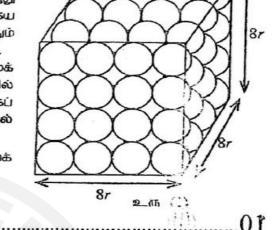

antona mila, referira anto		O A marr	145 25
	2016 Physics MC		
01.	1 (ONE)	26.	2 (TWO)
02.	3 (THREE)		1 (ONE)
03.		28.	3 (THREE)
04.		29.	5 (FTVE)
05.		30.	3 (THREE)
06.		31.	1 (ONE)
07.		32.	3 (THREE)
08.	5 (FIVE)	33.	4 (FOUR)
09.	5 (FIVE)	34.	A11
10.	4 (FOUR)	35.	4 (FOUR)
11.	1 (ONE)	36.	1 (ONE)
12.	3 (THREE)	37.	2 (TWO)
13.	5 (FIVE)	38.	4 (FOUR)
14.	5 (FIVE)	39.	3 (THREE)
15.	5 (FIVE) 3 (THREE)	40.	5 (FIVE)
16.	3 (THREE)	41.	3 (THREE)
17.	2 (TWO)	42.	3 (THREE)
18.	2 (TWO)	43.	1 (ONE)
19.	1 (ONE)	44.	1 (ONE)
20.	4 (FOUR)	45.	5 (FIVE)
21.	3 (THREE)	46.	4 (FOUR)
22.	4 (FOUR)	47.	2 (TWO)
23.	2 (IWO)	48.	5 (FIVE)
24.	5 (FIVE)	49.	3 (THREE)
25.	4 (FOUR)	SØ.	5 (FIVE)


Strictly confidential

64

General Certificate of Education (Advanced Level) Examination August 2016 - Marking Scheme for Physics II Part A

 (a) கொள்கலத்தில் பொதிலையப்பட்ட கோளங்களின் எண்ணிக்கையைக் காண்க.

(*b*) கொள்கலத்தில் பொதிசெய்யப்பட்ட எல்லாக் கோளங்களினதும் மொத்தத் திரவியக் கனவளவிற்கான ஒரு கோவையை r, ர ஆகியவற்றின் சார்பிற் பெறுக.

$$\left(\frac{4}{3}\pi r^{3}\right) \times 64$$
 OR $\frac{256}{3}\pi r^{3}$ 01

(c) கொள்கலம் முற்றாகக் கோளங்களினால் நிரப்பப்பட்டிருக்கும்போது

கொள்கலத்தில் உள்ள கோளங்களின் மொத்தத் திரவியக் கனவளவு

என்னும் விகிதம் சோளங்களின் முற்றாகப் பொதிசெய்யப்பட்ட கொள்கலத்தின் கனவளவு பொதிதற் பின்னம் (f_p) எனவும் முற்றாகப் பொதிசெய்யப்பட்ட கொள்கலத்தின் கனவளவு பொதிந்த

கனவளவு எனவும் அழைக்கப்படும்.

மேற்குறிப்பிட்ட ஒழுங்காகப் பொதிதலுக்குரிய பொதிதற் பின்னம் f_p ஐக் காண்க.

$$f_{p} = \frac{\frac{256}{3}\pi r^{3}}{512r^{3}}$$

$$= \frac{\pi}{6} = 0.16\pi \quad 0.2 \quad \frac{3}{6} \quad 0.16\pi \quad 0.2 \quad \frac{3}{6} \quad 0.16\pi \quad$$

(d) கொள்கலத்தில் உள்ள கோளங்களின் மொத்தத் திணிவு *m* எனின்,

கோளங்களின் மொத்தத் திணிவு - என்னும் விகிதத்திற்குரிய ஒரு முற்றாகப் பொதிசெய்யப்பட்ட கொள்கலத்தின் கனவளவு கோவையை *m, r*, ஆகியவற்றின் சார்பிற் பெறுக. இவ்விகிதம் கோளங்களின் பணைப்பு அடர்த்தி (bulk density) (d_B) எனப்படும்.

Strictly confidential

(512 க்குப் பதிலாக 8³ ஐ எழுதினால் புள்ளிகள் இல்லை) (e) கோளங்களின் திரவியத்தின் அடர்த்தி (d_M) இற்கான ஒரு கோவையை *m*, r, π ஆக்யவற்றின் சார்பில் எழுதுக.

