Combined Mathematics Combined Mathematics	90 90 90 90 90 90 90 90 90 90 90	යඹ පළාත් අධ්නාපන දෙපාර්ප් යඹ පළාත් අධ්නාපන දෙපාර්ත්වේ යඹ පළාත් අධ්නාපන දෙපාර්ත්වේ යඹ පළාත් අධ්නාපන දෙපාර්ත්වේ යඹ පළාත් අධ්නාපන් දේවාර්ත්වේ	න්තුව Provincial Department of Ed ජූපැනි provincial Page (mep 0) 5d නතුව Provincial Department of Ed නතුව Provincial Department of Ed නතුව Proling III Department of Ed	ucation - NWP වයම පළාජ අධිතපත දෙවාර්තමේන්තුව Provincial Department of Education - NV
Instructions: * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) * Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only (10) Combined Mathematics I Part Question No Marks Awarded 1	80	යඹ පළාත් අධහාපන දෙපාර්තමේ	න්තුව Provincial Department of Ed	ucation - NWP වයඹ පළාත් අධනපත දෙපාර්තමේන්තුව Provincial Department of Education - N
Instructions: * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) * Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only (10) Combined Mathematics I Part Question No Marks Awarded 1			C. J. Thomas	F (C-1-12 2020
Instructions: * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) * Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only 10			Second Term	lest - Grade 12 - 2020
Instructions: * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) * Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only 10				
* This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, the he answers of the two parts together so that Part A is on top of part B before handling them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only 10	Index No:		Combined	Mathematics I Three hours only
* This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, the he answers of the two parts together so that Part A is on top of part B before handling them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only 10	Instructio	ne:		
* Part A Answer all questions. Write your answers to each question in the space provided. you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only Combined Mathematics I	* This	question paper o		
Answer all questions. Write your answers to each question in the space provided. you may use additional sheets if more space is needed. * Art B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only 1			- 10) and Part B (Q	uestion 11 - 17)
* Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only 1		67.676	. Write your answer	s to each question in the space provided. you may
Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only (10) Combined Mathematics I			if more space is nee	ded.
* At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only (10) Combined Mathematics I		· 	s only. Write your a	nswers on the sheets provided.
You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only	* At th	e end of the tim	e allocated, tie the d	answers of the two parts together so that Part A is
Combined Mathematics I				
Part Question No Marks Awarded Paper II Paper II	T 104 (are permitted to	remove only 1 at 1 D	of the question paper from the Examination Ham.
Part Question No Marks Awarded Paper II Total			For Exan	niner's Use only
Total Final Marks	(10	Combined M	athematics I	Paper I
Pinal Marks Final Marks	Part	Question No	Marks Awarded	Paper II
A	the more	1 - 346 -	· Sala Alexandra	Total
A		2		Final Marks
A	•	3		
A 6 In Numbers In Words S	1 -			Final Marks
10 Marking Examiner Marks Checked by 1 12 Supervised by 1 14 15 16 17 Total	I A			
8 9 10 Total 11 12 13 14 B 15 16 17 Total				
9 10 Total 11 Marking Examiner Marks Checked by 1 2 Supervised by B 15 16 17 Total	1 F			In Words
10	1 +			
Total Marking Examiner Marks Checked by 1 2				-
11	1 +			Marking Examiner
12 2 2 2 2 Supervised by 2 Supervised by 14 5 16 17 Total	-			
13 Supervised by 14 Supervised by 15 16 17 Total	1 · f			Marks Checked by 2
B 15 16 17 Total	1 1		· · ·	Supervised by
B 15 16 17 Total	1. [. 3	Subcivised by
17 Total	В	15		1
Total		16		
		17		
		Total		1
	Paper	r /1 total		1

Percentage

Combined Mathematics 12 - I (Part - A)

Answer all the questions in Part A and only for five questions in Part B.

					•••••						
•••••	•	••••••	•	••••••	•••••••	••••••	••••••••	••••••	••••••	•	••••••
••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	•••••	•••••••	••••••	•••••••	•••••	•••••
••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••		••••••
••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••			•••••	•••••		•••••
••••	•••••								•••••		
••••											
••••											
											•••••
••••				•					•		•••••
Fir	nd all rea	l values	of x sa	atisfying	the inequ	ality 3– :	$x+1 \mid < x^2$				
Fir	nd all rea	l values	of x sa	ntisfying	the inequ	ality 3– .	$x+1 \mid < x^2$				
Fir	nd all rea	l values	of x sa	atisfying	the inequ	ality 3- :	$x+1 \mid < x^2$				
Fir	nd all rea	l values	of x sa	ntisfying	the inequ	ality 3- .	$x+1 \mid < x^2$				
•••••						ality 3- :					
•••••											
•••••											
•••••											
•••••											
•••••											
											•••••

		•••••			•••••				

•••••		••••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••
		•••••		•••••	•••••	•••••			•••••
•••••		••••••							
••••••	••••••		••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••
•••••	••••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
		•••••			•••••				
•••••	· • • • • • • • • • • • • • • • • • • •		••••••	•••••	••••••	••••••	•••••	••••••	•••••
		•••••		•••••	•••••				
•••••		•••••							
••••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••••••	•••••••	•••••
•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••		•••••
		•••••							
Show that ,]	$\lim_{n\to\infty} \frac{\sin(n)}{n}$	$\frac{\tau \cos^2 x}{x^2} =$	= π						
Show that ,	$\lim_{x\to 0} \frac{\sin(\tau)}{\tau}$	$\frac{\tau \cos^2 x)}{x^2} =$	= π						
Show that , }	$\lim_{x\to 0} \frac{\sin(\tau)}{\tau}$	$\frac{\tau \cos^2 x}{x^2} =$	= π						
Show that , }	$\lim_{x\to 0} \frac{\sin(\tau)}{\tau}$	$\frac{\tau \cos^2 x)}{x^2} =$	= π						
Show that ,	$\lim_{x\to 0} \frac{\sin(\tau)}{\tau}$	$\frac{\tau \cos^2 x)}{x^2} =$	= π						
Show that ,	$\lim_{x\to 0} \frac{\sin(\tau)}{\tau}$	$\frac{\tau \cos^2 x)}{x^2} =$	= π						
Show that ,	$\lim_{x\to 0} \frac{\sin(\tau)}{\tau}$	$\frac{\tau \cos^2 x)}{x^2} =$	= π						
Show that ,									
					•••••	•••••	•••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••

So										
		•••••		• • • • • • • • • • • • • • • • • • • •						
•••	••••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••		•••••		•••••		•••••	•••••	•••••	•••••	•••••
		•••••		•••••			•••••			•••••
				• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	
•••										
•••	•••••	•••••		•••••	••••••	••••••	••••••	••••••	•••••	•••••
•••		•••••		•••••		•••••	••••••	•••••	•••••	••••
										•••••
					•••••		•••••			
•••	•••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••
•••	•••••	•••••		•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••				•••••		•••••				••••
	et there is a co									Sho
	et there is a co									Sho
										Sho
										Sho
										Sho
										Sho
										Sho
		non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th 	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th 	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th 	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th 	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^2) $x^2 + x$	- a(1+b)	too.	
th	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^{2}) $x^{2} + x$	- a(1+b)	too.	
th	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^{2}) $x^{2} + x$	- a(1+b)	too.	
th	e above comn	non linear	factor is a	factor of	the polynor	mial (b –	a^{2}) $x^{2} + x$	- a(1+b)	too.	

07)	Let, $f(x) = \frac{1}{\sqrt{x+2}}$; $x \ge -2$ and $g(x) = 2x + 1$
	(i) Find the domain of the function $\frac{f}{g}$
	(ii) Obtain the value of $\left(\frac{f}{g}\right)$ (0)
08)	Show that $a > \frac{11}{9}$, if both roots of the equation $x^2 - 6ax + 2 - 2a + 9a^2 = 0$ are greater than
	three.

09)	If, $\sec \theta + \tan \theta = P$, deduce that $\tan \theta = \frac{P^2 - 1}{2P}$. Here P is a non-zero real constant.
10)	Solve, $sin^{-1}\left(\frac{5}{x}\right) + sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2}$.

