

இலங்கைப் பரீட்சைத் திணைக்களம்

க．பொ．த（உயர் தர）ப் பரீட்சை－ 2016

10 －இணぁண்த கணீぁை் I

பவ்யியிநும் कீட்டம்

இந்த விळடத்தாள் பரீட்சகர்களின் உ பயோகத்துக்காகத் தயாரிக்கப்பட்டது．பிரதம பரீட்சகர்களிஷ கலந்துறையாடல் நணையெயும் சந்தர்ப்பத்தில் பரிமாறிக்கொள்ளும் கருத்துக்களுக்கியங்க，

10 - இணைந்த கணிதம்
 புள்ளி பிரிந்து செல்லும் விதம்

பத்திரம் I
பகுதி A
$10 \times 25=250$
பகுதி B
$05 \times 150=750$

மொத்தம்

$$
=1000 / 10
$$

பத்திரம் I இற்கான இறுதிப் புள்ளி = 100

$$
\begin{aligned}
n=1 \text { ஆக, } & \text { L.H.S. }=\sum_{r=1}^{1} r(r+1)=2 \\
& \text { R.H.S. }=\frac{1}{3}(1+1)(1+2)=2
\end{aligned}
$$

எனவே, $n=1$ இற்கு முடிவு உண்மையாகும்.

$$
n=p \text { க்கு முடிவு உண்மை என்க. இங்கு } p \in \mathbb{Z}^{+}
$$

$$
\begin{equation*}
\text { அதாவது } \sum_{r=1}^{p} r(r+1)=\frac{p}{3}(p+1)(p+2) \tag{5}
\end{equation*}
$$

$$
\text { สனவே, } \sum_{r=1}^{p+1} r(r+1)=\sum_{r=1}^{p} r(r+1)+(p+1)[(p+1)+1] 55
$$

$$
\begin{aligned}
& =\frac{p}{3}(p+1)(p+2)+(p+1)(p+2) \\
& =\frac{1}{3}(p+1)(p+2)(p+3)
\end{aligned}
$$

$\therefore n=p+1$ இற்கு முடிவு உண்மை
இதிலிருந்து $n=p$ இற்கு முடிவு உண்மை எனின், $n=p+1$ இற்கும் முடிவு உண்மையாகும் ஆனால் $n=1$ இற்கு முடிவு உன்மை என நிறுவப்பட்டது. \therefore கணிதத் தொகுத்தறி முறறப்படி எல்லா $n \in \mathrm{Z}^{+}$இற்கும் முடிவு உண்மையாகும்.
 இதிலியந்து அல்லது வேழு விதமாக, சமனிலி $|x|+1>2|x-1|$ ஐத் திருப்தியாக்கும் x இண் ஸல்லா மெய்ப் பெறுமானங்களையும் காண்்க.

OR $\quad\left\{x: n \in \mathbb{R}, \quad \frac{1}{3}<n<3\right\}$

Aliter 1

வகை (i) $x \geq 1 \quad x+1>2(x-1) \Leftrightarrow x<3.5$
எனவே இவ்வகையில், $1 \leq x<3$ என்பது x இற்கான தீர்வுகளாகும்.

வகை (ii)

$$
\begin{equation*}
0<x<1 \quad x+1>-2(x-1) \Leftrightarrow x>\frac{1}{3} \tag{5}
\end{equation*}
$$

எனவே இவ்வகையில், $\frac{1}{3}<x<1$ என்பது x இற்கான தீர்வுகளாகும்.
வகை (iii) \square

$$
-x+1>-2(x-1) \Leftrightarrow x>1
$$

இது முரண்பாடானது எனவே இவ்வகையில் தீர்வுகள் இல்லை.
எனவே $\left\{x \in \mathbb{R}: \frac{1}{3}<x<3\right\}$ என்பது தீர்வுத் தொடையாகும் 5

Aliter 2

$$
\begin{align*}
& |x|+1>2|x-1| \\
& x^{2}+2|x|+1>4\left(x^{2}-2 x+1\right) \\
\Leftrightarrow & 3 x^{2}-2(|x|+4 x)+3<0 \\
\operatorname{cose} & x>0 \\
& 3 x^{2}-10 x+3<0 \\
\Leftrightarrow & (3 x-1)(x-3)<0 \tag{5}\\
\Leftrightarrow & \frac{1}{3}<x<3 \tag{5}
\end{align*}
$$

(i) $|z-i|=1$.
(ii) $\operatorname{Arg}(z-i)=\frac{\pi}{6}$

สணவே $A \hat{O} C=\frac{\pi}{6}$ ஆகும்.
ஆகவே $O C$ ஆனது நேர் x - அச்சுடன் அமைக்கும் கோணம் $\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$.
மேஷเம் $O C=2 \cos \frac{\pi}{6}=\sqrt{3}$. 5
எбாவே தேவையான சிக்கல் எண்: $\sqrt{3}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$.

Aliter

$$
\begin{array}{ll}
\begin{array}{l}
\text { Aliter } \\
y_{i}=1+\cos \frac{\pi}{3}=\frac{3}{2} \\
x_{i}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
\end{array} & Z_{C}=\frac{\sqrt{3}}{2}+\frac{3}{2} i \\
& =\sqrt{3} C \frac{1}{2}+
\end{array}
$$ ஆகவே $r=\sqrt{3}$ 2.்் $\theta=\frac{\pi}{6}$ உம் ஆகம்.

4. ஒல்வோ்் இலக்கமும் ஒரு தடஹை மாத்திரம் பயஷபடுத்தப்பட்டால், $1,2,3,4,5$ என்று் இலக்கங்களிலிருந்கு ஐந்து இலக்கங்களைக் கொண்ட எத்தணை வெவ்வேஞ எண்களை ஆக்கலாம் ?
இவ்வெண்ககளில் (i) எத்தணை இரட்டை எணாகள் உள்ளை ?
(ii) எத்தळ๙uில் 3,4 ஆகிய இலக்கங்கள் அடுத்தடுத்து உள்ளঞ ?
5.

(i) இறுதி இலக்கம் 2 அல்லது 4 ஆக இருக்க வேண்டும்.

$$
\begin{equation*}
\text { தேவையான விடை }=2 \times 4!=48 \tag{5}
\end{equation*}
$$

(ii)
34

ஓன்றாகவும் அதே ஒழுங்கிலும் இருக்கும் போது
(i)

ஓன்றாகவும் அதே ஒழுங்கிலும் இருக்கும் போது
மீண்டும் தேவையாா வழிகளின் எண்ணிக்கை 4!
தேவையான விடை $=2 \times 4!=48$
5
 காண்க.

$$
\begin{aligned}
\lim _{x \rightarrow 0} & \frac{1-\cos (\alpha x)}{\sqrt{4+x^{2}}-\sqrt{4-x^{2}}} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} \alpha x}{(1+\cos (\alpha x))} \cdot \frac{1}{\left(\sqrt{4+x^{2}}-\sqrt{4-x^{2}}\right)} \cdot \frac{\left(\sqrt{4+x^{2}}+\right.}{\sqrt{4+x^{2}}+}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin ^{2} \alpha x}{2 x^{2}} \frac{\left(\sqrt{4+x^{2}}+\sqrt{4-x^{2}}\right)}{(1+\cos (\alpha x))}
$$

Aliter

$$
\begin{align*}
& \lim _{x \rightarrow 0} \frac{1-\cos (\alpha x)}{\sqrt{4+x^{2}}-\sqrt{4-x^{2}}} \\
& \quad=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{\alpha x}{2}\right)}{\sqrt{4+x^{2}}-\sqrt{4-x^{2}}} \times \frac{\left(\sqrt{4+x^{2}}+\sqrt{4-x^{2}}\right)}{\left(\sqrt{4+x^{2}}+\sqrt{4-x^{2}}\right)} \\
& \tag{5}\\
& \quad=\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(\frac{\alpha x}{2}\right)}{x^{2}} \cdot\left(\sqrt{4+x^{2}}+\sqrt{4-x^{2}}\right) \\
& \\
& \quad=\lim _{x \rightarrow 0} \frac{\sin ^{\left(\frac{\alpha x}{2}\right)}}{\frac{\alpha x}{2}} \times \frac{\alpha^{2}}{4} \times\left(\sqrt{4+x^{2}}+\sqrt{4-x^{2}}\right) \\
& \\
& \\
& \quad=1^{2} \cdot \frac{\alpha^{2}}{4} \cdot 4=\alpha^{2}(5) \\
& \therefore \alpha^{2} \\
& =16 \Rightarrow \alpha=4(\because \alpha>0) \\
& 5
\end{align*}
$$

 எஞக் காட்டுக.

இடைவெட்டும் புள்ளிகளில் : $x^{2}=2 x-x^{2}$

$$
x(x-1)=0
$$

$$
x=0 \text { or } x=1
$$

தேவையான பரப்பு $=\int_{0}^{1}\left[\left(2 x-x^{2}\right)-x^{2}\right] d x 15$
10

$$
\begin{aligned}
& =2 \int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\left.2\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1} \\
& =2\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =\frac{1}{3} \text { சதுர அலகுகள் }
\end{aligned}
$$

 தரப்பட்டுள்ளது. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin 2 \theta$ எөக் காட்டுக.
 θ இல் பொயாானத்தைக் காண்்க.

$$
\frac{d x}{d \theta}=6 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \times \frac{1}{2}=3 \sin \frac{\theta}{2} \cos \frac{\theta}{2}
$$

$$
\begin{aligned}
\frac{d y}{d \theta} & =3 \sin ^{2} \theta \cos \theta \\
\frac{d y}{d x} & =\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \\
& =\frac{3 \sin ^{2} \theta \cos \theta}{3 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \\
& =2 \sin \theta \cos \theta \\
& =\sin 2 \theta \\
\left.\frac{d y}{d x}\right|_{P} & =\frac{\sqrt{3}}{2} \\
\sin 2 \theta & =\frac{\sqrt{3}}{2} \\
2 \theta & \left.=\frac{\pi}{3} \quad \because 0<2 \theta<\frac{\pi}{2}\right) \\
\theta & =\frac{\pi}{6} .5
\end{aligned}
$$

8. உற்பத்தியினாடாகவும் $2 x+3 y-k=0, x-y+1=0$ எஷ்னும் நேர்கோடுகளின் வெட்டுப் புள்ளியினாபாகவும் வெல்லு் நேரககாடு l எஆக் கொள்வோம்; இங்கு $k(\neq 0)$ ஒரு மாறிலி. l இஷ் சமண்பாட்டை k இஷ் சா்பபிற் காணா்க.
$(1,1),(3,4)$ ஆகிய இரு புள்ளிகளும் l இன் இரே பக்கத்தில் உள்ளஆவெசைத் தரப்பட்டுள்ள்து. $k<18$ எணக் காட்டுக.
$l: 2 x+3 y-k+\lambda(x-y+1)=0$
உற்பத்தியினூடு l செல்வதால் $-k+\lambda=0$

$$
\therefore \lambda=k
$$

$\therefore l$ இன் சமன்பாடு $(2+k) x+(3-k) y=0$
$(1,1)$ உம் $(3,4)$ உம் ஒரே பக்கத்தில் இருப்பதால்

$$
\begin{align*}
\Rightarrow & {[(2+k)+(3-k)][3(2+k)+4(3-k)] } & >0 \tag{5}\\
\Rightarrow & 5(18-k) & >0 \\
\Rightarrow & k & <18 .
\end{align*}
$$

5

Aliter

$l: x-y+1+\lambda(2 x+3 y-k)=0$ இங்கு $\lambda \in \mathbb{R}$.