(f) மாணவன் ஒருவன் ஒரு பரிசோதனை முறையைப் பயன்படுத்திப் பயறுக்கான f_p, d_B, d_M என்னும் பரமானங்களைக் காணத் தீர்மானித்துள்ளான். இதன்போது பயறு ஓர் எழுமாற்று விதத்தில் பொதிசெய்யப்பட்டது. இது **எழுமாற்றாகப் பொதிதல்** எனப்படும், உரு (2) ஐப் பார்க்க. (c), (d), (e) ஆகிய பகுதிகளில் குறிப்பிடப்பட்ட f_p, d_B, d_M ஆகியவற்றுக்கான வரைவிலக்கணங்கள் எந்த வடிவமும் உள்ள உருப்படிகளை எழுமாற்றாகப் பொதிசெய்வதற்கும் செல்லுபடியாகும்.

முதலில் அவன் உலர் பயறை ஓர் அளக்கும் சிலின்டரிலுள்ளே செலுத்தி உரு (2) இந் காணப்படுகின்றவாறு பயறின் 50 cm³ பொதிந்த கனவளவைப் பெற்றுக்கொண்டான்.

பின்னர் பொதிந்த கனவளவு 50 cm³ பயறு மாதிரியின் திணிவை அவன் அளந்து, அது 3.8 × 10⁻² kg எனக் கண்டான்.

அதன் பில்னர் அவன் 50 cm² நீரினைக் கொண்ட ஓர் அளக்கும் சிலின்டரினுள்ளே பயறு மாதிரியைப் புகுத்தி, நீர் மட்டம் 82 cm³ குறிக்கு உயர்ந்தமையைக் கண்டான் உரு (3) ஐப் பாரக்க.

Figure (3)

a. 5 (2)

Confidential

100 cm3

50 cm3

82 cm³

50 cm3

(i) பயறின் திரவியக் கனவளவு யாது ?

பயறின் திரவியக் கனவளவு $= 32 ext{ cm}^3 = 3.2 imes 10^{-5} ext{ m}^3$

.....01

(ii) பயறின் பொதிதற் பின்னம் (f_p) ஐக் கணிக்க.

பயறின் பொதிதீற் பின்னம்
$$f_p = \frac{32}{50} b_{p}^2$$

(iii) பயறின் பணைப்பு அடர்த்தி (d_B) ஐ kg m $^{-3}$ இற் கணிக்க

பயறின் பணைப்பு அடர்த்தி
$$d_B = \frac{3.8 \times 10^{-2}}{50 \times 10^{-6}} \text{ kg m}^{-3}$$

3

Department of Examination

Strictly confidential

1.3

 (iv) பயறின் திரவியத்தின் அடர்த்தி (d_M) ஐ $\mathrm{kg}~\mathrm{m}^{-3}$ இற் கணிக்க.

(g) பயறின் 1 kg பொதியைச் செய்வதற்கு ஒரு போலித்தீன் பையை வடிவமைக்க வேண்டியுள்ளது. தேவைப்படும் பையின் குறைந்தபட்சக் கனவளவைக் கணிக்க.

பையின் குறைந்தபட்சக் கனவளவு

$$\frac{1}{d_B} \text{ OR } \frac{50}{38} \times 1000 = 1315 \text{ cm}^3 = 1.315 \times 10^{-3} \text{ m}^3 \dots 01$$

$$(1.31 \times 10^{-3} - 1.32 \times 10^{-3})$$

 ஆய்கூடத்தினுள்ளே உள்ள வளியின் பனிபடுநிலையைப் பரிசோதனைரீதியாகத் துணிந்து. அதன் தொடர்பு ஈரப்பதனன்தீ துணியுமாறு நீர் கேட்கப்பட்டுள்ளீர்.

(a) நிரம்பிய ஆவியமுக்கங்கள் சார்பாகத் தொடர்பு ஈரப்பதனுக்கான (RH) ஒரு கோவையை எழுதுக.

(b) ஒரு மூடிபையும் ஒரு கலக்கியையும் கொண்ட ஒரு துலக்கிய கலோரிமானிக்கு மேலதிகமாக இப்பரிசோதனையை நிறைவேற்றுவதற்கு உமக்குத் தேவைப்படும் மற்றைய உருப்படிகள் யாவை ?

<u>வேப்பமானி(0 - 50 ⁰C), நீர், பனிக்கட்டித் துண்டுகள்</u> (ஐக் கொண்டுள்ள முகவை), (கண்ணாடித் தகடு, இரு நிறுத்திகள் அல்லது தாங்கிகள், ஒற்றும் காகிதத் துண்டுகள்)

(கோடிட்டப்பட்டுள்ள எல்லா முன்று உருப்படிகளும் சரியாயின்)01

Confidential
Confidential

Strictly confidential

(c) மிக நல்ல செம்மையுடன் ஓர் இறுதிப் பேறைப் பெறுவதற்குப் பரிசோதனையைத் தொடங்குமுன்னர் கவனஞ் செலுத்த வேண்டிய இரு காரணிகளை எழுதி, அவற்றை இழிவளவாக்குவதற்கு நீர் மேற்கொள்ளும் பறிசோதனை முற்காப்புகளைக் கூறுக.