Combined Mathematics 12 - I (Part - B)

Answer only five questions.

- a) Let $f(x) = x^4 + Px^2 + r$. Find p and r if f(1) = -9 and f(0) = -8. Find the values of the real 11) constants a, b and c, if f(x) can be expressed in the form $(ax^2 + b)^2 + c$. Here a > 0. Hence find the real roots of f(x) = 0.
 - b) Find the range of values of P, for the expression $(p-1)x^2 4x + p 1$ to be positive for all real values of x.
 - c) If, α, β are the roots of $ax^2 + bx + c = 0$, find the roots of $cx^2 2bx + 4a = 0$ in terms of α, β .
 - d) Separate $\frac{x^2-1}{x^2(2x+1)}$ in to partial fractions.
- 12) a) Sketch the graphs of y = 2|x + 1| - 3 and y = x + 2|x - 1| in the same diagram. Hence solve the equation x + 2|x - 1| = 2|x + 1| - 3. Find the set of value of x, satisfying the inequality x + 2|x - 1| > 2|x + 1| - 3.
 - Let $a = \log_{2n} n$, $b = \log_{3n} 2n$ and $C = \log_{4n} 3n$, for a positive real number n. Prove that 1 + abc = 2bc.
 - c) If $a^x = b^y = c^z = d^w$, obtain that $x\left(\frac{1}{v} + \frac{1}{z} + \frac{1}{w}\right) = \log_a bcd$.
- 13)

a)
$$f: \mathcal{R} \to \mathcal{R}$$
 is defined as follows,

$$f(x) = \begin{cases} -x^4 + 4; & x < 1 \\ -2x; & x \ge 1 \end{cases}$$

- (i) Draw the rough sketch of f(x).
- (ii) Evaluate $\lim_{x \to 1^{-}} f(x)$ and $\lim_{x \to 1^{+}} f(x)$ (iii) Is the function continuous at x = 1? Justify the answer.
- (iv) Find $\lim_{x\to 1} f(x)$, if exists.
- Prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ Evaluate the following limits.

(i)
$$\lim_{x \to 3} \frac{\sqrt{2x-1} - \sqrt{5}}{\sin(x-3)}$$

(ii)
$$\lim_{x \to 0} \frac{(\sqrt{4+x^2}-2) (1-\cos 2x)}{x^4}$$

- 14) a) Write the conditions which should be satisfied for the roots of the equation $ax^2 + bx + c = 0$ to be real and positive. Here $a, b, c \in \mathcal{R}$ and $a \neq 0$.

 When those conditions are satisfied show also that the roots of the equation $a^2x^2 + a(3b 2c)x + (2b c)(b c) + ac = 0$ are real and positive. If the roots of the second quadratic equation are α and β , using a suitable linear transformation, obtain the quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
 - b) (i) Find k, if the distance between the two points (k, 2) and (3,4) is 8 units.
 - (ii) Find the coordinates of the remaining vertex, if (1,0), (6,1) and (5,6) are the vertices of a square separately.
 - (iii) In the triangle ABC, let A = (1,3) and B = (5,3). Find the coordinates of C, if the coordinates of the centroid of the triangle ABC is $\left(\frac{10}{3}, 4\right)$.
- 15) a) State and prove the factor theorem. If the polynomial $f(x) = x^4 + ax^3 + bx + c$ is divisible by (x 1)(x + 1)(x 2), find a, b, and c and find the remaining factors. Also find the solutions of $2f(x + 1) = x^2 + x 2$.
 - b) Separate the rational function $\frac{x^2}{(x-a)(x-b)}$ in to partial fractions in terms of a and b. Hence obtain the partial fractions of $\frac{4x^2}{4x^2-1}$.
 - the partial fractions of $\frac{4x^2}{4x^2-1}$. c) Evaluate $\lim_{x \to \infty} (\sqrt{x^2 + ax + a^2} - \sqrt{x^2 + a^2})$
- 16) a) Using the expression for $\sin(A+B)$, show that $\sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$. Hence deduce that, $\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$.
 - b) If $\alpha + \beta \gamma = \pi$, Prove that $\sin^2 \alpha + \sin^2 \beta \sin^2 \gamma = 2 \sin \alpha \sin \beta \cos \gamma$.
 - c) Find the general solutions of the equation $2 \cos^2 x + \sqrt{3} \sin x + 1 = 0$.
 - d) Obtain that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$
- 17) State the sine rule for a triangle *ABC*
 - a) Prove that, $\frac{a^2 + b^2}{a^2 + c^2} = \frac{1 + \cos{(A B)}\cos{C}}{1 + \cos{(A C)}\cos{B}}$
 - b) In the triangle ABC, the mid point of the side BC is D. According to the standard notation, show that $AD = \frac{\sqrt{2b^2 + 2c^2 a^2}}{2}$,

If
$$B\hat{A}D = \beta$$
, show that $\sin \beta = \frac{a \sin B}{\sqrt{2b^2 + 2c^2 - a^2}}$

If
$$A\widehat{D}C = \theta$$
, show that $\sin \theta = \frac{2b \sin C}{\sqrt{2b^2 + 2c^2 - a^2}}$

සියලු හිමිකම් ඇවිරිණි / All Rights reserved වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම පළාත් අධ්නපත දෙපාර්ත්මාල්ල් Arovincial Hypertiment of Education NWB වන අපුළු අධ්නපත දෙපාර්ත්මෙන්ම Provincial Department of Educatio වයම පළාත් අධ්නපත දෙපාර්ත්මෙන්න Provincial Department of Education NWP වැන පළාත් අධ්නපත දෙපාර්ත්මෙන්න Provincial Department of Education වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව Provincial Depa П Dan cent call present state Proling Penalting Continue of Education Will Edit Carton Continue of Market Department of Edit Carton Continue of Market Department වයඹ පළාත් අධ්නපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP Second Term Test - Grade 12 - 2020 Combined Mathematics II Three hours only Index No:..... Instructions: * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) * Part A Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only (10) Combined Mathematics II Paper I Question No Marks Awarded Paper II Part Total Final Marks 2 3 4 **Final Marks** 5 A In Numbers 6 7 In Words 8 9 10 Marking Examiner Total 11 Marks Checked by 1 12 13 Supervised by 14 B 15 16 17 Total Paper 1 total

Percentage

(Part - A)

1)	The resultant of two forces of magnitude P and $2P$ is $\sqrt{3}P$. Find the angle between the two forces. Also find the angle between the resultant force and the first force.
2)	A particle of mass 5kg is on a fixed smooth plane of inclination 30° to the horizontal. Find the magnitude of the force which should be applied parallel to the inclined plane and find the reaction between the inclined plane and the particle.
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined plane and the particle.
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined plane and the particle.
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined plane and the particle.
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined plane and the particle.
2)	of the force which should be applied parallel to the inclined plane and find the reaction between the inclined plane and the particle.