உற்பத்தியினூடு l செல்வதால்,

$$
\begin{aligned}
1-\lambda k & =0 \\
\Rightarrow \quad \lambda k & =1 \\
\Rightarrow \quad \lambda & =\frac{1}{k} \cdot(\because k \neq 0)
\end{aligned}
$$

\square
$\therefore l$ இன் சமன்பாடு $\left(1+\frac{2}{k}\right) x+\left(\frac{3}{k}-1\right) y=0$
$(1,1)$ உம் $(3,4)$ `உம் ஒரே பக்கத்தில் இருப்பதால்

$$
\begin{equation*}
\Rightarrow\left[1+\frac{2}{k}+\frac{3}{k}-1\right]\left[3+\frac{6}{k}+\frac{12}{k}-4\right]>0 \tag{5}
\end{equation*}
$$

$\Rightarrow \frac{5(18-k)}{k^{2}}>0 \quad \Rightarrow \quad k<18 \cdot(\because k \neq 0) 55$

(i) வட்டம் S இயதும்
 சம்்பாடுகறைக் காண்க.
(i)

$$
\begin{aligned}
& \frac{(y-2)(y-4)}{(x-1)(x+5)}=-1 \text { for } \mathrm{x} \neq 1,-5 \text { இற்கு } 5 \\
& S:(x-1)(x+5)+(y-2)(y-4)=0 \\
& x^{2}+y^{2}+4 x-6 y+3=0
\end{aligned}
$$

> 5
> $x^{2}+y^{2}+4 x-6 y+3=0$
(ii) தேவையான வட்டம் S^{\prime} எனின்

$$
\begin{equation*}
x^{2}+y^{2}-2 x-2 y+c^{\prime}=0 \tag{5}
\end{equation*}
$$

S, S^{\prime} என்பன நிமிர் கோணத்தில் இடைவெட்டுவதால் $\Rightarrow 2 g g^{\prime}+2{f f^{\prime}}^{\prime}=c+c^{\prime}$, இங்கு $g=2, f=-3, g^{\prime}=-1, f^{\prime}=-1, c=3, c^{\prime}=c^{\prime}$.

$$
\begin{array}{ll}
\Rightarrow & 2(2)(-1)+2(-3)(-1)=3+c^{\prime} \\
\Rightarrow & c^{\prime}=-1
\end{array}
$$

$$
5
$$

$\therefore S^{\prime}: x^{2}+y^{2}-2 x-2 y-1=0$

Aliter
(i) $S:(x-1)(x+5)+(y-2)(y-4)=0$

$$
x^{2}+y^{2}+4 x-6 y+3=0
$$

(ii) தேவையான வட்டம் S^{\prime} எனின்

$$
\begin{aligned}
& S^{\prime}:(x-1)^{2}+(y-1)^{2}=r^{2} \\
& x^{2}+y^{2}-2 x-2 y+2-r^{2}=0
\end{aligned}
$$

S, S^{\prime} என்பன நிமிர் கோணத்தில் இடைவெட்டுவதால்

$$
\Rightarrow 2 g g^{\prime}+2 f f^{\prime}=c+c^{\prime}
$$

இங்கு $g=2, f=-3, g^{\prime}=-1, f^{\prime}=-1, c=3$ and $c^{\prime}=2-r^{2}$.

$$
\begin{equation*}
2(2)(-1)+2(-3)(-1)=3+\left(2-r^{2}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad r^{2}=3 \tag{5}
\end{equation*}
$$

$\therefore S^{\prime}: x^{2}+y^{2}-2 x-2 y-1=0$
10. $0 \leq x \leq \frac{\pi}{2}$ இற்குச சம்்பாடு $\cos x+\cos 2 x+\cos 3 x=\sin x+\sin 2 x+\sin 3 x$ ঞத் தீர்க்.
$\cos x+\cos 2 x+\cos 3 x=\sin x+\sin 2 x+\sin 3 x$
$2 \cos 2 x \cos x+\cos 2 x=2 \sin 2 x \cos x+\sin 2 x$

$$
\begin{aligned}
\cos 2 x(2 \cos x+1) & =\sin 2 x(2 \cos x+1) \\
\cos 2 x & =\sin 2 x\left(\because 0 \leq x \leq \frac{\pi}{2} \Rightarrow 2 \cos x+1 \neq 0\right)
\end{aligned}
$$

$$
\begin{align*}
\tan 2 x & =1(\because \cos 2 x=0 \Rightarrow \sin 2 x \neq 0) \\
2 x & =\frac{\pi}{4}\left(\because 0<x<\frac{\pi}{2}\right) \\
x & =\frac{\pi}{8} . \tag{5}
\end{align*}
$$

பகுதி B

11. (a) $a \neq 0$ ஆகவும் $a+b+c \neq 0$ ஆகவும் இருக்கத்தக்கதாக $a, b, c \in \mathbb{R}$ எঞவும் $f(x)=a x^{2}+b x+c$ எঞவும் கொள்வோம்.
சமண்பாடு $f(x)=0$ இல் 1 ஒரு குலம்்று எஆக் காட்டுக.
$f(x)=0$ இல் டுலங்கள் α, β எஆக் கொள்வோம்.
$(\alpha-1)(\beta-1)=\frac{1}{a}(a+b+c)$ எбவும் $\frac{1}{\alpha-1}, \frac{1}{\beta-1}$ ஆகியவற்ணை முலங்களாகக் கொண்ட இருபடி்் சமண்பாடு $g(x)=0$ இனால் தரப்புுின்றது எணவும் காட்டுக்; இங்கூ $g(x)=(a+b+c) x^{2}+(2 a+b) x+a$ இப்போது $a>0$ எனவும் $a+b+c>0$ எனளும் கொள்வோம்.
$f(x)$ இன் இழிவுப் பெறமானம் m_{1} ஆனது $m_{1}=-\frac{\Delta}{4 a}$ இஆால் தரப்படுகிஷ்றதெஞக் காட்டுக; இங்கு $\Delta=b^{2}-4 a c$ ஆகும்.

இதிலிருந்து, எல்லா $x \in \mathbb{R}$ இற்கும் $g(x) \geq 0$ ஆக இருந்தால்-இருந்தால் மாத்திரம் எல்லா $x \in \mathbb{R}$ இற்கும் $f(x) \geq 0$ எஆக் காட்டுக.
(b) $p(x)=x^{3}+2 x^{2}+3 x-1$ எணவும் $q(x)=x^{2}+3 x+6$ எஎவும் கொள்வோம். ம்தித் தேற்றத்தைப் பயன்படுத்தி, $p(x)$ ஆஞது $(x-1)$ இணா்ல் வகுக்கப்படும்போது உள்ள ய゙தியையும் $q(x)$ ஆணது $(x-2)$ இஆால் வகுக்கப்படும்போது உள்ள யீதியயயும் காண்க.
$p(x)=(x-1) q(x)+5$ எю வாய்ப்புப் பார்த்கு, $p(x)$ ஆঞது $(x-1)(x-2)$ இஆால் வகுக்கப்படும்போது உள்ள மீதியைக் காண்க.
$f(x)=a x^{2}+b x+c$
(a) $f(1)=a+b+c \neq 0$.
$\therefore 1$ ஆனது $f(x)=0$ இன் மூலமன்று.

$$
\begin{equation*}
\alpha+\beta=-\frac{b}{a} \text { and } \alpha \beta=\frac{c}{a} \tag{5}
\end{equation*}
$$

$$
(\alpha-1)(\beta-1)=\alpha \beta-(\alpha+\beta)+1
$$

$$
\left.\begin{array}{l}
=\frac{c}{a}+\frac{b}{a}+1 \\
=\frac{a+b+c}{a}
\end{array}\right\}
$$

Let $\quad \alpha_{1}=\frac{1}{\alpha-1}$ and $\beta_{1}=\frac{1}{\beta-1}$.
α_{1}, β_{1} ஐ மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $\left(x-\alpha_{1}\right)\left(x-\beta_{1}\right)=0$.
i.e. $\quad x^{2}-\left(\alpha_{1}+\beta_{1}\right) x+\alpha_{1} \beta_{1}=0$.

ศனவே $\alpha_{1}+\beta_{1}=\frac{1}{\alpha-1}+\frac{1}{\beta-1}=\frac{\alpha+\beta-2}{(\alpha-1)(\beta-1)}$

$$
=\frac{-\frac{b}{a}-2}{(a+b+c) / a}=-\frac{(2 a+b)}{a+b+c}
$$

மேலும் $\alpha_{1} \beta_{1}=\frac{a}{a+b+c}$.
(1)இன் படி தேணவயான இவுபடிச் சமன்பாடு $x^{2}+\frac{(2 a+b)}{(a+b+c)} x+\frac{a}{a+b+c}=0$

$$
\Leftrightarrow(a+b+c) x^{2}+(2 a+b) x+a=0
$$

Important $\Leftrightarrow g(x)=0$, where $g(x)=(a+b+c) x^{2}+(2 a+b) x+a$.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}
\end{aligned}
$$

$$
\begin{align*}
\text { மேญும் } \begin{aligned}
& m_{2}=\frac{-\Delta^{\prime}}{4(a+b+c)} \\
&=\frac{4 a m_{1}}{4(a+b+c)} \\
& \Leftrightarrow(a+b+c) m_{2}=m_{1} \cdot a
\end{aligned}
\end{align*}
$$

$$
\begin{aligned}
& f(x) \geq 0 \text { எல்லா } x \in \mathbb{R} \text { இற்கும் } \\
& \Leftrightarrow m_{1} \geq 0 \\
& \Leftrightarrow m_{2} \geq 0 \quad \because m_{2}=\frac{a m_{1}}{(a+b+c)}
\end{aligned}
$$

\Leftrightarrow Bñnasicmar lees- ${ }^{-5}$
$\Leftrightarrow g(x) \geq 0$ எல்லா $x \in \mathbb{R}$ இற்கும்

$$
\begin{aligned}
(x-1) q(x)+5 & =(x-1)\left(x^{2}+3 x+6\right)+5 \\
& =x^{3}+3 x^{2}+6 x-x^{2}-3 x-6+5 \\
& =x^{3}+2 x^{2}+3 x-1 \\
& =p(x)
\end{aligned}
$$

$$
q(x)=(x-2)(x-5)+16 \text { ஆகும் }
$$

$$
\begin{align*}
\therefore p(x) & =(x-1)\{(x-2)(x+5)+16\}+5 \\
& =(x-1)(x-2)(x+5)+16 x-11 . \tag{5}
\end{align*}
$$

எனவே தேவையாா மீதி $16 x-11$.