	காரணிகள்	பரிசோதனை முற்காபுகள் கொடு
) கலோரிமானியை சுற்றியுள்ள ஈரலிப்பு மட்டத்தினை மூச்சு வெளியிடும்போது உள்ள வளி மாற்றுதல்	கலோரிமானிக்கு முன்னால் ஒரு இச்சு இ கண்ணாடித் தகட்டிவை வைத்தல் அல்லது முகத்திரையைப் பாவித்தல்.
12 250 12-551 253) மின்விசிறிகள், வீசும் காற்று, க ுளிரூட் டிகள், கலோரிமானியின் மேற்பரப்பில் உருவாகும் பனியை குழப்புதல்.	01 மின்விசிறிகளை நிறுத்து ல், யன்னல்களை மூடுதல், குளிரூட்டிகளை நிறுத்துதல் 01

(d) இப்பரிசோதனைக்குப் பனிக்கட்டியின் சிறிய துண்டுகள் பயன்படுத்தப்படுகின்றன. இதற்கான காரணங்களைத் தருக.

நீரின் வெப்பநிலையை மெதுவாக அல்லது ஒரு கட்டுப்பாட்டு முறையில் குறைக்க அல்லது உயர்த்த முடியும் **அல்லது** பனி உருவாகுவதை அல்லது மறைவதை நன்றாக அவதானிக்கலாம். **அஸ்லது** பனிபடுநிலையை செம்மையாக அளவிடலாம். **ஆல்லது** பனிபடு லலைய செம்மையாக குறித்துக்கொள்ள முடியும் **அல்லது** பனி தோன்றுப்போது உள்ள வெப்பநிலையை செம்மையாக பதிவு செய்ய முடியும்

(ச) ஒரு நேரத்தில் பல பனிக்கட்டித் துண்டுகளை நீரில் சேர்ப்பதனால் நீர எதிர்கொள்ளும் செய்முறைச் சிரமங்கள்

அல்லது கலோரிமானியின் மேற்பரப்பில் மெல்லிய நீர் படை தோன்றுவதால் பனி மறைவதை அவதானிப்பதற்குரிய சாத்தியம் 💮 லை.

(f) இப்பரிசோதனையில் சரியாக எச்சந்தர்ப்பங்களில் நீர வாசிப்புகளை எடுப்பீர ?

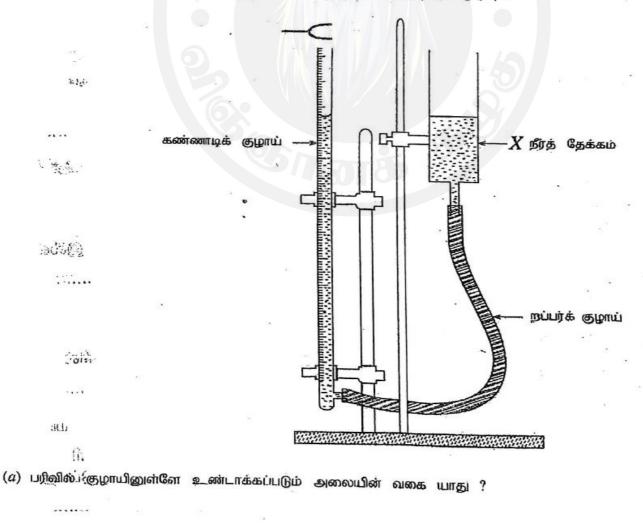
பனி தொடங்கும்போதுள்ள மற்றும் மறையும்போதுள்ள தருனங்களில்

(g) இப்பரிசோதனையில் ஒரு மூடி உள்ள கலோரிமானியைப் பயன்படுத்துவதற்கான காரணம் பாது ?

அது கலோரிமானியின் உள்ளே இுக்கும் குளிர்ந்த நிரம்பிய வளி சிந்துவதையும் பனி உருவாகுவதில் உள்ள தலையீட்டையும் தடுப்பதறகு.

Strictly confidential

(*h*) இப்பறிசோதனையில் நீர் எடுக்க வேண்டிய மற்றைய வாசிப்பு யாது ?