If $3\underline{a} + 5\underline{b}$	_							
						•••••		
•••••								
						•••••		
						•••••••••••		
•••••	•••••		•••••	•••••	•••••		•••••	
-	_	is suspend	led by tw	o light stri	ngs and it i	_		e tensions
strings are 31	N and $3\sqrt{3}$ I	is suspend	led by tw	o light stri	ngs and it i	_	vertical.	
strings are 31	N and $3\sqrt{3}$ I	is suspend V, find the	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 <i>l</i>	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 /	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 /	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 !	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
strings are 31	N and 3√3 /	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	
	N and 3√3 !	is suspend	led by tw	o light stri	ngs and it i	ade with the	vertical.	

snow that the	velocity of the	particle Q is	3u. When the	n of both part ne particle <i>P</i> 1	reaches its m	aximum he	eight.
•••••		••••••••••	•••••••	•••••	•••••	•••••	••••••
•••••	••••••		••••••	•••••••••	••••••	•••••••	••••••••••
			•••••				
•••••		•••••	•••••			•••••	
	••••••						
A particle is particle to tr		cally upwards	s from a poi	ant O , on the	ground floo	r. If the tin	me taken fo
A particle is particle to tr	projected verticavel upwards a	cally upwards	s from a poi	ant O , on the	ground floo	r. If the tin	me taken fo
A particle is particle to tr	projected verticavel upwards a	cally upwards	s from a poi	ant O , on the	ground floo	r. If the tin	me taken fo
A particle is particle to trace t_2 respectivel	projected verticavel upwards a	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t
A particle is particle to trace t_2 respectivel	projected verticated upwards and any. Show that h	cally upwards and downwar $= \frac{1}{2}gt_1t_2.$	s from a poi	int O , on the point, which	ground floo	r. If the tin	me taken for the ht h, is t

The tv	wo ends o	of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The ty	wo ends (of a non-											
The tw	wo ends (of a non-											
The tw	wo ends o	of a non-									•••••		
The ty	wo ends o	of a non-				•••••	•••••	•••••	•••••		••••••		
The tw	wo ends o	of a non-	••••••	•••••••••••									•••••
horizo	wo ends o	of a non-				••••••	•••••	•••••	•••••	••••••	•••••		
horizo	wo ends o	of a non-				••••••	•	•••••					
horizo			-uniforn										
	••••••												
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••		•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
••••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••		•••••	•••••	•••••	•••••	••••••	•••••	••••••	
•••••	••••••	•••••		••••••	•••••	•••••	•••••		•••••	•••••	••••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••		•••••	•••••		•••••	•••••	•••••	•••••	
•••••				••••••		•••••	••••••	•••••	••••••		••••••	•••••	•••••
						•••••							
	•••••												
	• • • • • • • • • • • • • • • • • • • •												

		••••••	•••••				
							•••••
						•••••	
			•••••				•••••
			•••••				
							•••••
			•••••			•••••	
			•••••				•••••
			•••••		••••••		
•••••	•••••		•••••			•••••	
						•••••	
•••••							
Two motor car When the distar the two card ge of applying bra	nce between the t collide toget kes and just pr	ne motor cars her. Two car	s is d , both s obtained re	cars apply betardations of	orakes at the force f_1 and f_2	ne same ti f_2 respec	me knowi tively, as a
Two motor car When the distar the two card ge of applying bra	nce between the t collide toget kes and just pr	ne motor cars her. Two car	s is d , both s obtained re	cars apply betardations of	orakes at the force f_1 and f_2	ne same ti f_2 respec	me knowi tively, as a
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the t collide toget kes and just pr	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of aw the veloc	orakes at the formula f_1 and given time g	he same ti f_2 respectable for the	me knowi tively, as a he motion
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just prove $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of aw the veloc	orakes at the formula f_1 and given time g	he same ti f_2 respectable for the	me knowi tively, as a he motion
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just prove $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of aw the veloc	orakes at the formula f_1 and given time g	he same ti f_2 respectable for the	me knowi tively, as a he motion
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just prove $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of aw the veloc	orakes at the formula f_1 and given time g	he same ti f_2 respectable for the	me knowi tively, as a he motion
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just prove $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of aw the veloc	orakes at the formula f_1 and given time g	he same ti f_2 respectable for the	me knowi tively, as a he motion
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the formula f_1 and given the graph f_1 and f_2 and f_3 are the formula f_1 and f_2 are the formula f_3 and f_4 are the formula f_1 and f_2 are the formula f_3 and f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 and f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 are	ne same ti f_2 respec raph for the	me knowi tively, as a he motion
Two motor car When the distant the two card ge of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the formula f_1 and given the graph f_1 and f_2 and f_3 are the formula f_1 and f_2 are the formula f_3 and f_4 are the formula f_1 and f_2 are the formula f_3 and f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 and f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 and f_4 are the formula f_4 are the formula f_4 are	ne same ti f_2 respec raph for the	me knowi tively, as a he motion
Two motor car When the distant the two card ge of applying brathat $d = \frac{u^2}{2f_2} + \frac{1}{2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the forakes at the following f_1 and given by the grant f_1 and f_2 are the following f_1 and f_2 are the following f_2 and f_3 are the following f_1 and f_2 are the following f_2 and f_3 are the following f_3 and f_4 are the following f_2 and f_3 are the following f_3 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are	ne same ti f ₂ respec raph for the	me knowi tively, as a he motion
Two motor car When the distant the two card ge of applying brathat $d = \frac{u^2}{2f_2} + \frac{1}{2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the forakes at the following f_1 and given by the graph f_1 and f_2 are the following f_1 and f_2 are the following f_2 and f_3 are the following f_1 and f_2 are the following f_2 and f_3 are the following f_3 and f_4 are the following f_2 and f_3 are the following f_3 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are	ne same ti f ₂ respec raph for the	me knowi tively, as a he motion
Two motor car When the distant the two card ge of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the forakes at the following f_1 and given by the graph f_1 and f_2 are the following f_1 and f_2 are the following f_2 and f_3 are the following f_1 and f_2 are the following f_2 and f_3 are the following f_3 and f_4 are the following f_2 and f_3 are the following f_3 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are the following f_4 are the following f_4 and f_4 are the following f_4 are	ne same ti f ₂ respec raph for the	me knowi tively, as a he motion
Two motor car When the distant the two card ge of applying brathat $d = \frac{u^2}{2f_2} + \frac{1}{2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the formula f_1 and given time g	ne same ti f ₂ respec raph for the	me knowi
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{u^2}{2f_2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both s obtained recollision. Dr	cars apply betardations of	orakes at the following f_1 and given by time g	ne same ti f ₂ respec raph for the	me knowi
Two motor car When the distant the two card get of applying brathat $d = \frac{u^2}{2f_2} + \frac{1}{2f_2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both sobtained recollision. Dr	cars apply betardations of	orakes at the following f_1 and gitty time g	ne same ti f ₂ respec raph for the	me knowi
Two motor car When the distant the two card ge of applying brathat $d = \frac{u^2}{2f_2} + \frac{1}{2f_2}$	nce between the toollide toget kes and just probability $\frac{v^2}{2f_1}$.	ne motor cars her. Two car revented the	s is d, both sobtained recollision. Dr	cars apply betardations of	orakes at the following f_1 and gitty time g	ne same ti f ₂ respec raph for the	me knowi

Combined Mathematics 12 - II (Part B)

Answer five questions only.

- 11) a) A train passes a station A at $40 \, kmh^{-1}$ and maintain this speed for 7km and is then uniformly retarded, stopping at B, which is $8.5 \, km$ from A. A second train starts from A at the instant the first train passes A and being accelerated for part of the journey and uniformly retarded for the rest, stops at B at the same time as the first train.
 - (i) Find the total time for the journey.
 - (ii) What is the greatest speed obtained by the second train?
 - b) A motor car X starts from rest at t=0, moves with uniform acceleration. At t=T, another motor car Y starts at the same point with velocity u and moves with an uniform retardation of 2f. If the motor cars meet each other, show that, $2fT(u+fT) = u^2$.
- a) Using the law of addition of vectors, show that the sum and difference of two vectors <u>a</u> and <u>b</u> gives by the diagonals of the parallelogram. If the sum of two unit vectors is an unit vector, show that the magnitude of their difference is √3.
 c) The position vectors of the points A, B and C relative to the origin O are 4<u>i</u> + 2<u>j</u>, <u>i</u> + <u>j</u> and (k + 1) <u>i</u> + 6<u>j</u> respectively. Find the value of k (k < 0) such that ABC = 45⁰.
 - c) In the parallelogram OACB, D and E are two points on BC and AC such that BD:DC=1:2 and AE:EC=2:1. F is the intersection point of OD and BE. The position vectors of A and B reative to O are \underline{a} and \underline{b} respectively. Show that $\overrightarrow{OF} = \frac{3}{10} \left(\underline{a} + 3\underline{b} \right)$. If OB and CF intersect at P, find the ratio OP:PB.
- 13) a) OAB is an equilateral triangle of length of a side 2a C is the mid point of OA. The forces 4P,P and P act along the sides OB, BA and AO in the direction of the letters respectively. Taking OA and OY (Parallel to CB) as X and Y axes respectively, express each force in the form xi + yj. Here i and j are unit vectors along OX, OY respectively. Show that the system of forces can be reduced to a single force 3P.
 Also show that the above single force can be reduced to a couple of moment 2√3 ap and to a like parallel force acting along the centre of the triangle.
 - b) The points 0, A, B and C are (0,0) (2,0) (2,1), and (0,1) respectively. The forces P, Q, R at along the sides OA, AB, BC respectively. If the resultant force of this system of forces lies on x + 2y = 7, find
 - i) The resultant force in terms of P.
 - ii) The moment of the couple such that the resultant lies on the line x + 2y = 9.