12. (a) $n \in \mathbb{Z}^{+}$எனக் கொள்வோ்். வழக்கமான குறிப்ப்டில், $(1+x)^{n}$ இற்கு Fருவுப்பு விரியயக் சூறுகு. வழக்கமான குறிப்ப்் டில், $r=0,1,2, \ldots, n-1$ இற்கு $\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}}=\frac{n-r}{r+1}$ எஎக் காட்டுக. $(1+x)^{n}$ இன் ஈாுளுப்பு விரியில் x^{r}, x^{r+1}, x^{r+2} ஆகியவற்றின் குணகங்கள் அதே வரியையில் எடுக்கப்படும்டோது $1: 2: 3$ விகிதங்களில் உள்ளனவாகும். இச்சந்தijப்பத்தில் $n=14$ எகவும் $r=4$ எøவும் காட்டுக.
(b) $r \in \mathbb{Z}^{+}$இற்கத $U_{r}=\frac{10 r+9}{(2 r-3)(2 r-1)(2 r+1)}$ எबவும் $f(r)=r(A r+B)$ எбவும் கொள்வோம்; இந்கு A, B ஆகியய மெய்ப் மாறிலிகள்.
$r \in \mathbb{Z}^{+}$இற்கு $U_{r}=\frac{f(r)}{(2 r-3)(2 r-1)}-\frac{f(r+1)}{(2 r-1)(2 r+1)}$ ஆக இளுக்கத்த்கதாக A, B ஆகிய மாறிலிடமளின்் பெயுமானங்களைக் காண்க.
$n \in \mathbb{Z}^{+}$இற்கு $\sum_{r=1}^{n} U_{r}=-3-\frac{(n+1)(2 n+3)}{\left(4 n^{2}-1\right)}$ எஆக் காட்டுக.
முடிலில் தொ்ட் $\sum_{r=1}^{\infty} U_{r}$ இருங்குகின்றதௌ மேஷும் காட்டி, அதன் சூட்டுத்தொகையைக் காண்்.

(a) $(1+x)^{n}=\sum^{n}{ }^{n} C_{r} x^{r}$, இங்கு ${ }^{n} C_{r}=\frac{n!}{\text { ! }}$ for $r=0,1,2, \ldots, n$ 5) $5)^{r!(n-r)!} \quad 10$ $\begin{aligned} r= & 0,1,2, \ldots, r-1, \text { இற்கு } \\ \frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}} & =\frac{n!}{\frac{n+1)!(n-r-1)!}{r!(n-r)!}} \\ & =\frac{\frac{1}{r+1}}{\frac{1}{n-r}}=\frac{n-r}{r+1} . \cdots C_{0}\end{aligned}$
\qquad
இதே போல் $r=0,1,2, \ldots, n-2$, இற்கு
(1) $\Rightarrow \frac{{ }^{n} C_{r+2}}{{ }^{n} C_{r-1}}=\frac{n-r-1}{r+2}$.

${ }^{n} C_{r}::^{n} C_{r+1}::^{n} C_{r+2}=1: 2: 3$ எனத்தரப்பட்டுள்ளது
5
$\Rightarrow \frac{n-r}{r+1}=2, \frac{n-r-1}{r+2}=\frac{3}{2}$
$\Rightarrow n-r=2(r+1)$
(2) , $2(n-r-1)=3(r+2)$
$\Rightarrow 4(r+1)-2=3 r+6$
$\Rightarrow r=4$, அத்துடன் (2) இன் படி $n=14$.

(b) $\frac{10 r+9}{(2 r-3)(2 r-1)(2 r+1)}=\frac{r(A r+B)}{(2 r-3)(2 r-1)}-\frac{(r+1)(A r+A+B)}{(2 r-1)(2 r+1)}$
$\Leftrightarrow 10 r+9=r(A r+B)(2 r+1)-(r+1)(A r+A+B)(2 r-3)$

$$
\begin{aligned}
&= r\left[2 A r^{2}+(A+2 B) r+B\right]-(r+1)\left[2 A r^{2}+(2 A+2 B-3 A) r-3(A+B)\right] \\
&= 2 A r^{3}+(A+2 B) r^{2}+B r-2 A r^{3}-(2 B-A) r^{2}+3(A+B) r-2 A r^{2}-(2 B-A) r+3(A+B \\
&=-(4 A+2 B) r \\
& \Leftrightarrow r^{1}: 4 A+2 B=10, r^{0}: 3 A+3 B=9 \\
& \Leftrightarrow A=2, B=1 .
\end{aligned}
$$

$$
\Leftrightarrow A=2, B=1
$$

ஆனால் $U_{r}=g(r)-g(r+1)$, இங்கு $g(r)=\frac{f(r)}{(2 r-3)(2 r-1)}$ அத்துடன் $f(r)=r(2 r+1)$.

$$
\begin{array}{ll}
r=1 ; & U_{1}=g(1)-g(2) \\
r=2 ; & U_{2}=g(2)-g(3)
\end{array}
$$

$$
\begin{aligned}
U_{n-1} & =g(n-1)-g(n) \\
U_{n} & =g(n)-g(n+1)
\end{aligned}
$$

$$
\sum_{r=1}^{n} u_{r}=g(1)-g(n+1)
$$

$$
=-3-\frac{(n+1)(2 n+3)}{\left(4 n^{2}-1\right) f}
$$

$$
=\frac{(1) \cdot(3)}{(-1)(1)}-\frac{(n+1)(2 n+3)}{(2 n-1)(2 n+1)}
$$

$$
\begin{align*}
& =\lim _{n \rightarrow \infty}\left\{-3-\frac{\left(1+\frac{1}{n}\right)\left(2+\frac{3}{n}\right)}{\left(4-\frac{1}{n^{2}}\right)}\right\} \tag{55}\\
& =-3-\frac{1}{2}=-\frac{7}{2}
\end{align*}
$$

எனவே $\sum_{r=1}^{\infty} U_{r}$ ஒருங்கும் அதன் கூட்டுத்தொகை $-\frac{7}{2}$ ஆகும். 5
13. (a) $\mathbf{A}=\left(\begin{array}{rr}-4 & -6 \\ 3 & 5\end{array}\right), \mathbf{X}=\binom{-1}{1}, \mathbf{Y}=\binom{-2}{1}$ எшக் Сळாள்லோம்.
$\mathbf{A X}=\lambda \mathbf{X}$ ஆகவும் $\mathbf{A Y}=\mu \mathbf{Y}$ ஆகவும் இருக்கத்தக்கதாக λ, μ ஆகிய மெய்ம் மாறிலிகளைக் காய்். $\mathbf{P}=\left(\begin{array}{rr}-1 & -2 \\ 1 & 1\end{array}\right)$ எซண் கொள்டோம். $\mathbf{P}^{-1}, \mathbf{A P}$ ஆகியவற்யுக்க் கணல்டு, $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}$ எணக் காட்டுக;

இங்கூ $\mathbf{D}=\left(\begin{array}{rr}2 & 0 \\ 0 & -1\end{array}\right)$.
 $O B=2(O A)$ ஆகவும் $A \hat{O} B=\frac{\pi}{4}$ ஆகவும் இருக்கத்தக்கதாக உள்ளது; இங்கு O ஆஎது உற்ப்து ஆகு்்.
 சிக்கலெண்கையணக் காண்க.
மேலும் $O A C B$ இர் இணைகரமாக இருக்கத்தக்கதாகப் புள்ளி C இனால் வகைகுறிக்கப்படும் சிக்கலெண்ஜணயு|ம் காண்க.
(c) $z \in \mathbb{C}$ எளவும் $w=\frac{2}{1+i}+\frac{5 z}{2+i}$ எळவுழ் கொள்வோம். Im $w=-1$ எணவும் $|w-1+i|=5$ எぁவும் தரப்பட்டூள்ளது $z= \pm(2+i)$ எøக் காட்டுக.
(a) $\mathbf{A X}=\left(\begin{array}{rr}-4 & -6 \\ 3 & 5\end{array}\right)\binom{-1}{1}=\binom{-2}{2}$

$$
\lambda \mathbf{X}=\binom{-\lambda}{\lambda}
$$

5

สซவே $\mathbf{A X}=\lambda \mathbf{X} \Leftrightarrow\binom{-2}{2}=\binom{-\lambda}{\lambda}=2\binom{-1}{1}$ $\Leftrightarrow \lambda=2$.
$\mathbf{A Y}=\left(\begin{array}{rr}-4 & -6 \\ 3 & 5\end{array}\right)\binom{-2}{1}=\binom{2}{-1}$

$$
\mu \mathbf{Y}=\binom{-2 \mu}{\mu}
$$

$$
\begin{gathered}
\text { எøவே } \mathbf{A Y}=\mu \mathbf{X} \Leftrightarrow\binom{2}{-1}=\binom{-2 \mu}{\mu}=-1\binom{-2}{1} \\
\Leftrightarrow \mu=-1 .
\end{gathered}
$$

$$
p^{-1}=\frac{\operatorname{adj} p}{|p|}
$$

$\mathbf{A P}=\left(\begin{array}{rr}-4 & 6 \\ 3 & 5\end{array}\right)\left(\begin{array}{rr}-1 & -2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{rr}-2 & 2 \\ 2 & -1\end{array}\right)$
$\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{rr}1 & 2 \\ -1 & -1\end{array}\right)\left(\begin{array}{rr}-2 & 2 \\ 2 & -1\end{array}\right)=\left(\begin{array}{rr}2 & 0 \\ 0 & -1\end{array}\right)=\mathbf{D}$.
b)

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{rr}
-1 & -2 \\
1 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
-1-2 \\
1 & 1
\end{array}\right)\binom{a b}{c d}=\binom{10}{01} \\
& \begin{aligned}
-a-2 c & =1 \\
-b-2 d & =0 \\
a+c & =0 \\
b+d & =1
\end{aligned} \longrightarrow \Rightarrow A=-1, a=1 \\
& \therefore \mathbf{P}^{-1}=\left(\begin{array}{rr}
1 & 2 \\
-1 & -1
\end{array}\right) \text {. }
\end{aligned}
$$

$O A$ ஐ இடம்சுழிப்போக்கில் O பற்றி $\frac{\pi}{4}$ கோணத்தினாடாக சுழற்றும் போது புள்ளி A^{\prime} இனால் குறிப்பிடப்படும் பபறப்படும் சிக்கலலண் $z_{1}=(2+i)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$

$$
\begin{align*}
& =\frac{1}{\sqrt{2}}(2+i)(1+i) \\
& =\frac{1}{\sqrt{2}}(1+3 i) \tag{5}
\end{align*}
$$

$O A=O A^{\prime} \Rightarrow O B=2 O A^{\prime}$.
B புள்ளி இனாா்் குறிக்கப்படும் சிக்கலெண்் z_{2}

$$
\begin{align*}
& z_{2}=2 z_{1} \text { ஆல் கொடுக்கப்படும் } \\
& z_{2}=\sqrt{2}(1+3 i) . \tag{10}
\end{align*}
$$

புள்ளி C இனால் குறிக்கப்படும் சிக்கலெண்

$$
\begin{aligned}
& =(2+i)+z_{2} \\
& =2+i+\sqrt{2}(1+3 i) \\
& =(2+\sqrt{2})+(1+3 \sqrt{2}) i .
\end{aligned}
$$

(c) $w=\frac{2}{1+i}+\frac{5 z}{2+i}$

$$
\begin{equation*}
=\frac{2(1-i)}{2}+\frac{5 z(2-i)}{5} \tag{5}
\end{equation*}
$$

5
$=1-i+z(2-i)$.
$\operatorname{Im} w=-1 \Rightarrow-1=-1+\operatorname{Im} z(2-i)$

$$
\Rightarrow \operatorname{Im} z(2-i)=0
$$

$$
\begin{equation*}
\Rightarrow z(2-i)=\bar{z}(2+i)- \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
|w-1+i|=5 \quad & \Rightarrow|z(2-i)|=5 \\
& \Rightarrow|z||2-i|=5
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow|z| \sqrt{5}=5 \\
& |z|=\sqrt{5}---------(2) \tag{2}
\end{align*}
$$

(1) $\times z \Rightarrow z^{2}(2-i)=z \bar{z}(2+i)$
(2) $\Rightarrow \quad z \bar{z}=5$

$$
\therefore z^{2}(2-i)=(2+i) 5
$$

15

10

$z^{2}=\frac{2+i}{2-i} \cdot 5=\frac{5}{5}(2+i)^{2}$
$\therefore z= \pm(2+i) \leqslant$ OR 0
14. (a) $x \neq \pm 1$ இற்கு $f(x)=\frac{(x-3)^{2}}{x^{2}-1}$ எணக் கொள்வோம்.
$f(x)$ இண் पெறுதி $f^{\prime}(x)$ ஆஆது $f^{\prime}(x)=\frac{2(x-3)(3 x-1)}{\left(x^{2}-1\right)^{2}}$ இனால் தரப்படுகிண்றதெனண் காட்டுக.
$y=f(x)$ இண் அணுுகோடுகளின் சமன்பாடுுகளை எழுதுக.
கிடை அணுகுகோடாேது வளையி $y=f(x)$ ஐ இடைவெட்டும் புள்ளியின் ஆள்சூறுகளைக் காண்க.