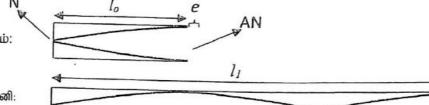

அழை வெப்பநிலை

Confidential

(i) ஒரு குறித்த ஆய்கூடத்தின் வெப்பநிலை 28 °C ஆக இருக்கும்போது அதன் பனிபடுநிலை 24 °C ஆக இருக்கக் காணப்பட்டது. பின்வரும் அட்டவணையைப் பயன்படுத்தி ஆய்கூடத்தின் தொடர்பு ஈரப்பதனைத் துணிக.

வெப்புநிலை (°C)	20	22	24	26	28	30	32
நிரம்பிய நீராவியின் அமுக்கம் (mmHg)	17.53	19.83	22.38	25.20	28.35	31.82	35.66
தொடர்பு ஈரப்பத	ळंग =	$\frac{22.3}{28.3}$	$\frac{8}{5} \times 100$	$0 = 79^{\circ}$	%		
	/	78.0			· 79%)		

3. ஒரு முனை அடைக்கப்பட்ட ஒரு பரிவுக் குழாயைப் பயன்படுத்தி வளியில் ஒலியின் கதியைக் காண்பதற்கான ஒரு மாற்று ஆய்கருவி உருவில் காணப்படுகின்றது. இந்த ஆய்கருவியின் கோட்பாடு பாடசாலை ஆய்கூடத்தில் பொதுவாகப் பயன்படுத்தப்படும் ஆய்கருவியின் கோட்பாட்டை ஒத்தது. இந்த ஆய்கருவியில் உள்ள பரிவுக் குழாய் தரங்கணித்த அளவிடை உள்ள ஒரு கண்ணாடிக் குழாயாகும். பரிவுக் குழாயுடன் வளைதகு றப்பர்க் குழாய்மூலம் தொடுக்கப்பட்ட ஒரு நீர்த் தேக்கம் X ஐ உயர்த்துவதன் மூலமும் தாழ்த்துவதன் மூலமும் பரிவுக் குழாயில் உள்ள நீர் மட்டத்தினை உயர்த்துவும் தாழ்த்தவும் முடியும்.


Strictly confidential

நின்ற அலை **அல்லது** நிலையான அலை 01,

Confidential

- (b) அறிந்த மீடிறன் f ஐ உடைய ஓர் இசைக் கவையை உம்மிடம் தந்து, முறையே அடிடாடைச் சுரத்தையும் முதல் மேற்றொனியையும் ஒத்த l_0, l_1 என்னும் பரிவு நீளங்களைப் பெறுமாறு கேட்கப்பட்டுள்ளீர.
 - (i) அதிர்வுகளின் இரு வகைகளின் அலைக் கோலங்களை வரைந்து, l₀, l₁ ஆகிய நீளங்கள், முனைத் திருத்தம் e, கணுக்கள் (N), முரண்கணுக்கள் (AN) ஆகியவற்றைக் குறிக்கு.
 - (நீர் முதல் மேற்றோனிக்கான குழாயை வரைய எதிர்பார்க்கப்பட்டுள்ளீர்.)-

அடிப்படைச் சுரம்:

முதல் மேற்றொனி:

இரு அலைக் கோலங்களையும் வரைவதற்கு (முதல் மேற்றொனியின் நீளத்தைக் கவனிக்க – அண்ணளவாக மூன்று மடங்காக இருத்தல் வேண்டும்) எல்லா குறியீடுகளையும் குறித்தது சரியாயின் (ஏதாவது ஒரு வரைபில்)

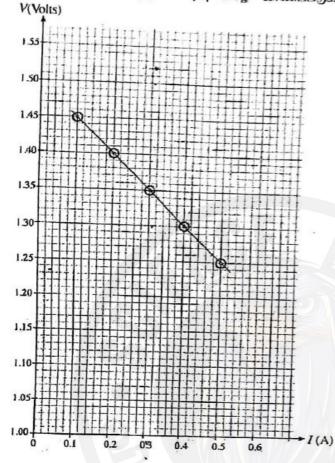
- (ii) (1) அடிப்படைச் சுரத்தை ஒத்த அலைநீளம் λ எனின், λ இற்கான ஒரு ாவையை l₀, e ஆகியவற்றின் சார்பில் எழுதுக.

(2) முதல் மேற்றொனியை ஒத்த அலைநீளத்திற்கான ஓர் இயல்பொத்த கோலவயை எழுதுக.

(3) υ ஆனது வளியில் ஒலியின் கதி எனின், υ இற்கான ஒரு கோவையை அழிந்த, அளந்த கணியங்களின் சார்பிற் பெறுக.

$$l_1 - l_0 = \frac{\lambda}{2}$$
, $\Rightarrow v = f\lambda$

(c) l₀ இற்கான அளவீட்டை எடுக்குமுன்பாகப் பரிவுக் குழாயில் உள்ள நீர மட்டம் உச்சிவரைக்கும் உயர்த்தப்பட வேண்டும். இதற்குரிய காரணத்தை விளக்குக.