- 14) a) The position vectors of the points A and B relative to a fixed point O are \underline{a} and \underline{b} respectively. The points C and D lie on the OB and OA such that OC:CB=5:2 and OD:DA=3:2. The lines AC and BD interest at E. Show that $\overrightarrow{OE}=\underline{b}+\lambda\left[\frac{3}{5}\,\underline{a}-\underline{b}\right]$. Here λ is a constant. Obtain a similar expression for \overrightarrow{OE} . Here find the position vector of the point E in terms of \underline{a} and \underline{b} .
 - b) The position vectors of the points A, B, C relative to a point O are \underline{a} , \underline{b} and \underline{c} respectively. The point P lies on the line BC and it is given that $\overrightarrow{PC} = \frac{1}{10} \overrightarrow{BC}$.
 - (i) Find \overrightarrow{OP} in terms of \underline{b} and \underline{c} .
 - (ii) If it is given that AP and BC are perpendicular to each other show that,

$$(9\underline{c} + \underline{b}).(\underline{c} - \underline{b}) = 10\underline{a}.(\underline{c} - \underline{b})$$

- C) Hence or otherwise prove that $(3\underline{c} \underline{b}) \cdot (3\underline{c} + \underline{b}) = 0$, if OA, OB and OC are perpendicular to each other.
- 15) a) The mid points of the sides AB, BC, CD and DA of the rectangle are respectively P, Q, R and S respectively. Here AB = 6a and $BC = 2\sqrt{3}a$. Six forces of magnitudes 15N, λN , 5N, 10N, μN and $30\sqrt{3}$ N act along the sides PQ, QR, RS, SP, AD and CD respectively in the diection incicated by the order of the letters. Show that,
 - (i) This system of forces cannot be in equilibrium.
 - (ii) If this system of forces reduces to a couple, then $\lambda = -40$ and $\mu = 20$
 - (iii) $\lambda = -40$ and $\mu = 30$, if the system reduces to a force of 10 N, acting along the direction AD.
 - b) A string of length 2m is attached to two pints A and B 1m apart in the same level. A smooth ring of weight 10N is suspended by the string and it is kept in equilibrium vertically below B, by applying a horizontal force P on the ring. Find the tension in the string and the magnitude of the force P.
- In the rectangle ABCD, AB = 4cm and BC = 3m. The forces of magnitudes 8,7,3,2,8,7 Newtons act along the sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA} , \overrightarrow{AC} and \overrightarrow{DB} respectively. Find the horizontal and vertical coponents of the resultant R. Hence find the distance from A, to the point which the line of action of the resultant cut AB.

 Now a couple of forces of 9Nm is added to the system in the sense ABCD. Show that the line of action of the new resultant cut the side AB at a distance 2m from A.
 - b) State the lami's theorem for the equilibrium of three coplanar forces acting at a point. A string ABCD attached to the two fixed points A and D on the same horizontal level supports two weights W_1 and W_2 at B and C respectively. In the equilibrium position, B is above C and the parts AB, BC and CD of the string inclined at acute angles α , β , γ to the verticle respectively.

Show that
$$\frac{W_1}{W_2} = \frac{\sin \gamma \sin (\beta - \alpha)}{\sin \alpha \sin (\beta + \gamma)}$$
.

- 17) a) A particle starts its motion with initial velocity u and moves with uniform acceleration a for a time t and obtains a final velocity v at a displacement of s. Using the velocity time graph for the motion of the particle, derive the equations of motion v = u + at, $S = \left(\frac{u+v}{2}\right)t$, $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$.
 - b) A particle is projected vertically upwards with a velocity $u\ ms^{-1}$ and after t seconds another particle is projected vertically upwards from the same point with the same velocity. Prove that,
 - (i) they meet after a time $\left(\frac{t}{2} + \frac{u}{g}\right)$ from the first projection.
 - (ii) Particles meet at a height $\frac{4u^2 g^2t^2}{8g}$.
 - c) From a tap drops of water fall within equal time intervals. When one drop of water falls, earlier drop has travelled a distance of $\frac{1}{4}$ m when the distance between the two drops has increased to $\frac{3}{4}$ m, find the distance travelled downwards by the first drop. ($g = 10 \ ms^{-2}$)

Second Term Test - 2020

Combined Mathematics I - Part A - Grade 12

Therfore, eq has negative real roots. 5

03)
$$3^{2x+1} - 3^{x+4} + 3^3 = 3^x$$
 $3(3^x)^2 - 3^4(3^x) - 3^x + 3^3 = 0$
 $3(3^x)^2 - 82(3^x) + 27 = 0$
 $5(3^x)^2 - 82(3^x) + 27 = 0$
Let $3^x = 1$,
 $5(3^x)^2 - 82(3^x) + 27 = 0$
 $5(2^x)^2 - 2(3^x) + 27 = 0$
 $5(2^x)^2 - 2(3^x)^2 + 27 = 0$
 $5(2^x)^2 - 2(2^x)^2 + 27 = 0$

= 7 (5)

05)
$$\log_3 x + \log_3 y = 3$$
 — (1)
 $\log_3 x = 2$ — (2)
From (1), From (2);
 $\log_3 xy = 3$ (5) $x = y^2$ — (4)
 $xy = 27$ — (3)

(3) and (4), (5)
 $y^3 = 27$
 $y = 3$ (5) $x = 9$ (5)

Ob) Let; $f(x) = x^3 + ax^2 + b$
 $g(x) = ax^3 + bx^2 + x - a$

Let, $(x-x)$, common factor of $f(x)$ and $g(x)$
 $x^3 + ax^2 + b = 0$ — (1) (5)
 $ax^3 + bx^2 + x - a = 0$ — (2)
 $ax(1) - (2) \Rightarrow$
(5) $(a^2 - b)x^2 - x + ab + a = 0$
(5) $(b - a^2)x^2 + x - a(1+b) = 0$
 $\Rightarrow (b - a^2)x^2 + x - a(1+b) = 0$
 $\Rightarrow (b - a^2)x^2 + x - a(1+b) = 0$
 $\Rightarrow (b - a^2)x^2 + x - a(1+b) = 0$
 $\Rightarrow (b - a^2)x^2 + x - a(1+b) = 0$
 $\Rightarrow (b - a^2)x^2 + x - a(1+b) = 0$

(i)
$$f(x) = \frac{1}{\sqrt{x+2}}$$
, $x = 2x+1$,
(i) $f(x) = \frac{1}{\sqrt{x+2}}$ (2x+1) (5)

Domain of $\frac{f}{9}$; $(-2,\frac{\pi}{2}) \cup (\frac{\pi}{2}, \infty)$ (5)

$$(\frac{f}{g})(0) = \frac{1}{\sqrt{0+2}} (2 \times 0 + 1) = \frac{1}{\sqrt{2}} (5)$$

$$x^{2}-6\alpha x +2-2\alpha+9\alpha^{2} = 0 \ \beta$$
roods of the eq.,
$$x = \frac{6\alpha \pm \sqrt{36\alpha^{2}-4(2-2\alpha+9\alpha^{2})}}{2}$$

$$x = \frac{6a + \sqrt{8a - 8}}{2}$$

$$= 3a + \sqrt{2a - 2} \cdot 5$$

But,
$$\alpha, \beta > 3$$
 $\alpha+\beta > 6$, $\alpha > 1$

$$3a - \sqrt{2a-2} > 35$$

$$3(a-1) > \sqrt{2a-2} \qquad (9a-11)(a+1) > 0$$

$$9(a-1)^{2} > 2a-2 \qquad (9a-11) > 0$$

$$9a^{2} - 26a + 11 > 0$$

$$a > \frac{11}{9} \qquad 5$$

$$5$$
tana = P-seca
 $\Rightarrow \tan^2 \alpha = (P-seca)^2$

$$(\tan \alpha - P)^2 = 1 + \tan^2 \alpha$$
 (5)
 $\tan^2 \alpha - 2$ ptance $+$ p² = $1 + \tan^2 \alpha$

$$tana = \frac{p^2 - 1}{2p} \quad (5)$$

$$Sin^{1}\left(\frac{5}{x}\right) + Sin^{1}\left(\frac{12}{x}\right) = \frac{\pi}{2}$$