(b) ஆணை $5 r \mathrm{~cm}$ ஐயும் உயரம் $h \mathrm{~cm}$ ஐயும் உณை Яரு செவ்வட்ட உாுகை வாிவத்தில் உள்ள ஒரு மமல்லிய உலோகக் கொள்கலத்திற்கு. ஆணை $r \mathrm{~cm}$ ஐ உணடய த(ு5 வட்டத் குறை உள்ள ஆ円ை $5 r \mathrm{~cm}$ ஜ உைய ஒரு வ்ட

 $r>0$ இற்கு $S=49 \pi\left(r^{2}+\frac{2}{r}\right)$ இயா் தரப்டுகில்றுதெெக்் காட்டுக.
S ஆஞூு இழிஷாக இருக்கத்தக்கதாக r இன் பெயுமாோத்கைத்

(a) $f(x)=\frac{(x-3)^{2}}{x^{2}-1}$ for $x \neq \pm 1$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}-1\right) \cdot 2 \cdot(x-3)-(x-3)^{2} \cdot 2 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2(x-3)\left[x^{2}-1-x(x-3)\right]}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2(x-3)(3 x-1)}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

கிணட அணுுகோடு: $\lim _{x \rightarrow \pm \infty} f(x)=1$ இதிலாருந்து $y=1$ ஆக்ம்
மேறும்

தீர்க்க: $y=f(x)$ இல் $y=1$ ஆசு் போது

$$
\begin{equation*}
\text { i.e } \frac{(x-3)^{2}}{x^{2}-1}=1 \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \Leftrightarrow x^{2}-6 x+9=x^{2}-1 \\
& \Leftrightarrow 6 x=10 \\
& \Leftrightarrow x=\frac{5}{3} . \tag{5}
\end{align*}
$$

எสவே தேறையாண புள்ளி $=\left(\frac{5}{3}, 1\right)$.

$$
f^{\prime}(x)=0 \Leftrightarrow x=3 \text { or } x=\frac{1}{3} .
$$

இரண்டு திரும்பல் புள்ளிகளாவன:

$$
\begin{equation*}
\left(\frac{1}{3},-8\right)-\text { உயர்வுப் புள்ளி. } \tag{5}
\end{equation*}
$$

$$
f\left(\frac{1}{3}\right)=\frac{\left(\frac{1}{3}-3\right)^{2}}{\frac{1}{9}-1}=\frac{64}{-8}=-8
$$

$(3,0)$ - இழிவுப் புள்ளி.

(b) $S=2 \pi(5 r) h+\pi(5 r)^{2} \times 2-\pi r^{2}$

$$
\begin{aligned}
& =10 \pi r h+49 \pi r^{2} \\
& 245 \pi=\pi(5 r)^{2} \times h
\end{aligned}
$$

$\therefore h=\frac{245}{25 r^{2}}=\frac{49}{5 r^{2}}$
(1)

$$
\Rightarrow S=10 \pi r \times \frac{49}{5 r^{2}}+49 \pi r^{2}
$$

$$
=49 \pi\left(\frac{2}{r}+r^{2}\right) ; r>0
$$

$$
\frac{d S}{d r}=49 \pi\left(2 r-\frac{2}{r^{2}}\right) \quad \text { OR Q }
$$

$5 \frac{d S}{d r}=0 \Leftrightarrow 2 r=\frac{2}{r^{2}} \Leftrightarrow r=1 . \quad(\because r>0)$
$5 \frac{d S}{d r}<0 ; 0<r<1$ இற்கு, $\frac{d S}{d r}>0 ; r>1$ இற்கு \square
$\therefore S$ இழிவாகும். இங்கு $r=1$ ஆகம்..
15.(a) (i) $\int \frac{\mathrm{d} x}{\sqrt{3+2 x-x^{2}}}$ ஐக் காண்க.
(ii) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sqrt{3+2 x-x^{2}}\right)$ ஐண் கண்்ு. இதிலி(நந்து, $\int \frac{x-1^{1}}{\sqrt{3+2 x-x^{2}}} \mathrm{~d} x$ ஐக் காண்்க.

மேற்குறித்த தொகையுடுகணளப் பயன்படுத்தி, $\int \frac{x+1}{\sqrt{3+2 x-x^{2}}} \mathrm{~d} x$ ஐக் காண்்க.

(ii) $\int_{1}^{3} \frac{\ln x}{x} \mathrm{~d} x$ ஐن் பபறுமானாங் கணிக்க.
(a)

$$
\begin{align*}
& \int \frac{d x}{\sqrt{3+2 x-x^{2}}}=\sqrt{10 d x} \frac{\sqrt{4-(x-1)^{2}}}{10} 0^{R} \tag{0}\\
& =\sin ^{-1}\left(\frac{x-1}{2}\right)+C_{1}, \underset{\substack{\text { இங்கு } \\
\text { 人 }}}{ } C_{1} \text { எதேச்சையான மாறிலியாகும். }
\end{align*}
$$

(ii)

$$
\begin{align*}
\frac{d\left(\sqrt{3+2 x-x^{2}}\right)}{d x} & =\frac{1}{2}\left(3+2 x-x^{2}\right)^{-1 / 2} \times(2-2 x) \\
& =\frac{1-x}{\sqrt{3+2 x-x^{2}}} \tag{10}
\end{align*}
$$

$\int \frac{x-1}{\sqrt{3+2 x-x^{2}}} d x=-\sqrt{3+2 x-x^{2}}+C_{2}$, இங்கு C_{2} எதேச்சையான மாறிலியாகும்.

இதிலிருந்து

$\int \frac{x+1}{\sqrt{3+2 x-x^{2}}} d x=\int \frac{x-1}{\sqrt{3+2 x-x^{2}}} d x+2 \int \frac{d x}{\sqrt{3+2 x-x^{2}}}$

$$
=-\sqrt{3+2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x-1}{2}\right)+C_{3} \text {, இங்கு } C_{3} \text { எதேச்சையான }
$$

மாறிலியாகும்.
(b) $\frac{2 x-1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$

$$
\begin{gathered}
2 x-1=A\left(x^{2}+1\right)+(B x+C)(x+1) \\
x^{2}: \quad 0=A+B \\
x^{1}: 2=B+C \\
x^{0}:-1=A+C \longrightarrow C=-2 / 2 \\
C=1 / 2 \\
B=3 / 2
\end{gathered}
$$

10
$\int \frac{2 x-1}{(x+1)\left(x^{2}+1\right)} d x=\frac{-3}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x$

$$
=\frac{-3}{2} \ln |x+1|+\frac{3}{4} \ln \left(x^{2}+1\right)+\frac{1}{2} \tan ^{-1} x+C_{4}
$$

இங்கு C_{4} எதேச்சையான மாறிலியாக்ம்
(c) (i) $n \neq-1$,

$$
\begin{aligned}
\int x^{n}(\ln x) d x & =\int(\ln x) \cdot \frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right) d x \\
& =\left(\frac{x^{n+1}}{n+1}\right)(\ln x)-\int \frac{x^{n+1}}{(n+1)} \cdot \frac{1}{x} d x \\
& =\left(\frac{x^{n+1}}{n+1}\right)(\ln x)-\frac{1}{(n+1)} \int x^{n} d x \\
& =\left(\frac{x^{n+1}}{n+1}\right)(\ln x)-\frac{1}{(n+1)^{2}} x^{n+1}+C_{5}
\end{aligned}
$$

இங்கு C_{5} எதேச்சையான மாறிலியாகும்.
(ii) $\int_{1}^{3} \frac{\ln x}{x} d x=\left.\frac{(\ln x)^{2}}{2}\right|_{1} ^{3}=\frac{1}{2}(\ln 3)^{2}$.

 $B C$ இ囚் சமб்்பாட்ணையும் காய்்.

(a)

$B D$ இன் சமன்பாடு: $y-1=-\frac{1}{3}(x-3) \quad(\because B D \perp A C)$

$$
\begin{aligned}
\frac{x-3}{3} & =\frac{y-1}{-1}=t(\text { say }) \\
\therefore x=3+3 t, y & =1-t .
\end{aligned}
$$

D க்குத் தொடர்பான லெறுமானம் t என்க.
எனின் $\mathrm{E} \equiv\left(3+\frac{3 t}{2}, 1-\frac{t}{2}\right)$ ஆனது AC யில் கிடக்கும்

$$
\begin{align*}
& \therefore 3\left(3+\frac{3 t}{2}\right)-\left(1-\frac{t}{2}\right)=3 \\
& \quad \Rightarrow 8+5 t=3 \quad \Rightarrow t=-1 . \\
& \quad \therefore \mathrm{D} \equiv(0,2)
\end{align*}
$$

$$
\cdots, \rightarrow
$$

இது DC யில் கிடக்கும்

$$
\begin{aligned}
& 0+k \times 2=4 \\
& k=2
\end{aligned}
$$

$$
\left.\begin{array}{l}
x+2 y=4 \\
3 x-y=3
\end{array}\right\} \Rightarrow 7 x=10 ; 7 y=9
$$

$$
C \equiv\left(\frac{10}{7}, \frac{9}{7}\right) .
$$

$$
y-1=\frac{\frac{2}{7}}{-\frac{11}{7}}(x-3)
$$

$$
-11 y+11=2 x-6
$$

$$
2 x+11 y=17
$$

(b)

C_{3} ஆனது C_{1} ஐ உட்புறமாகத் தொடும் எனின் \Rightarrow

$$
2-r_{1}=\sqrt{x_{0}^{2}+y_{0}^{2}}
$$ c_{3} ஆனது C_{2} ஐ வெளிப்புறமாகத் தொடும் எனின் $\Rightarrow 1+r_{1}=\sqrt{\left(x_{0}-1\right)^{2}+y_{0}^{2}}$ \square 15

$$
\begin{aligned}
& 3=\sqrt{x_{0}^{2}+y_{0}^{2}}+\sqrt{\left(x_{0}-1\right)^{2}+y_{0}^{2}} \\
& \left(x_{0}-1\right)^{2}+y_{0}^{2}=9-6 \sqrt{x_{0}^{2}+y_{0}^{2}}+x_{0}^{2}+y_{0}^{2}
\end{aligned}
$$

$$
x_{0}^{2}-2 x_{0}+1+y_{0}^{2}=9-6 \sqrt{x_{0}^{2}+y_{0}^{2}}+x_{0}^{2}+y_{0}^{2}
$$

$$
2 x_{0}+8=6 \sqrt{x_{0}^{2}+y_{0}^{2}}
$$

$$
\Rightarrow q\left(x_{0}^{2}+y_{0}^{2}\right)=x_{0}^{2}+8 x_{0}+16
$$

$$
\Rightarrow 8 x_{0}^{2}+9 y_{0}^{2}-8 x_{0}-16=0
$$

8திலிருந்து $\left(x_{0}, y_{0}\right)$ வளையியில் கிடப்பதால், $8 x^{2}+9 y^{2}-8 x-16=0$.