அடிப்படைச் சுரத்தை <u>தவநவிடாமல்</u> கண்டுபிடிப்பதற்கு **அல்ல**தூ முதலில் அடிப்படைச் சுரத்தை எடுப்பதற்கு <u>.....01</u>

- (d) பாடசாலை ஆய்கூடத்தில் பொதுவாகக் கிடைக்கத்தக்க ஆய்கருவியைப் பயன்படுத்தும்போது மேற்கொள்ளப்படும் முறையுடன் ஒப்பிடும்போது வினாவில் தரப்பட்ட ஆய்கருவியைப் பயன்படுத்தும்போது பரிசோதனை நடைமுறையில் உள்ள இரு பெரும் வேறுபாடுகளை எழுதுக.
 - (1) குழாய் நிலையானது (அல்லது நீர் மட்டம் நகர்த்தக்கூடியது)
 - (2) அளக்கும் அளவீடு நிலையானது (அல்லது தரங்கணித்த அளவிடை உள்ள குழாய்) அஸ்ஸது மீற்றர் சட்டம் தேவையில்லை.

Department of Examination	Confidential
Strictly confidential	
Barras	• •
്ളാത്ത്വാ ദ്വാലസ്ത്രം	
(e) அறை வெப்பறிலை (28 °C) இல் ஓர் 512 Hz இசைக் கவை அடிப்படைச் சுரத்திற்கும் முதல் மேற்றொனிக்கும் பரிவின் ஒத் எனக் காணப்பட்டுள்ளன. அறை வெப்பநிலையில் வளியில் ஒ	த்த நீளங்கள் முறையே 15.5 cm, 50.5 cm லியின் கதியைக் கணிக்க
$v = 2 \times 512(50.5 - 15.5) \times 10^{-2} \text{ m s}^{-2}$	$^{-1} \implies v = 358.4 \text{ m s}^{-1}$
சரியான பிரதியீட்டிற்கு	501
இறுதி விடைக்கு	
9ரு வரைபு முறையைப் பயன்படுத்தி ஓர் உலர் கலம் X இன் மி.இ (E) ஐயும் அகத் தடை (r) ஐயும் பரிசோதனைரீதியாகத் துணிவதற்கு பாடசாலை ஆய்கூடத்தில் இங்கு தரப்பட்டுள்ள சுற்றைப் பயன்படுத்தவ மிக உயர்ந்த அகத் தடை உள்ள ஒரு வோல்ற்றுமானியைப் பயன்படு / இன் வெவ்வேறு பெறுமானங்களுக்குக் கலத்தின் முடிவிடங்களுக் குறுக்கே அழுத்த வித்தியாசம் V ஐ அளத்தல் பரிசோதல நடைமுறையில் அடங்கியுள்ளது.	ゆび vomb. 身時 S
(a) V இற்கான ஒரு கோவையை <i>I</i> , சீ, r ஆகியவற்றின் சார்பில் எழுது	asWWW
V = E - Ir	
(<i>b</i>) (i) பாடசாலை ஆய்கூடத்தில் கிடைக்கத்தக்க, இப்பரிசோதன பயன்படுத்தத்தக்க மாறுந் தடையியின் பெயரைக் குழ	
இறையோதற்று	
(தடைப் பெட்டிக்கு புள்ளிகள் இல்லை)	
(ii) இப்பரிசோதனையிலிருந்து எதிர்பார்த்த பேறுகன _{நகத} பயன்படுத்த வேண்டும்.	ளப் பெறுவதற்குச் சாவி S ஐத் தகுந்தவா
(1) 🗴 இற்காகப் பயன்படுத்தத்தக்க மிகவும் உக	ந்த சாவியின் வகை யாது ?
தட்டுச் சாவி அல்லது தட்டுச் சாவி	ஒன்றை வனாந்தால்
(2) சாவியைத் தொழிற்படுத்தும்போது நீர மேற்கெ	
S திறந்த நிலையில் உள்ளபோது R இனை ப அவதானிக்கும்போது அல்லது எடுக்கும்போது	மாற்றி I , V வாசிப்புகளை சாவியை <u>மிகவம்</u> சிறிய
நேரத்திற்கு மூடுதல். •	
(iii) பரிசோதனையைச் செய்யும்போது கலம் இறங்கவ உறுதிப்படுத்துவீர் ?	
இறுதி வாசிப்பை எடுத்த பின்னர் <u>முதல் வாக</u> அது வேறு பெறுமானத்தைக் கொண்டுள்ளதா	^{சி} ப்பி <u>ற்குத் திரும்பவும் போய்</u> எனப் பார்த்தல்.