Let,

$$\alpha = \sin^{-1}\left(\frac{5}{x}\right), \quad \beta = \sin^{-1}\left(\frac{12}{x}\right), \quad \gamma$$

$$\sin \alpha = \frac{5}{x}$$
Sin $\beta = \frac{12}{x}$

$$Sin \alpha = \frac{5}{x}$$
 $Sin \beta = \frac{12}{x}$

Then,
$$\alpha + \beta = \frac{\pi}{2}$$

$$\alpha = \frac{\pi}{2} - \beta \quad \boxed{5}$$

$$\frac{2}{\sqrt{x^2-144}}$$

$$sin \alpha = sin \left(\frac{\pi}{2} - \beta\right)$$

$$\frac{5}{x} = \sqrt{x^2 - 144} \qquad ; \quad x \neq 0,$$

$$x^{2}-144 = 25$$
 $x = \pm 13$ (x, \beta < \beta_{2})

Solution $x = 13$ (5)

$$x = \pm 13$$

$$(4,\beta<\frac{\pi}{2})$$

solution
$$x = 13$$
 (5)

(1). a).
$$f(x) = x^4 + px^2 + r$$
 ; $f(1) = -9$, $f(0) = -8$

$$f(1) = 1 + p + r = -9$$

$$f(6) = r = -8$$

$$p = -2$$

$$x^4 - 2x^2 - 8 = (\alpha x^2 + b)^2 + c$$

$$x^{4}-2x^{2}-8 \equiv (ax^{2}+b)^{2}+C$$

$$= a^{2}x^{4}+2abx^{2}+b^{2}+C$$

Equating coefficients,

$$x^{4} \longrightarrow 1 = \alpha^{2} \longrightarrow (1)$$

$$x^{2} \longrightarrow 0 = 2ab$$

$$ab = -1 \longrightarrow (2)$$

$$-8 = b^{2} + (1) \longrightarrow (2)$$

$$(5)$$
 $a=1$ $b=-1$ (5) (5)

$$f(x) = (x^{2}-1)^{2}-9$$

$$= (x^{2}-1)^{2}-3^{2} (5)$$

$$= (x^{2}-1-3)(x^{2}-1+3)$$

$$= (x^{2}-4)(x^{2}+2) (5)$$

$$= (x-2)(x+2)(x^{2}+2)$$

Hence; real roots of the eq x=2 x=-2

11 b) Let
$$h(x) = (p-1)x^2 - 4x + p-1$$
 $\forall x \in \mathbb{R}, h(x) > 0;$
 $(p-1) > 0;$ and $\Delta x < 0;$
 $\Delta x = 1b - 4(p-1)(p-1) < 0$
 $4 - (p-1)^2 < 0;$
 $(2-p+1)(2+p-1) < 0;$
 $(3-p)(p+1) < 0;$

Then,

Then,

 $P > 3$
 $P > 3$
 $A \neq p = -b/a$
 $A \Rightarrow p = 6/a$
 $Cx^2 - 2bx + 4a = 0$
 $A \Rightarrow p = 6/a$

$$x = \frac{2b + \sqrt{4b^2 - 4 \cdot c \cdot 4a}}{2c} = \frac{b + \sqrt{b^2 - 4ac}}{c}$$

12). a).
$$y = 2|x+1|-3$$
 $y = x + 2|x-1|$

$$y = x + 2|x-1|$$

$$y = \begin{cases} 2(x+1)^{-3}, & x > 1 \\ 2x - 1 \\ -2(x+1)^{-3}, & x < -1 \\ -2x - 5 \end{cases}$$

$$y = \begin{cases} 2(x+1)-3; & x > -1 \\ 2x-1 & y = \begin{cases} x+2(x-1); & x > 1 \\ 3x-2 & x < -1 \\ -2(x+1)-3; & x < -1 \\ -2x-5 & 5 \end{cases}$$

$$(5) \begin{cases} x-2(x-1); & x < 1 \\ -x+2 & x < -1 \end{cases}$$

Let,

$$x+2|x-1| = 2|x+1|-3$$

$$-x + 2 = -2x - 5$$

$$x = -7$$
 (5)

Let,

$$x + 2|x-1| > 2|x+1| -3$$

5

b).
$$a = \log n$$
 $b = \log_{3n}^{2n}$ $c = \log_{3n}^{3n}$ $c = \log_{4n}^{3n}$ $c = \log_{4n}$ $c = \log_{4n}^{3n}$ $c = \log_{4n}^{3n}$ $c = \log_{4n}^{3n}$ c

e)
$$a^{x} = b^{y} = c^{z} = d^{n} = t$$
 (5) + (5)
 $x(\frac{1}{y} + \frac{1}{z} + \frac{1}{n}) = log b cd$

Considering;

13)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = \begin{cases} -x^2 + 4; & x < 1 \\ -2x; & x \geqslant 1 \end{cases}$$

ii)
$$\lim_{x \to 1^{-}} f(x) = 3$$
 $\lim_{x \to 1^{+}} f(x) = -2$ $\lim_{x \to 1^{+}} f(x) = 5$

$$\lim_{x\to 1^{-}} f(x) \neq \lim_{x\to 1^{+}} f(x)$$

Therfore, not continuous ent the point x=1.

b)
$$\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1$$

$$\begin{array}{ccc}
\text{D. } \lim_{x \to 3} & \frac{\sqrt{2x-1} - \sqrt{5}}{\sin(x-3)}
\end{array}$$

$$= \lim_{x \to 3} \frac{(2x-1-5)}{\sin(x-3)} \left(\sqrt{2x-1} + \sqrt{5} \right)$$

=
$$\lim_{x \to 3} \frac{2(x-3)}{\sin(x-3)} \left(\sqrt{2x-1} + \sqrt{5}\right)$$

=2
$$lim$$
 $(x-3)$ (5) lim 1 $(x-3)$ $sin(x-3)$ $x-3$ $(\sqrt{2x-1}+\sqrt{5})$

$$= 2 \times 1 \times \frac{1}{2\sqrt{5}} \quad (5)$$

$$= \frac{1}{\sqrt{5}} \quad (5)$$

ij).
$$\lim_{x \to 0} \frac{\sqrt{4+x^2}-2}{x^4} = \lim_{x \to 0} \frac{5(4+x^2-2)}{\sqrt{4+x^2}+2} \frac{2\sin^2 x}{5x^4}$$

$$= 2\lim_{x \to 0} \frac{\sin^2 x}{x^2} \lim_{x \to 0} \frac{1}{\sqrt{4+x^2}+2}$$

$$= 2 \times (1)^2 \times \frac{1}{4}$$

$$= \frac{1}{2} \frac{1}{5}$$

14). (a).
$$an(^{2}+bx+c) = 0 < \beta$$

For positive real roots,

 $\Delta x = b^{2} - 4ac > 0$
 $A+\beta > 0$
 $A\beta > 0$
 $A^{2}+a(3b-2c)x + (2b-c)(b-c) + ac = 0$
 $A = b^{2} - 4ac > 0, -(1) = 0$
 $A = b^{2} - 4ac > 0, -(2) = 0$
 $A = b^{2} - 4ac > 0 = 0$
 $A = b^{2} - 4ac > 0 = 0$