17. (a) $\tan (\alpha+\beta)$ இற்கான திரிகோணகணிதச் சர்வசமன்பாட்ணை $\tan \alpha, \tan \beta$ ஆகியவற்றின் சா்்பில் எழுதுக. இதிலிருந்து, $\tan 2 \theta$ ஐ $\tan \theta$ இன் சா்்பிற் டபற்று, $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$ எயக் காட்டுக. இறுதிச் சமன்பாட்டில் $\theta=\frac{5 \pi}{12}$ என்ப் பிரதியிi்டு, $\tan \frac{5 \pi}{12}$ ஆனது $x^{3}-3 x^{2}-3 x+1=0$ இன் ஒரு क्रiருவு என்பறத வாய்ப்ப்ப்ப பா்க்க்.
$x^{3}-3 x^{2}-3 x+1=(x+1)\left(x^{2}-4 x+1\right)$ สส மேலும் தரப்படும்போது $\tan \frac{5 \pi}{12}=2+\sqrt{3}$ สண உய்த்தறிக.
(b) $0<A<\pi$ இற்கூ $\tan ^{2} \frac{A}{2}=\frac{1-\cos A}{1+\cos A}$ สனக் காட்டுக.

வழக்கமாள குறிப்புடடடல், ஒரு முக்கோணை $A B C$ இற்குக் கோசைன் றெறிணயப் பயன்படுத்தி $(a+b+c)(b+c-a) \tan ^{2} \frac{A}{2}=(a+b-c)(a+c-b)$ สனக் காட்டுக.
(c) $\sin ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)=\sin ^{-1}\left(\frac{56}{65}\right)$ எबळ் காட்டுக.

$$
\tan (\alpha+\beta)=\frac{\tan (\alpha)+\tan (\beta)}{1-\tan \alpha \tan \beta}
$$

10

$$
\begin{aligned}
& \alpha=\beta=\theta \text { என்க } \\
& \begin{aligned}
\tan 2 \theta & =\frac{\tan \theta+\tan \theta}{1-\tan \theta \tan \theta} \\
& =\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
\end{aligned}
$$

$$
5
$$

$$
\begin{aligned}
\tan 3 \theta & =\tan (\theta+2 \theta) \\
& =\frac{\tan \theta+\tan 2 \theta}{1-\tan \theta \tan 2 \theta} \\
& =\frac{\tan \theta\left(1-\tan ^{2} \theta\right)+2 \tan \theta}{1-\tan ^{2} \theta-2 \tan ^{2} \theta} \\
& =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
\end{aligned}
$$

$$
5
$$

$$
5
$$

$$
\theta=\frac{5 \pi}{12} \Rightarrow \tan \left(\frac{5 \pi}{4}\right)=\frac{3 \tan \left(\frac{5 \pi}{12}\right)-\tan ^{3}\left(\frac{5 \pi}{12}\right)}{1-3 \tan ^{2}\left(\frac{5 \pi}{12}\right)}
$$

$\Rightarrow-3 \tan \left(\frac{5 \pi}{12}\right)+\tan ^{3}\left(\frac{5 \pi}{12}\right)-3 \tan ^{2}\left(\frac{5 \pi}{12}\right)+1=0 . \quad\left(\because \tan \left(\frac{5 \pi}{4}\right)=1.\right)$
$\Rightarrow \tan \left(\frac{5 \pi}{12}\right)$ என்பது $x^{3}-3 x^{2}-3 x+1=0$ இன் தீர்வாகும் 5
$(x+1)\left(x^{2}-4 x+1\right)=0$
$\tan \left(\frac{5 \pi}{12}\right) \neq-1 \Rightarrow \tan \left(\frac{5 \pi}{12}\right)$ எซ்பது $x^{2}-4 x+1=0$ இன் தீர்வாகும் 5
5
i.e. $x=\frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3}$

$$
\begin{align*}
& \frac{5 \pi}{12}>\frac{\pi}{4} \Rightarrow \tan \left(\frac{5 \pi}{12}\right)>1 . \tag{5}\\
& \because 2-\sqrt{3}<1, \tan \left(\frac{5 \pi}{12}\right)=2+\sqrt{3} . \tag{5}
\end{align*}
$$

Kounsorio
(b) $0<A<\pi$.

$$
\begin{equation*}
\frac{1-\cos A}{1+\cos A}=\frac{2 \sin ^{2}\left(\frac{A}{2}\right)}{2 \cos ^{2}\left(\frac{A}{2}\right)}=\tan ^{2}\left(\frac{A}{2}\right) \tag{5}
\end{equation*}
$$

கோசைன் விதிப்பி
$a^{2}=b^{2}+c^{2}-2 b c \cos A$.

$$
\cos A=-\frac{a^{2}-b^{2}-c^{2}}{2 b c}
$$

$$
\text { สனவே } \begin{align*}
\tan ^{2}\left(\frac{A}{2}\right) & =\frac{1+\frac{a^{2}-b^{2}-c^{2}}{2 b c}}{1-\frac{a^{2}-b^{2}-c^{2}}{2 b c}} \tag{10}\\
& =\frac{2 b c+a^{2}-b^{2}-c^{2}}{2 b c-a^{2}+b^{2}+c^{2}} \tag{5}\\
& =\frac{(a-b+c)(a+b-c)}{(b+c-a)(a+b+c)} \tag{5}
\end{align*}
$$

$\Rightarrow(a+b+c)(b+c-a) \tan ^{2}\left(\frac{A}{2}\right)=(a+b-c)(a+c-b)$.
(c) $\alpha=\sin ^{-1}\left(\frac{3}{5}\right), \beta=\sin ^{-1}\left(\frac{5}{13}\right)$ என்க. $\xrightarrow{\longrightarrow}$

$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$=\frac{3}{5} \cdot \sqrt{1-\frac{25}{169}}+\sqrt{1-\frac{9}{25}} \cdot \frac{5}{13}$

$=\frac{3}{5} \cdot \frac{12}{13}+\frac{4}{5} \cdot \frac{5}{13}$

$$
=\frac{56}{65}
$$

$$
5
$$

$\frac{3}{5}<\frac{\sqrt{3}}{2}, \quad$ எனவே $0<\alpha<\frac{\pi}{3}$.
இதேபோல் $\frac{5}{13}<\frac{1}{2}$, எனவே $0<\alpha<\frac{\pi}{6}$.
$\therefore 0<\alpha+\beta<\frac{\pi}{2}$ สซ๙ேே $\alpha+\beta=\sin ^{-1}\left(\frac{56}{65}\right)$.

A pericle of mass m hangs in equalibnum at one end of a light incruensrble string
of Iength t whose other end is tied to a fixed point O. Aooticr partick of mits $2 m$ collides bonizontally with velocity e with the first parocie and cavleses with it find the velocity with which the composite paracie begons to move
Sbow that if $t=\sqrt{\pi^{1}}$, then the componte particte reactio a maumum height of $\frac{2 l}{9}$ ahone 10 instal leved.

Q mal leve.

Let v be the velocity with which the composite particle beguns to move
Apply $\underline{I}=\Delta(M \underline{v})$ for the system:
$\rightarrow 0=3 m v-2 m \times s$
$\Rightarrow v=\frac{2 u}{3}$.

By the Consenation of Energy, $(3 \mathrm{mg}) h=\frac{1}{2}(3 \mathrm{~m}) \mathrm{v}^{2}$, where h is the required heught.

$$
\begin{equation*}
\therefore h=\frac{v^{2}}{2 g}=\frac{4 u^{2}}{9(2 g)}=\frac{4 g l}{18 g}=\frac{2 f}{9} \tag{5}
\end{equation*}
$$

\square

Apply $!=\mathbf{\Delta}(M \underline{y})$ for the system:
$\because D=(3 m v-m s)-(5 m u-3 m u)$

$\Rightarrow 3 m v=3 \mathrm{mu}$
$\Rightarrow v=u, \cdots \cdots \cdots$ (1)

By Newton's law of restitution-

$$
\begin{equation*}
v+u=e(5 u-u) \tag{10}
\end{equation*}
$$

(1) $\Rightarrow 2 u=6 \mathrm{~cm}$

$$
\therefore r=\frac{1}{3}, 5
$$

A parnck f. progected berzootally wrth velocity 4 given by $=\frac{1}{8} \sqrt{80}$ frim a pront A at the edge of a step of a fived starmay (xipsidiculat to that defr. metes under gravity. Each step is of hoight il and lengit 20 (see the figurr). Show that the pardicie P all not bit the firs step below A. and it will hit the eecond step
 feiow A at a minmental streance da frum A

-1 ath motion of P. apply $s=u t+\frac{1}{2} a t^{2}$:
(and to $B: a=\frac{1}{2} g t_{1}^{2}$, where t_{1} is the time taken to reach the level of the 1^{x} step below
 the same straght hine towads each other with speeds 5 and u ropectwely, as thown in
figure. After their impsect. P and Q move away from each other with spects u and a respectivel Find v in terms of u, and show that the coefficient of reatitution berween r and Q is $\frac{1}{3}$

$$
\begin{align*}
& \stackrel{5 u}{4} \rightarrow 3 m{ }^{u} \tag{5}\\
& \stackrel{u}{u}
\end{align*}
$$

of be the horizental distance moved in time I_{1}
\rightarrow from A to $B: s_{1}=u \times t_{1}=\frac{3}{2} \sqrt{g} a \times \sqrt{\frac{2 a}{g}}=\frac{3}{\sqrt{2}} a>2 a$.
Inus P will not hit the $1^{\prime \prime}$ step below A
Time token from A to C is $t_{2}=\sqrt{\frac{2(2 a)}{g}}$
$\rightarrow s=u t_{2}=\frac{3}{2} \sqrt{R a} \cdot 2 \sqrt{\frac{a}{g}}=3 a$
4. A car of mass $M \mathrm{~kg}$ moves along a straight level road against a resistance of constant magnitude $\boldsymbol{R} N$. At an instant when the car is moving at speed $v \mathrm{~m} \mathrm{~s}^{-1}$, its acceleration is $a \mathrm{~m} \mathrm{~s}^{2}$. Show that the power of its engine at this instant is $(R+M a) v \mathbf{W}$.
The car then moves with a constant speed $v_{1} \mathrm{~ms}$ ' against a resistance of the same constant magnitude $R \mathrm{~N}$ up a straight road inclined at an angle α to the horizontal, working at the same power Show that $v_{1}=\frac{(R+M a) v}{R+M g \sin \alpha}$.