Strictly confidential

(c) இத்தகைய ஒரு பரிசோதனையிலிருந்து பெறப்பட்ட ஒரு தரவுக் தொகுதியைப் பயன்படிக்கு! / இற்கு எதிரே குறிக்கப்பட்ட // இன் ஒரு வரைபு கீழே காணப்படுகின்றது.

(i) வரைபைப் பயன்படுத்திப் பின்வருவனவற்றைக் காண்க.

கலத்தின் அகத் தடை r

வரைபின் படித்திறன் = $\frac{1.24 - 1.44}{0.52 - 0.12} = (-)0.5 \Omega$ 01 (தாரத்திலுள்ள இரு புள்ளிகளைத் தெரிவுசெய்தல் வேண்டும்)

(2) கலத்தின் மி.இ.வி. *E*

வெட்டுத்துண்டு = E = 1.5 V01 (புள்ளியை கொடுக்கும்போது வெட்டுத்துண்டைத் துணிவதற்கு <u>வரைபில்</u> நீட்டிப்பைப் பார்க்கவும்) OR வரைபிலுள்ள ஒருபுள்ளியை சமன்பாட்டில் பிரதியிட்டு *E* ஐ கணித்திருந்தால்.

(ii) மேலே (c) (i) இல் பெறப்பட்ட பெறுமானங்களையும் (a) இல் பெறப்பட்ட கோவைபையும் பயன்படுத்தி, கலம் குறுஞ்சுற்றாக்கப்படும்போது அதனூடாக உள்ள ஓட்டம் (I_{SC}) ஐ உய்த்தறிக.

8

Confidential

Strictly confidential

V = E - Ir இனை	பாவிப்பதுடன்	கலம்	குறுஞ்சுற்றாக்கப்படும்போது 🛛 🗸
			$I_{SC} = \frac{1.5}{0.5}$ 01
			= 3.0 A

(d) ஒரு குறித்த இலத்திரனியல் உருப்படியைச் சரியாகத் தொழிற்பட வைப்பதற்கு 8.6 V – 9.0 V வீச்சில் உள்ள ஒரு வோல்ற்றளவு வழங்கியைப் பிரயோகித்தல் வேண்டும். இலத்திரனியல் உருப்படியின் வோல்ற்றளவு வழங்கி முடிவிடங்களிற்குக் குறுக்கே உள்ள தடை 30 Ω ஆகும். மேற்குறித்த இலத்திரனியல் உருப்படி தொழிற்படுவதற்கு, E = 9 V ஐயும் r = 10 Ω ஐயும் கொண்ட ஒரு தனி உலர் கலப் பற்றரியினை அல்லது தொடராகத் தொடுத்த ஒவ்வொன்றும் E = 1.5 V ஐயும் r = 0.2 Ω ஐயும் உடைய ஆறு உலர் கலப் பற்றரிகளின் சேர்மானத்தினைத் தெரிந்தெடுப்பதற்கு உமக்கு ஒரு சந்தர்ப்பம் உள்ளது எனக் கொள்க. இப்பகுதியில் தரப்பட்டுள்ள தரவுகளைப் பயன்படுத்தி ஒரு தகுந்த பற்றரியை எங்ஙனம் தெரிந்தெடுப்பீரென விளக்குக.

E = 9V and $r = 10 \Omega$ ஐக் கொண்ட உலர் கல பற்றரி இனை இணைக்கும்போது இலத்திரனியல் உருப்படியின் முடிவிடங்களுக்குக் குறுக்கேயான வோல்ற்றளவு (V), $V = \left(\frac{9}{30+10}\right) \times 30 = 6.75$ V இனால் தரப்படும். E = 9V and $r = 0.2 \times 6 \Omega$ ஐக் கொண்ட ஆறு 1.5 V உலர் கல பற்றரி இனை இணைக்கும்போது இலத்திரனியல் உருப்படியின் முடிவிடங்களுக்குக் குறுக்கேயான வோல்ற்றளவு (V), $V = \frac{9}{30+1.2} \times 30 = 8.65V$, இனால் தரப்படும். எனவே ஆறு 1.5 V உலர் கல பற்றரிகள் மாத்திரம் 8.5 V இலும் கூடிய வோல்ற்றினைக் கொடுக்கும்.

ஏதாவது வோல்ற்றளவு கணிப்பிற்குச் சரியான பிரதியீடு இருப்பின்01 கணித்த இரண்டு வோல்ற்றளவுகள் சரியாகவும் வாதம் சரியாகவும் இருப்பின்.