$$a^{2}x^{2} + a(3b-2c)x + (2b-c)(b-e) + ac = 0 < \mu - A$$

$$\Delta x = a^{2}(3b-2c)^{2} - 4a^{2}\{(2b-c)(b-c) + ac\}$$

$$= a^{2}\{9b^{2} - 12bc + 4c^{2} - 4(2b^{2} - 3bc + c^{2} + ac)\}$$

$$= a^{2}\{b^{2} - 4ac\} > 0$$

$$= a^{2}\{b^{2} - 4ac\} > 0$$

$$= a(2c-3b)$$

$$= a(2c-$$

a, root of A,

Then, $\frac{1}{x} = y$ $\Rightarrow x = \frac{1}{y}$

substituting,
$$x = \frac{1}{y}$$
 into $(A) \Rightarrow$

$$a^{2}(\frac{1}{y})^{2} + a(3b-2c)(\frac{1}{y}) + (2b-c)(b-c) + ac = 0$$

$$(2b-c)(b-c) + ac y^{2} + a(3b-2c)y + a^{2} = 0$$

$$(2b^{2}-3bc+c^{2}+ac)y^{2} + a(3b-2c)y + a^{2} = 0$$

$$(2b^{2}-3bc+c^{2}+ac)y^{2} + a(3b-2c)y + a^{2} = 0$$

$$(2b^{2}-3bc+c^{2}+ac)y^{2} + a(3b-2c)y + a^{2} = 0$$

b) (1)
$$A(k_{32})$$
 and $B(3_{34})$
 $AB = (k_{-3})^{2} + (4_{-2})^{2} = 64$
 $(k_{-3})^{2} + 4 = 64$
 $(k_{-3})^{2} = 60$
 $k_{-3} = \pm 2\sqrt{15}$
 $k = 3 \pm 2\sqrt{15}$

(15)

$$\frac{4x^{1}}{(4x^{2}-1)} = \frac{(2x)^{2}}{(2x-1)(2x+1)}$$

$$x \rightarrow 2x$$

$$a \rightarrow 1 \quad 5$$

$$b \rightarrow -1$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} + \frac{1}{(-2)(2x+1)}$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = 1 + \frac{1}{2(2x-1)} - \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = \frac{1}{2(2x+1)} \cdot \frac{1}{2(2x+1)} \cdot \frac{1}{2(2x+1)} \cdot 5$$

$$\frac{4x^{2}}{(4x^{2}-1)} = \frac{1}{2(2x-1)} - \frac{1}{2($$

(16)
a).
$$sin(A+B) = sinA wsB + cosAsinB$$

$$sin(\frac{\pi}{b} + \frac{\pi}{4}) = sin\frac{\pi}{b} cos\frac{\pi}{4} + cos\frac{\pi}{b} sin\frac{\pi}{4}$$

$$sin(\frac{5\pi}{12}) = \frac{1}{2} \times \frac{1}{12} + \frac{1}{2} \times \frac{1}{12} = \frac{1}{2}$$

$$= \frac{1}{2\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1}$$

Hence,

$$\cos\left(\frac{5\pi}{6}\right) = 1 - 2\sin^2\left(\frac{5\pi}{12}\right) \quad 5$$

$$= 1 - 2\left(\frac{5}{4}\right)^2$$

$$= 1 - \frac{1}{8}\left(8 + 2\sqrt{12}\right) \quad 5$$

$$= 1 - 1 - \frac{1}{4} \quad 2\sqrt{3}$$

$$\cos(5\pi) = -\frac{3}{2} \quad 5$$

$$G = \left(\frac{1+5+x^{2}}{3}, \frac{3+3+y^{2}}{3}\right)$$

$$\frac{10}{3} = \frac{6+\overline{\chi}}{3} \qquad 4 = \frac{6+\overline{y}}{3}$$

$$\sqrt{x} = 4$$
 $\sqrt{\hat{y}} = 6$

$$f(x) = x^4 + \alpha x^3 + bx + c = (x-1)(x+1)(x-2)(x+x)$$

$$\frac{x=1}{1+\alpha+b+c} = 0$$

$$\frac{x^2}{16+80}$$
 +2b + (= 0

$$\begin{array}{rcl}
8a + 2b + e & = -4b - - (2) \\
1 - a - b + e & = 0 \\
c - a - b & = -1 - - (3)
\end{array}$$

$$\alpha = \frac{-5}{2} \qquad b = \frac{5}{2} \qquad c = -1 \qquad \lambda = -\frac{1}{2} \qquad 0$$

$$\Rightarrow \frac{(x-\frac{1}{2})}{5} \quad f(x) = (x^{4}-1)(x+1)(x-2)(x-\frac{1}{2})$$

$$2f(x+1) = x^{2}+x-2$$

$$2\left\{x(x+2)(x-1)(x+\frac{1}{2})^{2}\right\} = (x+2)(x-1)$$

$$(x+2)(x-1)\left\{2x(x+\frac{1}{2})-1\right\} = 0$$

$$(x+2)(x-1)\left(2x^{2}+x-1\right) = 0$$

$$(x+2)(x-1)\left(2x-1\right)(x+1) = 0$$

$$(x+2)(x-1)\left(2x-1\right)(x+1) = 0$$

$$(x+2)(x-1)\left(2x-1\right)(x+1) = 0$$

$$5olutions \ are, \ x = -2 \quad x = 1 \quad x = -1 \quad 0$$

$$x = -2 \quad x = 1 \quad x = \frac{1}{2} \quad x = -1 \quad 0$$

$$x^{2} = p(x-a)(x-b) + q(x-b) + r(x-a)$$

$$x^{2} = p(x-a)(x-b) + q + r \quad 0$$

$$x^{2} \rightarrow 0 = abp - bq - ar$$

$$p = 15 \quad q = \frac{a^{2}}{a-b} \quad r = \frac{b^{2}}{b-a} \quad 0$$

$$\frac{x^{2}}{(x-a)(x-b)} = 1 + \frac{a^{2}}{a-b} \quad r = \frac{b^{2}}{b-a} \quad 0$$

d).
$$ta\bar{b}(\frac{1}{2}) + ta\bar{b}(\frac{1}{3}) = \frac{\pi}{4}$$

Let,
$$\alpha = \tan(\frac{1}{2})$$
 $\beta = \tan(\frac{1}{3})$
 $\tan \alpha = \frac{1}{2}$ $\tan \beta = \frac{1}{3}$ (5)

Then,
$$\alpha + \beta = \frac{\pi}{4}$$
Prove that,
$$\tan (\alpha + \beta) = \tan \pi = 1$$

$$\frac{\pi}{4}$$
(5)

$$= \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}}$$

$$= \frac{5}{5} = \frac{5}{5}$$

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

L. H. S
$$\sin^2 \alpha + \sin^2 \beta - \sin^2 \beta$$

$$= \sin^2 \alpha + (\sin \beta - \sin \gamma)(\sin \beta + \sin \gamma)$$

$$= \sin^2 \alpha + 2\cos(\frac{\beta+\gamma}{2})\sin(\frac{\beta-\gamma}{2})2\sin(\frac{\beta+\gamma}{2})\cos(\frac{\beta-\gamma}{2})$$

$$= \sin^2 \alpha + \sin(\beta+\gamma)\sin(\beta-\gamma)$$

$$= \sin^2 \alpha + \sin(\beta+\gamma)\sin(\alpha)$$

$$= \sin^2 \alpha + \sin(\beta+\gamma)\sin(\alpha)$$

$$= \sin^2 \alpha + \sin(\beta+\gamma)\sin(\beta+\gamma)$$

$$= \sin^2 \alpha + \sin^2 \alpha + \sin(\beta+\gamma)\sin(\beta+\gamma)$$

$$= \sin^2 \alpha + \sin^2 \alpha +$$

c)
$$2\cos^{2}x + 3\sin x + 1 = 0$$

 $2(1-\sin^{2}x) + 3\sin x + 1 = 0$
 $2\sin^{2}x - 3\sin x - 3 = 0$ 5
 $(2\sin x + 3)(\sin x - 3) = 0$
 $(2\sin x + 3)(\sin x - 3) = 0$
 $\sin x = -\frac{3}{2}$ or $\sin x \neq \sqrt{3}$ 5
 $\sin x = \sin(-\frac{\pi}{3}) \Rightarrow x = n\pi + (-1)^{n}(-\frac{\pi}{3}); n \in \mathbb{Z}$