Let $P \mathrm{~N}$ be the tractive force
Apply $\underline{F}=m \underline{a} \rightarrow$:

$$
\begin{equation*}
P-R=M a \tag{1}
\end{equation*}
$$

Let $H \mathrm{~W}$ be the power of its engine.
Then $H=P \times v$

$$
\begin{equation*}
=(R+M a) v \quad(\text { by }(1)) \tag{5}
\end{equation*}
$$

$\underline{F}=m \underline{a}:$

$P_{1}-R-M g \sin \alpha=0$

Also $H=P_{1} \times v_{1}$
$\therefore v_{1}=\frac{H}{P_{1}}=\frac{(R+M a) v}{(R+M g \sin \alpha)}$.
s In the usual notabon. let $e=M+4 j, b=4 i+y$ and $e=a i+(1-a) j$, where a ER
Find (1) $|=|$ and $|b|$.
(ii) ane and be ia terms of a
th the angle between and c is equal to the angle between band c, show that $a=\frac{1}{2}$
(1) Magnitudes of vectors

$$
\begin{aligned}
& |a|=\sqrt{3^{2}+4^{2}}=5 \\
& |\underline{\mid x}|=\sqrt{4^{2}+3^{2}}=5
\end{aligned}
$$

(ii)

Let θ te the angle between \underline{q} and \subseteq. Then $a \cdot \underline{q}=|a||c| \cos \theta$ and $\pm . c^{\circ}=|b||c| \cos \theta$

Since $|\underline{q}|=|b|$, we have $\underline{a} \cdot \underline{c}=b \cdot \underline{c}$

$$
\begin{aligned}
\therefore 4-a & =3+a \\
\Rightarrow a & =\frac{1}{2} 55
\end{aligned}
$$

6 One end of a light inextensible string of length 21 is attached to the highest porn of a than smooth rigid arcular wire of radius $a(>\sqrt{2} t)$ which is fixed in a vertical plane. A small smooth bead of weight w. which is free to move along the wire. is attached to the other end of the sting The bead is in equilibrium with the string taut, as in the faure. Mark the forces acting on the bead and show that the tension of the string is $\frac{2 w l}{a}$.

Triangle of Forces

$$
\frac{T}{A B}=\frac{w}{O .4} \Rightarrow T=\frac{2 w l}{a}
$$

By Lami's Theorem, $\frac{T}{\sin (\pi-2 \theta)}=\frac{w}{\sin \left(\frac{\pi}{2}+\theta\right)}$.

$$
\therefore \quad T=w \frac{\sin 2 \theta}{\cos \theta}
$$

$$
=2 w \sin \theta=\frac{2 w l}{a}\left(\because \sin \theta=\frac{l}{a}\right) 55
$$

Resolve in a direction perpendicular to $O B$

$$
T \cos \theta=w \sin 2 \theta
$$

$$
\begin{aligned}
T & =w \frac{\sin 2 \theta}{\cos \theta} \\
& =2 w \sin \theta \\
& =\frac{2 w l}{a}\left(\because \sin \theta=\frac{l}{a}\right) .
\end{aligned}
$$

LEt A and B be two events of a sample space Ω. In the usual notation, $P(A)=P, P(B)=\frac{P}{2}$ and $P(A \cup B)-P(A \cap B)=\frac{2 p}{3}$, where $p>0$. Find $P(A \cap B)$ in terms of p. Deduce that if A and B are independent events. then $p=\frac{5}{6}$.

For two events A and $B, \quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

5

5
This gives us $P(A \cup B)=\frac{3 p}{2}-P(A \cap B)$
It is given that $P(A \cup B))-P(A \cap B)=\frac{2 p}{3}$.
(1) and (2) $\Rightarrow \frac{3 p}{2}-2 P(A \cap B)=\frac{2 p}{3}$
$\Rightarrow P(A \cap B)=\frac{5 p}{12}$.
If A and B are independent, then $P(A \cap B)=P(A) P(B)$.

$$
\begin{aligned}
& \Rightarrow \frac{5 p}{12}=p \cdot \frac{p}{2} \\
& \Rightarrow p=\frac{5}{6} . \quad(\because p>0) \\
& 5
\end{aligned}
$$

8. A bag contains 6 white balls and n black balls which are equal in all respects. except for col Two balls are taken out at random from the bag. one after the other. without replacement. probability that the first hall is white and the second ball is black is $\frac{4}{15}$. Find the value o

Probability that the first ball is white $=\frac{6}{n+6}$.
Probability that the first ball is white and the second ball is black $=\frac{6}{(n+6)} \cdot \frac{n}{(n+5)}$

$$
\begin{aligned}
& \therefore \frac{6}{(n+6)} \cdot \frac{n}{(n+5)}=\frac{4}{15} 55 \\
& \Rightarrow 2 n^{2}-23 n+60=0
\end{aligned}
$$

1,2,3, 4 and 5. The number of tumes the arrow hus each of the sectors is given in the following
frequency table, where p and q are constants.

Number	1	2	3	4	5
Frequency	1	p	q	5	2

If the mean and the variance of the above data are given to be 3 and $\frac{6}{5}$ respectively, find the values of p and q.

The mean of three diztinct integers less than II is 7 . When two more integen are takon, mategers

Let x, y, and $=$ be distunct integers less than 11 with a mean of 7
Then $\frac{x+y+z}{3}=7$. \square

$$
\begin{equation*}
\Rightarrow x+y+z=21 \tag{1}
\end{equation*}
$$

\qquad
since x, y, and $=$ are distinct and the only mode is 3 , at least one of the twat integers additionally taken must be 3. Let the other be t

Since the mean of the five untegers is 5 . we have $\frac{x+y+z+1+3}{5}=5$ \square
$\Rightarrow \quad 21+3=1=25$
$\Rightarrow \quad r=1$

Hence the integers are $3, y, 2,3,1$. Since the only mode is 3, and x, y and z are distinct, cxactly ane of them must be 3 . Let $:=3$.

Again (1) $\Rightarrow x+y=18$ \qquad (2)

Since x and y are integers less than 11, 12) gives us
$(x=8$ and $y=10)$ or $(x=10$ and $y=8)$. Hence, the five numbers are $1,3,3,8$ and 10

\qquad

$$
\begin{aligned}
\text { Mcan } \mu=3 & =\frac{1+2 p+3 q+20+10}{p+q+8}=3 \\
& \Rightarrow 2 p+3 q+31=3 p+3 q+24 \\
& \Rightarrow \quad \sum_{1} \\
\sigma^{2} & =\frac{\sum_{1=1}^{n} f_{1} x_{1}^{2}}{\sum_{1-1}^{n} / 1}-\mu^{2} \\
\text { Variance } & =\frac{6}{5} \Rightarrow \frac{6}{5}=\frac{1 \cdot 1^{2}+7 \cdot 2^{2}+q \cdot 3^{2}+5 \cdot 4^{2}+2 \cdot 5^{2}}{q+15}-3^{2} \\
\Rightarrow 51(q+15) & =5(1+28+9 q+80+50) \\
\Rightarrow & =5 .
\end{aligned}
$$

11. (a) A prodede P of mass 0 a conencted to a purtick Q of mase lan by a lig
 above un inelatic boniontal boor toipally the two penside are held ma

 P and Q. show thus ore magnituate of accelenion of ant furbile is $\frac{1}{3}$. After a ome t, de particie Q wike une boor, cumer to rese instandy, remums
 eraptas seganaily for the nocons of the too prodes P asd Q untl the particte

Ilong bese traphs. tho than $\frac{1}{2}=2 \sqrt{\frac{A}{8}}$ and find $\frac{1}{4}$ in terms of g and A Shov furter than be parode P reches a mavmum beght $\frac{3 /}{2}$ above the floor
 and C art utweses on apposere tanks of the nver such ons the line $A C$ in perpendiculw to the dracton of som of the nver Ahw, A stationary bow In is laed in oir modilie of the nver, on the jppeream side of $A C$ which ous $A B C$ is an equalatent orangle. (Ser the adjouning figure)

 Thee a moves from it C Skeach the velocity tiangla for the motions of the boan from A to O 0×1 from θ to C
 upeod to ithe motion from it to C

(a)

$$
\begin{aligned}
& \text { Apply } E=m \underline{2} \\
& \text { For }(2(3 m)+\quad 3 m g-T=3 m f \\
& \text { For } P(m) \uparrow \frac{T-m g=m f}{2 m K}=4 m f \\
& \\
& \quad=f=\frac{g}{2}
\end{aligned}
$$

From the x graphs

$$
\begin{align*}
& \text { Area under } O A \text { or } O E \quad=\frac{1}{2} \cdot t_{0} \cdot v=h \ldots \ldots \ldots(1) \tag{5}\\
& \text { Gradient of } O A \text { or } O E=\frac{v}{t_{0}}=\frac{g}{2} \quad(2) \\
& \begin{aligned}
&(1) \times(2) \Rightarrow \frac{1}{2} \cdot t_{0} \cdot \frac{g t_{0}}{2}=h \\
&=\quad t_{0}^{\frac{g}{2}}=\frac{4 h}{g} \\
&= \\
& t_{0}=2 \sqrt{\frac{h}{g}}
\end{aligned}
\end{align*}
$$

For its motion under gravity alone, time taken by $P=\frac{2 v}{g}$

$$
\therefore t_{1}=2 \sqrt{\frac{h}{8}} 5
$$

Maximum height reached by $P=\frac{1}{2} \cdot v \cdot \frac{1}{2}=\frac{1}{2} h \quad 5$
Total height above the level of nor $=h+h-\frac{h}{2}=\frac{5 h}{2}$
(Note: 15 marks each for each velocity triangle)

For AB: $\triangle P Q R_{1}$

$$
\begin{align*}
R_{1} S & =\sqrt{v^{2}-\frac{u^{2}}{4}} \\
P R_{1} & =R_{1} S-P S \tag{5}\\
& =\frac{1}{2}\left(\sqrt{4 v^{2}-u^{2}}-\sqrt{3 u}\right) . \tag{5}
\end{align*}
$$

For $B C: \triangle P Q R_{2}$
$P R_{2}=P T+T R_{2}$
$=\frac{\sqrt{3} u}{2}+\sqrt{v^{2}-\frac{u^{2}}{4}}$
$=\frac{1}{2}\left(\sqrt{4 v^{2}-u^{2}}+\sqrt{3} u\right)$

$P R_{1}, P R_{2}=\frac{1}{4}\left(4 v^{2}-u^{2}-3 u^{2}\right)$
Total Time $=\frac{a}{P R_{1}}+\frac{a}{P R_{z}}$

$$
\begin{aligned}
& P R_{1}+P R_{2}=\sqrt{4 v^{2}-u^{2}} \\
& P R_{1} \cdot P R_{2}=v^{2}-u^{2}
\end{aligned}
$$

$$
=a \frac{\left(P R_{1}+P R_{2}\right)}{P R_{1} \cdot P R_{2}}
$$

$$
=\overline{P Q}+\overline{Q R_{i}}
$$

$=\overline{P R_{i}}$ for $i=1,2$, where $A B / / P R_{1}$ and $B C / / P R_{2}$ respectively