.....01

(மாற்று முறை

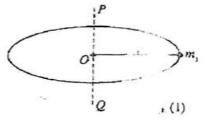
உருப்படிகளுக்குக் குறுக்கேயான வோல்ற்றளவு வித்தியாசங்களை கணிப்பதற்குப்பதிலாக ஒருவர் ஓட்டத்தைக்கொண்டு வாதிடலாம்.

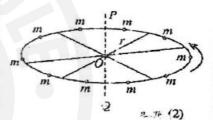
வோல்ற்றனவு வீச்சு (8.6 – 9.0 V) ஐ ஒத்த ஓட்ட வீச்சம் (0.287 A – 0.30 A) இற்கு மாற்றுவதற்கு01

உலர் தலத்திலிருந்து ஒட்டத்தை கணிகப்பதற்கும் சரியான வாதத்திற்கும்

Tarmination

Strictly confidential


5. (a) நிணிவு m₁ ஜ உடைய ஒரு துணிக்கை உரு (1) இர் காணப்படுகின்றவாறு ஆரை r ஐயும் பறக்கணிக்கத்தக்க திணிவையும் உடைய ஒரு கிலட வளையத்தின் விளிம்பில் திலைப்படுத்தப்பட்டுள்ளது. POQ ஆனது வளையத்தின் மையம் O இனுடாகச் செல்லும் ஒரு நிலைக்குத்து அச்சாகும்.


- (i) நிலைக்குத்து அச்சு POQ பற்றித் துணிக்கையின் சடத்துவத் திருப்பம் I₁ இற்கான ஒரு கோவையை m₂, r ஆகியவற்றின் சார்பில் எழுதுக.
- (ii) திணிவு m2 ஜ உடைய வேறொரு துணிக்கையானது m2 இற்கு 2 , (1) விட்டமுறை எதிரான வளையத்தின் விளிம்புடன் இப்போது நிலைப்படுத்தப்பட்டு, தொகுதி அச்சு POQ பற்றி ஒரு மாறாக் கோணக் கதி ல உடன் குட வின்றது. அச்சு POQ பற்றித் திணிவு m2 இன் சடத்துவத் திருப்பம் 12 எனின், தொகுதியின் டெ. குட சுழற்சி இயக்கப்பாட்டுச் சக்தி (B) இற்கான ஒரு கோலையை எழுதுக.
- (iii) I₀ ஆனது மேலே (a) (ii) இல் உள்ள தொகுதியின் அச்சு POQ பற்றிய மொத்தச் சடத்தலா. நடுப்பத்தை வகைகுறிப்பின், (a) (ii) இற் பேற்ற கோலையைப் பயன்படுத்தி I₀ = I₁ + I₂ எனக் காட்டுக.
- (b) மேலே m₁, m₂ ஆகியவற்றுக்குப் பதிலாக ஒவ்வொன்றும் திணிவு m ஐ உடைய 10 சர்வசமத் துணிக்கைகள் இப்போது வளையத்தின் விளிம்பில் சம இடைவெளியில் நிலைப்படுத்தப்பட்டுள்ளன. I ஆனது நிலைக்குத்து அச்சு POQ பற்றி ஒரு துணிக்கையின் சடத்துவத் திருப்பம் எனின், நிலைக்குத்து அச்சு POQ பற்றித் தொகுதியின் மொத்தச் சடத்துவத் திருப்பம் (I₇) இற்கான ஒரு கோவையை எழுதுக.
- (c) இப்போது மேலே (b) இல் விவரிக்கப்பட்ட வளையும் புருக்கணிக்கத்தக்க சடத்துவத் திருப்பம் உள்ள அச்சாணியில் உரு (2) இந் காணப்படுகின்றவாறு புறுக்கணிக்கத்தக்க திணிவுள்ள சமச்சீராக நிலைப்படுத்தப்பட்டுள்ள சிலைக்கும்பிகளைப் பயன்படுத்தி நிலைக்குத்து அச்சு POQ உடன் ஒன்றுபடுமாறு நிலைப்படுத்தப்பட்டுள்ளது. இத்தொகுதி பின்னர் நேரம் t = 0 இல் ஒய்விலிருந்து அச்சு POQ பற்றி ஒரு கிடைத் தளத்தில் ஒரு மாறாக் கோண ஆர்முடுகல் α உடன் சுழலத் தொடங்கி, ஒரு மாறாக் கோணக் கறி ம ஐ அடைந்தது.
 - (1) மாறாக் கோணக் கதி ம.ஐ. அடைவதற்குத் தொகுதி எடுத்த நேரம் 1 இற்கான ஒரு கோலையைப் பெறுக.
 (2) தொகுதி மாறாக் கோணக் கதி ம.ஐ. அடையும்போது அது ஆற்றிய சுற்றல்களின் எண்ணிக்கை பாது ?
 - (ii) தொருதி மாறாக் கோணக் கதி ம உடன் அச்சு POQ பற்றிச் கழலும்போது ஒரு துணிக்கையில் தாக்கும் மையுதாட்ட வில்ச (F) இற்குறிய ஒரு கோலவயை எழுதுக.