a)
$$\frac{a^2+b^2}{a^2+c^2} = \frac{1+\cos(A-B)\cos c}{1+\cos(A-C)\cos B}$$

$$L. H.S.$$

$$= \frac{a^2 + b^2}{a^2 + b^2} - \frac{a^2 + b^2}{a^2 + b^2}$$

$$=\frac{a^2+b^2}{a^2+c^2} - \frac{\sin A}{\cos A} = \frac{\sin B}{\cos A} = \frac{\sin C}{\cos A} = \frac{1}{\lambda}$$

$$= \frac{\sin^2 A + \sin^2 B}{\sin^2 A + \sin^2 C}$$

$$= 2 - (\omega_{S2A} + \omega_{S2B})$$

$$2 - (\omega_{S2A} + \omega_{S2C})$$

$$= \frac{2 - 2\cos(A+B)\cos(A-B)}{2 - 2\cos(A+C)\cos(A-C)}$$

$$= \frac{1 + \omega_{S}(A-B)(\omega_{S}C)}{1 + \omega_{S}(A-C)(\omega_{S}B)}$$

$$\frac{a^2+b^2}{a^2+c^2} = \frac{1+\cos(A-B)\cos C}{1+\cos(A-C)\cos B}$$

ABD A, cosine Rule,

$$\cos A\widehat{D}B = \frac{AD^2 + \left(\frac{\alpha}{2}\right)^2 - c^2}{2 AD \cdot \left(\frac{\alpha}{2}\right)}$$
 (1)

ADC A, cosine Rule,

$$\cos A\hat{D}C = \omega s(\vec{n} - A\hat{D}B) = -\cos A\hat{D}B$$
 (5)

$$-\omega S A \hat{D} B = AD^{2} + \left(\frac{\alpha}{2}\right)^{2} - b^{2} \qquad (2)$$

$$2 AD \cdot \left(\frac{\alpha}{2}\right) \qquad (6)$$

From (1) and (2),

$$0 = 2AD^2 + 2\left(\frac{a}{2}\right)^2 - C^2 - b^2$$

$$2AD^2 = b^2 + c^2 - \frac{a^2}{2}$$

$$AD^{2} = \frac{2b^{2} + 2c^{2} - a^{2}}{4} \qquad (5)$$

$$AD = \frac{\sqrt{2b^2 + 2c^2 - a^2}}{2}$$

If
$$\beta \hat{A}D = \beta$$
,

$$\frac{\sin \beta}{\frac{\alpha}{2}} = \frac{\sin \beta}{AD}$$

$$sin\beta = \frac{asin\beta \times 2}{2 \sqrt{2b^2 + 2c^2 - a^2}}$$

$$\therefore \sin \beta = \frac{\alpha \sin \beta}{\sqrt{2b^2 + 2c^2 - a^2}}$$

If,
$$\widehat{ADC} = Q$$
,

$$\frac{\sin \alpha}{b} = \frac{\sin \alpha}{AD}$$

Sina =
$$\frac{b \sin(x^2)}{\sqrt{2b^2+2c^2-\alpha^2}}$$

$$Sin \alpha = \frac{2bsin(}{\sqrt{2b^2+2c^2-\alpha^2}}$$
 (5)

$$3p^{2} = p^{2} + 4p^{2} + 4p^{2} \cos \mathbf{Q} \cdot \mathbf{S}$$

$$4p^{2} \cos \mathbf{Q} = -2p^{2}$$

$$\cos \mathbf{Q} = -\frac{1}{2} \cdot \mathbf{S}$$

$$\mathbf{Q} = \frac{2k}{3} \cdot \mathbf{S}$$

$$\sin \mathbf{Q} = \frac{2p \cos 120}{p + 2p \cos 120} \cdot \mathbf{S}$$

$$\Rightarrow \mathbf{Q} = \frac{8}{2} \cdot \mathbf{S} \cdot \mathbf{S}$$

$$\frac{P}{\sin 150^{\circ}} = \frac{R}{\sin 120} = \frac{50}{\sin 90^{\circ}}$$

$$\frac{P}{12} = \frac{R}{3/2} = \frac{170}{25} \Rightarrow P = 250 \text{ N}.$$

$$R = 250 \text{ N}.$$

$$(25)$$

(3). 39 + 5b = 8C 39 + 5b = 3c + 5C 39 - 3C = 5C - 5b 3(9 - C) = 5(C - b)3 CA = 5BC

Sing =
$$\frac{2}{5}$$
 $\frac{2}{3}$

$$\beta = \sin(\frac{2}{3})$$

$$\sin(\frac{2}{3})$$

(b),

$$\begin{array}{lll}
-t_{2} & 1 & 3 = ut + \frac{1}{2}at^{2} \\
h. & h = ut - \frac{1}{2}gt^{2} \cdot 5 \\
gt^{2} = 2ut - 2h \\
gt^{2} - 2ut + 2h = 0 \\
& 5 \\
& t_{2} \cdot h = gt_{1}t_{2}
\end{array}$$

(),

$$|9-b|^{2} = (9-b)\cdot(9-b) \cdot (9-b) \cdot (9$$

$$f$$
 2R - 40-6 = 0 G
R = 23 N. G

$$4 \times R + 8 \times R - 40. \times - 24 \times 6 = 0.$$

$$16R - 144 - 40 \times = 0.$$

$$224 - 144 - 40 \times = 0.$$

$$16R - 144 - 40 \times = 0.$$

$$16R - 144 - 40 \times = 0.$$

(3,1)
$$\Rightarrow x = 6-4-2 = 0$$
 (94) $\Rightarrow x = 6-4-2 = 0$ (9) $\Rightarrow x = 6-4-2 = 0$ (10) $\Rightarrow x = 6-4-2 = 0$ (10

$$9 \ \frac{1}{9} = \frac{4+3-7}{5} = 0.6$$

$$0 \ \frac{1}{9} = \frac{3 \times 2 + 2 \times 4 - 6 \times 1 + 2 \times 3 - 4 \times 1}{7 \times 3 - 4 \times 1} = \frac{25}{6} = \frac{25}{6} = \frac{10}{5}$$

Tand =
$$\frac{u}{t} = f_2$$
 Tang = $\frac{v}{t} = f_2$.

$$d = \frac{1}{2} t \times u + \frac{1}{2} t \times v$$

$$= \frac{1}{2} \frac{u}{f_2} \cdot u + \frac{1}{2} (\frac{v}{f_1}) v$$

$$= \frac{1}{2} \frac{u^2}{f_2} + \frac{1}{2} \frac{v^2}{f_1}$$

$$d = \frac{u^2}{2f_2} + \frac{v^2}{2f_1}$$

$$d = \frac{u^2}{2f_2} + \frac{v^2}{2f_1}$$

(ii)
$$\frac{1}{2} \times V \times \frac{1}{4} = 8.5$$
 (b) $V = 68 \text{ kmh}^{-1}$ (c)

* If vehicles sust meets, their displa--cements are equal When their velocities one equal.

$$t = \left(\frac{u - f^{\eta}}{3f}\right) \left(10\right)$$

$$(i) \left(\frac{U+V}{2} \right) t = \frac{1}{2} (t f) V$$

from
$$\mathcal{D}$$
 $ut = v\mathcal{T}$

$$u\left(\frac{u-f\mathcal{T}}{3f}\right) = \left[\frac{fu+2f^2\mathcal{T}}{3f}\right]\mathcal{T}\mathcal{G}$$

$$u^2 - f\mathcal{T}u = f\mathcal{T}u + 2f^2\mathcal{T}^2,$$

$$u^2 = 2f\mathcal{T}\left[u+f\mathcal{T}\right]\mathcal{G}$$

$$\boxed{90}$$

19-2 = 53 6

(b).
$$\vec{OA} = 4i + 2\hat{3}$$

 $\vec{OB} = \hat{2} + \hat{3}$
 $\vec{OC} = ((c+1)i + 6\hat{3})$
 $\vec{OB} = \hat{2} - 9 = -3i - 3$