$\underline{P}(B, E)=$ \qquad for $A B$ and \qquad for $B C$ 5 -For both $\underline{V}(B, E)=\underline{V}(B, W)+\underline{V}(W, E)$

$$
\begin{equation*}
=\underline{V}\left(W^{\prime}, E\right)+\underline{V^{\prime}}\left(B, W^{\prime}\right) \tag{5}
\end{equation*}
$$

> (20.

col

 prove etr of atray and Wher of makr an angle $\left.0 \left\lvert\, 0=0 \times \frac{\pi}{6}\right.\right)$ wib

(a) Dix the soum $\quad-\div-2 m f, m\left(f-\frac{1}{f}\right)$
(miv) Sor the syukm $\uparrow \quad R-3 m p=-m$ 万

(b)

By Convervation of Mechanical Energy

$$
\begin{aligned}
& \operatorname{Im} A a=3 m g a \cos \theta-m g a \theta+\frac{1}{2}(3 m)(a \hat{\theta})^{2}+\frac{1}{2}(\mathrm{~m})(a \theta)^{2} \text { 25 }\left\{\begin{array}{l}
\mathrm{R}: 10 \\
\mathrm{~N} \leqslant 10
\end{array}\right. \\
& \text { tequanan of } \\
& 2 a \theta^{2}=3 g(1-\cos \theta)+g \theta \quad 5
\end{aligned}
$$

Aprhym: $K=m a$

Fot P	$\checkmark T+3 m y \sin \theta=3 m f-\quad(1)$
Ior θ	$t m g-t$

6) (1) and 12 L .

$$
\begin{align*}
& 4 T=3 m g(1-\sin \theta) \tag{5}\\
& T=\frac{1-g g}{4}(1-\sin \theta)
\end{align*}
$$

Applyung $\underline{F}=m a$ for P
$\angle 3 m g \cos \theta-R=3 m a \theta^{2}$
$R=3 m g \cos \theta-\frac{1 m}{2}[3 g(1-\cos \theta)+g \theta]$

$$
\begin{align*}
& \left.=\frac{1 \pi 2}{\vdots} 2 \cos \theta-3+3 \cos \theta-\theta\right) \tag{10}\\
& =\frac{i \pi}{2}(5 \cos \theta-\theta-3)
\end{align*}
$$

Note
P will not lexve the surface for $0<\theta<\frac{7}{6}$

$$
\begin{gathered}
R \mathrm{j}_{6 * \theta}=3 m g>0 \\
\frac{d R}{d \theta}=\frac{3 m g}{2}(-5 \sin \theta-1)<0 \text { for } 0<\theta<\frac{\pi}{6} \\
\left.R\right|_{\theta \div}=\frac{3 m g}{2}\left(\frac{5 \sqrt{3}}{2}-\frac{\pi}{6}-3\right)>0
\end{gathered}
$$

13. One end of a leght clatsc strieg of ratural length a and modulas of dastory the it tied to a find ponst O and the cther end to a partide P of mass m. Tbe parlicle P a relicaned from rat as O Find the velociry of the prock P when it patsen through the point A. where $O_{A}=$ a
Show that the lengts of the trinit $x(z a)$ whisfies the oquabon $x+\frac{4 g}{a}\left(x-\frac{5 a}{4}\right)=0$
Fibog $x=x-\frac{5}{4} \cdot$ expreas the above quation on the form $\bar{x}+w^{2} x=0$, where $=1>0$ is a comatant to be determined.
A wamang trat $x^{2}=e^{2}\left(c^{2}-x^{2}\right)$. find the anplitude e of this wimple tamomic movon
Let L be the lowea portit reachod by the paricle P. Sbow that the tume taken by P to mon from A to L in $\frac{t}{2} \sqrt{\frac{g}{r}}\left\{x-\cos ^{-1}\left(\frac{1}{3}\right)\right\}$
Al the immant when the paricle P is an L anocher paricle of mass $d m$ ($1 \pm 2<33$ in genaly etuched to P 5hoo that the evation of rtotion of the oomponte particie of mata 11.2 .1 m it $x+\frac{\frac{4}{11}-2 x 0}{}\left\{x-15+2 \frac{y}{4}\right\}=0$

Sho furthe the the componse partide performs oxntier smple hamrouc mean with anplituse $0-2) \frac{9}{4}$

Q)	from \cap to $A:$
	$v^{2}=2 g a$

$$
E=m q:-T+m g=m u \quad 05
$$

$$
\text { Eliminaling } T: \quad-4 m g \frac{(x-a)}{a}+m g=m \bar{x}
$$

$$
\begin{align*}
& \Rightarrow \quad \bar{x}+\frac{4 g}{a}(x-a)=\frac{4 g}{a}-\frac{a}{4} \\
& \Rightarrow \bar{x}+\frac{4 g}{a}\left(x-\frac{5 a}{4}\right)=0 \tag{1}
\end{align*}
$$

Wiate $X=x-\frac{9}{4} \Rightarrow X=i$ and $\vec{X}=\dot{x}$.

Then (1) becomes $X+\frac{4 g}{a} X=0$
Hence $\dot{x}+\omega^{2} X=0$, where $\omega=2 \sqrt{\frac{X}{a}} \quad(\because \omega>0)$
$=x^{2}=\omega^{2}\left(c^{2}-X^{2}\right)$ \qquad
$x=\sqrt{2 g a}$ when $x=v \quad \Rightarrow x^{2}=2 g a \quad$ when $X=-\frac{a}{4}$
Then $(2)=2 \mathrm{xa}=\frac{4 \mathrm{~g}}{a}\left[c^{2}-\left(\frac{-a}{4}\right)^{2}\right]$
$\Rightarrow c=\frac{\mathrm{s}}{4} \mathrm{crcsin}$

Centrve $C, y=O C_{3}+(5+1) \frac{a}{4}$

$$
\begin{align*}
C, L & =2 a-(5-2) \frac{a}{4} \tag{5}\\
& =a-21 \frac{a}{4}
\end{align*}
$$

New amplitude $r_{1}=(3-\lambda) \frac{a}{4}(>0) \div \lambda<1$

Complete Simple Harmoest Motine if and cely if
$A C^{*} \geq C_{1}$

$$
(5+\lambda) \frac{a}{4}-a \geq(3-2) \frac{a}{4}
$$

Aldat
tit $X-A \cos$ of $+B \sin$ ar, where A and B are constants to be detennised.

$$
\Rightarrow x=-A \operatorname{asin} a x+B a \cos a r .5
$$

$$
\text { * } t * \operatorname{compen} \text { fanisir }, \quad m
$$

$$
4 \times 1,-n \text { and : }<1)^{\prime} \left\lvert\,-\frac{\pi}{4}\right. \text { and } Y=1-\sqrt{2 \Omega}
$$

II

$$
\begin{equation*}
\left.(t+2) m z-\frac{4 \pi}{a}(x-3)=8 i+2\right) m \tag{5}
\end{equation*}
$$

$$
y+\frac{4 z}{(1+\lambda)}(x-2)-x=0
$$

$$
\ldots i_{8}
$$

$$
1 \cdot \frac{4^{1}}{I I-1+\infty}, \quad, \quad, i^{2}
$$

5

$$
\Rightarrow r=\frac{k}{4} r \cdot c>\mathrm{b}
$$

 \qquad
$+\square \xrightarrow[8]{8}$

$$
A L-\frac{a}{4}-\frac{3 a}{4}=a \quad 5 \quad \text { i }
$$

\qquad

$$
\because \frac{\pi}{5}
$$

$$
\begin{equation*}
=\frac{1}{2} \sqrt{\frac{a}{x}}\left\{t-\operatorname{sen}\left(\frac{1}{3}\right)\right\} \tag{5}
\end{equation*}
$$

Centre $E_{1}: x=Q E_{1}=(j+\lambda) \frac{d}{4}$

$$
(, 1-20-65+2) \frac{d}{4} \quad 5
$$

$$
\begin{equation*}
=0-4 i \frac{\pi}{4} \tag{5}
\end{equation*}
$$

New amplinade $c,=[7-\lambda) \frac{\pi}{4}$ to $[7) \div-2<1$
Complete Simple thamone Motioe if and anly if

$$
\begin{aligned}
& \Delta C_{1} \geqslant 8, \\
& \left.(5+2) \frac{a}{4}-2 \text { 2 } 0-2\right) \frac{a}{4} \\
& 5 \cdot 4-423-1
\end{aligned}
$$

Alist
Lef $I=A$ cosore $+B \sin$ ar, where A and B are constants to be desermined
$=x=-A \operatorname{arsin} a r+B \omega \cos a x$.

When $t=0$ and $x=a, x-\frac{4}{4}$ and $x=1-\sqrt{2 \pi}$

$$
\begin{equation*}
x+\frac{4 t}{a+d) a}(x-4)-x=3 \tag{5}
\end{equation*}
$$

145

$$
1 \cdot+\infty \quad+\quad+\quad+
$$

5

Then \tan ers $=-\frac{21}{40} 5$

$$
a t_{1}=5-a
$$

$\tan a=\frac{d y}{\operatorname{dan}}$ where $0<a<\frac{7}{2}$
Centre C or SH S is such that $:=\frac{5 \pi}{4}$ or $A C=\frac{a}{4}$

$\frac{a}{4}=c \cos a=\frac{c(a \omega)}{\sqrt{161^{-1} \cdot a^{\prime} a^{\prime}}}$

$$
\begin{aligned}
& =c \frac{2 \sqrt{80}}{\sqrt{16+2 g a+4 g 0}}=\frac{1}{3} c 5 \\
& \Rightarrow c=\frac{3}{4}
\end{aligned}
$$

Also from above $a x=r-\cos ^{-1}\left(\frac{t}{3}\right)$

$$
t_{1}=\frac{1}{e}\left\{\pi-\cos ^{-1}\left(\frac{1}{3}\right)\right\} .
$$

 *here $O . A$ and D ar mat collinear Lat C be the point such that $\overrightarrow{O C}=\frac{1}{3} \overrightarrow{O B}$ wow lat D be
 $\overrightarrow{A D}=\frac{3}{2} \overrightarrow{A C}$
Let P and Q be the pants on $A B$ and $O D$ respecturly, tach that $\overrightarrow{A P}=\lambda \vec{A}$ and $\dot{O Q}=11-i+O \bar{O}$. *her $0<\lambda<1$. Show that $\overrightarrow{A C}=2 \overrightarrow{C Q}$
 tad poon of CD Force of mapritades 5, 5, 2, 4 and $\}$ newtons act along $A B, B C, D C, U A$ and BE respectively, to the diveciros indicased by order of the letter Show that they nexultant furn a parallel to $\overrightarrow{A R}$, and find to magputuck
 As additional force aces through C a bow added to the above n)wom of forces so the

