& 70 \text { marks. }
\end{aligned}
$$

$$
\text { mass percentage of } \mathrm{KMnO}_{4}=\frac{75.84 \mathrm{mg} \times 100 \%}{200 \mathrm{mg}}
$$