BC = 5-9 = -38-3 BC = 5-9 = 102 +53, B & both.

$$|\overrightarrow{AB}| = \sqrt{6} |S|$$
 $|\overrightarrow{BC}| = \sqrt{6+25}|S|$
 $|\overrightarrow{BC}| = \sqrt{6+25}|S|$
 $|\overrightarrow{BC}| = \sqrt{6+25}|S|$
 $(-3i-5).(xi+5i) = \sqrt{10}\sqrt{6+25} \times \frac{1}{52}.$
 $(-3k-5) = \sqrt{5}\sqrt{6+25}|S|$
 $|S| = \sqrt{5}\sqrt{6+25}|S|$
 $|S| = \sqrt{5}\sqrt{6+25}|S|$

$$\begin{array}{c|c} 2k^{2} + 15k - 50 = 0 \\ (2k-5)(k+10) = 0 \\ K = 5/2 & k=2-10 \\ \hline \end{array}$$

$$\frac{\lambda}{3} = M$$

$$\therefore \lambda = 3 M$$

$$M = \frac{3}{10} \implies \lambda = \frac{9}{10}$$

$$\frac{10M21}{3M2\frac{3}{10}} \Rightarrow \lambda = \frac{9}{10}. \quad \vec{OF} = \frac{9}{10}(\mathbf{b} + 39)$$

$$= \frac{3}{10}(3\underline{b} + 9)$$

OP: PB = 1: K.

 $\frac{1}{1+10} = \frac{3}{10}(3\frac{1}{2}+2)+3(-9+\frac{10}{1+10}) \Rightarrow 3=\frac{3}{10}; |c=|_{6}$ 0p:pB=1:6G

$$4P \Rightarrow 4p\cos 6i + 4p\sin 60 \widehat{9}$$

$$= 2pi + 2pp\widehat{9} \widehat{9}$$

$$P \Rightarrow p\cos 60i - p\cos 30\widehat{9}$$

$$= 2i - 2pp\widehat{9} \widehat{9}$$

$$P \Rightarrow -p_{2} + p_{3} \qquad \boxed{5}$$

$$R = (2p + p_{2} - p_{3}) + (2p_{3} - p_{2}) + (2p_{3} - p_{3})$$

$$R = (3p_{3}) + (3p_{3} + p_{3}) + (3p_{3} + p_{3})$$

$$R = \sqrt{\frac{9p^2 + 2\pi p^2}{4}} = 3p.$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3p}{2}$$

$$\frac{3\beta P_{\times} n = -P \cdot \sin 60 \times 2\alpha}{2} \cdot \frac{3\beta P_{\times} n = -P \cdot \sin 60 \times 2\alpha}{3} \cdot \frac{\beta}{3}$$

from O, B, 3 p-5 R/sine=-R/cose 5 P= 2'[55'no - coso] = R'[5~/5, -2/5] (3)

$$R' = \frac{rsp}{3}$$

$$G_1 = P_1 \times 25 \text{ in Q G}$$
 5
= $\frac{15}{3}P_{\times} 2 \times \frac{1}{15} = \frac{2P}{3}$.

i. couple Should be applied is 6 3 Mis.

$$\vec{OA} = 9$$
 $\vec{OB} = \vec{b}$

$$\therefore Q + M \left(\frac{5}{7} - \frac{1}{2} \right) = \frac{1}{2} + 3 \left(\frac{3}{5} - \frac{1}{2} \right)$$

from D and D
$$\lambda = 1/2.5$$

$$0E = 2 + \frac{1}{2} \left(\frac{3}{5} - \frac{1}{2} \right)$$

$$E = \frac{1}{2} + \frac{3}{2} = \frac{1}{2}$$

$$= \frac{1}{2} + \frac{3}{2} = \frac{1}{2}$$

(b). If OA, OB and oc one perpendicular to each other;

From (i)
$$10(9.5 - 9.5) = (95 + 5) \cdot (5 - 5)$$

 $60 = (95 + 5) \cdot (5 - 5)$
 $95.5 - 95.5 + 5.5 = 0$
 $95.5 - 5.5 = 0$
 $(35 - 5) \cdot (35 + 5) = 0$

$$\frac{1}{10}$$

(ii) If the sym reduces to a couple;

$$X = 0^{\frac{1}{5}}$$
 and $Y = 0 \cdot \frac{1}{5}$
 $\Rightarrow X = -30 \cdot \frac{1}{5} - \frac{1}{5} \cos \frac{1$

$$\int y' = -M + S \sin \frac{\pi}{6} + 10 \sin \frac{\pi}{6} - 15 \sin \frac{\pi}{6} - \lambda \sin \frac{\pi}{6} = 0$$

$$-M - \lambda \sin \frac{\pi}{6} = 0$$

$$M = 40 \times \frac{1}{2} = 20$$

$$M = 20 \quad \boxed{5}$$

(111) Resolved component along AD =10 N° B

Resolved component perpendicular to AD =05

$$M = 10 - 2 \sin 6 = 16 \text{ }$$

$$M = 10 - 2 \sin 6$$

$$= 10 + 40 \times \frac{1}{2}$$

$$M = 30 N - \text{ }$$

$$(2-\pi)^2 + \pi^2 + 1^2$$

$$(2-\pi)^{2} = \pi^{2} + 1^{2}$$

 $4\pi = 3$
 $\pi = \frac{3}{4} \text{ m. (5)}$

$$\therefore 2-n = 2-\frac{3}{7} = \frac{5}{7} m.$$

$$\therefore \cos d = \frac{\chi}{2-\pi} = \frac{3}{5}$$

$$\Rightarrow p = \pi \sin \alpha (0)$$

$$\begin{array}{lll}
A) & 28d & = 7x4 + 3x3 - 76050 \times 3 & 10 \\
& = 28 + 9 - 7 \times 3 \times \frac{4}{5} \\
& = \frac{28d}{5} = \frac{101}{5} \implies d = \frac{101}{26} \text{ cm. } 5
\end{array}$$

$$\frac{28d}{5} = \frac{101}{5} \implies d = \frac{101}{26}$$
 cm. (5)

80

Applying. Lami's Hearem

$$\frac{W_1}{S!n(180-p+d)} = \frac{\pi_2}{S!n(180-d)} = \frac{\pi_2(10)}{S!n(p+8)} = \frac{\pi_2(10)}{S!n(p+8)}$$

$$\frac{G}{Sin(p-a)} = \frac{T_2}{Sind} - 0 \qquad \frac{G}{Sin(p+8)} = \frac{T_2}{Sin8} - 0$$

From (1) and (2);

For the proof of; 1 V= 4+at. 2 1 montes. S=4++2a+2 30

(b) T is the time for meet two

particles.

for 2nd porrhicle: 3=u++2a+2 1.

H= u(s-t)-12(s-t)^2(s) In 1st particle H = US - \frac{1}{2} 952.10

 $u_1 - \frac{1}{2}g_1^2 = u_1^2 - u_2^2 - \frac{1}{2}g_1^2 - \frac{1}{2}g_1^2$ $u_1 - \frac{1}{2}g_1^2 = u_1^2 - u_2^2 - \frac{1}{2}g_1^2 - \frac{1}{2}g_1^2$

Som (D=) H=u(\(\frac{4}{5}\)+\(\frac{1}{5}\))-\(\frac{1}{5}\)+\(\frac{1}{5}\)

for the 1st drop . J. (7+0.75) 21 ×10(t,+2) (10) for the second drop! J. 2= 1×10+22-3/10 from @; and 3. t_2 = 1/8 see 5 10 186m 3 => 71=2×10×5=4 m.

traveled by 1st drop 1= ++3 = 1m

විභාග ඉලක්ක පහසුවෙන් ජයගන්න

පසුගිය විභාග පුශ්න පතු

 Past Papers
 Model Papers
 Resource Books for G.C.E O/L and A/L Exams

ົ້ວສາທ ໑ලສ່ສ ປ໌ຜທສ່ສ Knowledge Bank

WWW.LOL.LK

Website WWW.IOI.IK

071 777 4440