\qquad \checkmark
l. et $\overrightarrow{O A}=\underline{a}$ and $\overrightarrow{O B}=\underset{b}{b}$

$$
\begin{equation*}
\text { Then } \overrightarrow{O C}=\frac{1}{3} \overrightarrow{O B}=\frac{b}{3} \quad 5 \quad \text { and } \quad \overrightarrow{O D}=\frac{1}{2} \overrightarrow{A B}=\frac{b-\underline{a}}{2} \tag{5}
\end{equation*}
$$

$$
\overrightarrow{A D}=\overrightarrow{A D}+\overrightarrow{O D}
$$

$$
\overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C}
$$

$$
\begin{equation*}
=-\underline{a}+\frac{b}{2}-\frac{a}{2} \tag{2}
\end{equation*}
$$

$$
=-\underline{q}+\frac{t}{3}-
$$

$$
\begin{equation*}
=\frac{3}{2}\left(-\underline{a}+\frac{b}{3}\right) \tag{1}
\end{equation*}
$$

By (1) and (2), $\overrightarrow{A D}=\frac{3}{2} \overrightarrow{A C}$

$$
\begin{array}{rlrl}
\overrightarrow{P C} & =\overrightarrow{P O}+\overrightarrow{O C} & \overrightarrow{C Q} & =\overrightarrow{C O}+\overrightarrow{O Q} \\
& =\overrightarrow{P A}+\overrightarrow{A O}+\overrightarrow{O C} & & =-\overrightarrow{O C}+(1-\lambda) \overrightarrow{O D} \\
& =-\lambda \overrightarrow{A B}-\overrightarrow{O A}+\overrightarrow{O C} \\
& =-\lambda(\underline{b}-\underline{a})-\underline{a}+\underline{c} \\
& =(\lambda-1) \underline{a}-\lambda \underline{b}+\frac{b}{3} & & =-\frac{b}{3}+(1-\lambda) \frac{1}{2}(\underline{b}-\underline{a}) \\
& \left.=(\lambda-1) \underline{a}+\frac{1}{3}(1-3 \lambda) \underline{b}-13\right) & =\frac{1}{2}\left[(\lambda-1) \underline{a}-\frac{3}{2} \underline{b}+\underline{b}-\lambda \underline{b}\right] \\
\text { By (3) and (4). } \overrightarrow{P C}=2 \overrightarrow{C Q} & =\frac{1}{2}\left((\lambda-1) \underline{a}+\frac{1}{3}(1-3 \lambda) \underline{b}\right)
\end{array}
$$

10 -For marking the given force
(10) For mar

Rewlung parallel wo $\overleftrightarrow{\mathrm{AE}}=-4 \cos \frac{3}{4}+2 \cos \frac{\pi}{6}+5 \cos \frac{\pi}{6}+5 \cos \frac{\pi}{4}$

$$
=4 \sqrt{3} \mathrm{~N} 5
$$

Resolving $A_{A}^{E}=3-4 \sin \frac{\pi}{6}+5 \sin \frac{\pi}{6}-5 \sin \frac{\pi}{6}-2 \cos \frac{\pi}{6}$

$$
\begin{equation*}
=3-2+\frac{5}{2}-\frac{3}{2}-1 \tag{10}
\end{equation*}
$$

Resultant R is of magnitude $4 \sqrt{3} \mathrm{~N}$: A to $\overline{A E}$.

$$
\begin{equation*}
=05 \tag{15}
\end{equation*}
$$

A $R \times\left(2+\frac{\lambda}{2}\right) \sin 30^{\circ}=F .1 \sin 30^{\circ}$

$$
4 \sqrt{3} \times \frac{7}{2}=F
$$

$$
\begin{align*}
& \text { OR }-x=5+\frac{3}{2}+2-\frac{x}{2}-\frac{4}{2}=6 \mathrm{~N} \tag{10}\\
& t r=\frac{A}{2}(5+3)-\frac{2 \sqrt{3}}{2}=2 \sqrt{3} \mathrm{~N} \tag{10}\\
& \frac{r}{3}=\frac{2 N 3}{n}=\frac{1}{n}
\end{align*}
$$

Revulant R is of magnitude $2 \sqrt{3} \sqrt{3+1}=4 \sqrt{3} N$.
Its linc of action makes an angle.
$\tan ^{-1}(1 / \sqrt{3})=\pi / 6$, wth sode $A B=$ it is parallei to $A E$.
is (a) Tive raual unform ruds, cach of meipht w, are umocdly jointad at theor ends so form a rhonben $A B C D$. The mid-ponts of $B C$ and CD are connected by a ligh rod wach that $E A D=20$. Exa of the puints B and D carnes equal loads of woigh σ_{1}. The syates, banging symoctricall; frant the joint A, is in oquiliboum in a venical plane with the lyghe rod honiontal Sow that the thruut in the ligh rod is $2\left(2 w_{1}+w_{z}\right)$ tan θ.
(t) The adjoining figure represens a frameworl of 6ive light rods AB. AC. (P). AC and AD, moothly joinod at the conds. If is guen that $A C=C A$ and $B \dot{A} C=30^{\circ}=A D C \quad$ The francuuth is smoothly hinged at D. A woight Win mupended at the foint H and the Iramework is hopt in equilitrium in , verical plane with $A B$ bennonal and $A D$ verocal, by a honimontal forse of magustade X acting at A.
Usigg Bow's notation, draw saress Clagrams for the poino B. ('and A in the same figure

Hence, fint the value of X und the sareses in all rods. dranguisting between tensions and thrnats

Let P be the poist where resultans tmects $A B$ produced.
Takng moments about B.

$$
\begin{align*}
Y x & =4 \times 2 \sin \frac{\pi}{3}-2 \times 1 \sin \frac{\pi}{3} \quad 10 \\
2 \sqrt{3 x} & =3 \sqrt{3} \\
x & =\frac{3}{2} m \tag{5}
\end{align*}
$$

line of action of k meetr $A B$ produced at $x=\frac{3}{2} m$ from B.
(a)

Let 20 te the length of each heavy rod
${ }_{B}{ }^{+}$ for $B C=X \times 2 a \cos \theta-m \times 2 \sin \theta-T \times a \cos \theta=0$.

$$
\Rightarrow I X-T=\omega_{1} \tan \theta \cdots
$$

4) for 18 and $B C$:

$$
\begin{equation*}
X=4 a \cos \theta+2 x_{1} \times a \sin \theta+m_{2} \times 2 \sin \theta-T \times 3 a \cos \theta=0 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow 4 X-3 Y=-2\left(w_{1}+w_{2}\right) \tan \theta \tag{2}
\end{equation*}
$$

\qquad
(1) $\times 2-(2) \leftrightharpoons T=2 m_{1} \tan \theta+\left(2 w_{2}+w_{2}\right) \tan \theta$

$$
\begin{align*}
& =\left(4 w_{1}+2 w_{2}\right) \tan \theta \tag{5}\\
& =2\left(2 m_{1}+w_{2}\right) \tan \theta \tag{10}
\end{align*}
$$

c

a
-10 each for each joint

Red	Magnifude	Tension/Trust
$B C(b c)$	$2 H$	5
$A B(c a)$	$\sqrt{3} H$	5
$C D(b d)$	$\sqrt{3} H$	Thrust
$A C(d c)$	$\frac{W}{2}$	Tension
$A D(d e)$	$\lambda^{\prime}(e o)=\frac{W}{2}$	Thension

\qquad
(
16. Show that the centre of maxs of a uniform somi circalar lamima of ndinas r and centre O is at a distance $\frac{4 r}{3 x}$ from 0 .
As showe it the adpoinng ligure, a uniform plane lamina L is made by ngidly artaching a rectangle $A N C D$ to a square $P Q R S$ sact that $D C$ and $P Q$ lie on the same line with their mid-points coinciding. and removing a scmi-circular repon $x Y$ of radius $\frac{9}{2}$ cenired at the mid-ponet T of RS. It is given that $A B=a$ and $A D=P Q=2 a$. Shoe that the centre of nass
 of the lartuna L lies on the axis of symenctry al a distance is from RS, wher $t=\frac{238}{3(48-8)}$,

As shown sh the adporiusg figure, the lamsina L is in cquibrium on a rough plase isclined al an angle a to the honizntal with its plane vertical and the edge PS on a line of gratent slope tuch that the poist Plies below S. Show Ulat on $a<(2-k)$ and $\mu \geq \tan a$, where μ is the coefficicot of friction between the lamars and the iodined plane.

17 eal Ao unbiasol cubical die A thow $1,2,3,3,4,5$ oe its sili separnic frocr. The die A is unsed
raice Find the probability thas the sum of the rou numben akewned in 6. Another die B_{2}, conical

 ithe wim of the ino numben obained is 6

Now, the tan duce A and B are pet in a bos. Oos de is miten od of ok boa at random and insed iwice Given that the sum of the two numbers oberined is 6. find ar probaklity thas the dic taken out of the bois is the die A
(i) The mean and the standand deviation of n numbers $x_{1}, y_{2}, \ldots, x_{4}$, are μ_{1} and o_{1} respectively, and the mean and the tundard devizion of en mumben $h_{1}, h_{7} \cdots y_{2}$ ere μ_{1} and a_{1} ropectively. Let the mean and the standard deviation of all of these $=\cdots$ minben be p, and $\sigma_{\text {, mespectively }}$

Shomethat $\mu_{1}=\frac{n \mu_{1}+m \mu_{2}}{n * m}$
Let $d_{i}=\mu_{1}-\mu_{1}$. Shom that $\sum_{i=1}^{\infty}\left(x_{i}-\mu_{3}\right)^{2}=s\left(\sigma_{i}^{2} \cdot d_{1}^{2}\right)$
B) Giong $d_{1}=\mu_{1}-\mu_{2}$, wrike down a smalat capersace for $\sum_{i=1}^{\infty}\left(y_{1}-\mu_{3}\right)^{2}$

Deduce that $\omega_{3}^{2}=\frac{\left(n v_{1}^{2}-m \sigma_{2}^{2}\right) \cdot\left(n \dot{r}_{1}^{2}+n d_{j}\right\}}{m \cdot n}$.
The number of copies wold per day. dunng the fire 100 deys after publinking a are book, Mud mean 2.3 and variance 0.8. Dunng ace next 100 days, be member of sopes sold per divy had mean 1.7 and vananoc 0.5 . Find the mean and the ranance of the oumbor of copes sold pot day dunng the first 200 days
(a) In a single toss of the die A , the probability $P(n)$ of obtaining a face with number n
is given below

n	1	2	3	4	5
$P(n)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$

Let X, be the number obtained in the i^{*} toss for $i=1,2$.
Then $P\left(X_{1}^{\prime}+X_{2}=6\right)=P\left(X_{1}=1\right.$ and $\left.X_{2}=5\right)+P\left(X_{1}=5\right.$ and $\left.X_{2}=1\right)$

$$
\begin{align*}
& +P\left(X_{1}=2 \text { and } X_{2}=4\right)+P\left(X_{1}=4 \text { and } X_{7}=2\right) \\
& +P\left(X_{1}=3 \text { and } X_{2}=3\right) \\
& =4 \times \frac{1}{6} \times \frac{1}{6}+\frac{1}{3} \times \frac{1}{3} \tag{15}\\
& =\frac{2}{9}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{2}[0.64+0.25+0.09 \times 21 \\
& =\frac{1.07}{2}=0.535
\end{aligned}
$$

$$
\sigma_{3}=\sqrt{0.535} \cdot 5
$$