(d) ஓய்வில் இருக்கும், உரு (3) இந் காட்டப்பட்டுள்ள இராட்டினத்தின் கட்டமைப்பு மேலே (c) இல் விவரிக்கப்பட்ட தொகுதியின் கட்டமைப்பை ஒத்தது. எனினும், ni என்னும் நிலைத்த நிணிவுகளுக்குப் பதிலாகத் தொகுதியானது பறக்கணிக்கத்தக்க திணிவுல்ள சங்கீலிகளிலிருந்து தொல்கும் ஏறிகள் அமர்ந்துள்ள 10 கதிலரகளைக் வொண்டுள்ளது. அச்சு POQ புற்றி ஏறிகளும் கதிரைகளும் இல்லாத இராட்டினத்தின் சடத்துவத் திருப்பம் 32 000 kg m² ஆகும். எல்லாக் கதிரைகளிலும் ஏதிகள் அமர்ந்திருக்கும்போது இராட்டினம் அச்சு.

POQ பற்றி ஒரு நிமிடத்திற்கு 12 கற்றல்கள் என்னும் ஒரு மாறாக் கோணக் கதியுடன் சுழலும் ஒரு நிலைமையைக் கருதுக. இராட்டினம் சுழலும்போது எல்லாச் சங்கிலிகளும் நிலைக்குத்துடன் கோணம் θ இற் சாய்ந்திருக்கும். உரு (4) ஓர் ஏறியைப் பற்றிய நிலைமையைக் காட்டுகிறது. தேவையான கணிப்புகளுக்கு π = 3 ஐப் பயன்படுத்துக்.

- (i) ஏறிகள் ஒவ்வொருவரினதும் திலைவு 70 kg ஆகவும் கதிரைகள் ஒவ்வொன்றினதும் திணிவு 20 kg ஆகவும் இருப்பில், அச்சு POQ பற்றித் தொகுதியின் மொத்தச் சடத்துவத் திருப்பற்தைக் கணிக்க. சடத்துவத் திருப்பத்தைக் கணிக்கும்போது ஏறியினதும் அவருடைய கதிரையினதும் மொத்தத் திணிவு அச்சு POQ இலிருந்து ஒரு லிடைத் தாரம் 10 m இற் செறிந்துள்ளதெனக் கொள்க.
- (ii) கோணம் θ இன் பெறுமானத்தைக் கணிக்க.
- (iii) தொகுதியின் மொத்தச் சுழற்சி இயக்கப்பாட்டுச் சக்தி யாது ?
- (a) i) நிலக்குத்து அச்சு POQ பற்றி துணிக்கையின் சடத்துவத் திருப்பம், $I_1 = m_r^2.....01$ (ii)தொகுதியின் மொத்த சுழற்சி இயக்கப்பாட்டுச் சக்கி.

-m (3)

10 m

O

之(4)

Confidential

....

All Marth S. 1. 18

an dente " 15 . M. 14

4.4

فليستندن

)__1k

not . 4 $\{i_{ij}^{(i)}\}$ = =. Billion . À

Department of Examination

Strictly confidential

$$E = \frac{1}{2}I_{1}\omega^{2} + \frac{1}{2}I_{2}\omega^{2} \text{ (b)} \text{(b)} E = \frac{1}{2}m_{1}r^{2}\omega^{2} + \frac{1}{2}m_{2}r^{2}\omega^{2} \dots 0$$

$$(\text{iii}) \frac{1}{2}I_{0}\omega^{2} = \frac{1}{2}I_{1}\omega^{2} + \frac{1}{2}I_{2}\omega^{2} \dots 0$$

$$(\text{iii}) \frac{1}{2}I_{0}\omega^{2} = \frac{1}{2}I_{1}\omega^{2} + \frac{1}{2}I_{2}\omega^{2} \dots 0$$

$$(\text{b}) I_{7} = I_{1} + I_{2} + \cdots I_{10} = mr_{x}^{2} + mr_{z}^{2} + \dots 0$$

$$(\text{c}) (\text{i}) (1) \text{(barags} \text{(b)} \text{(b)} \text{(b)} \text{(c)} \text{(b)} \text{(b)} \text{(c)} \text{(c)$$

Strictly confidential

 $\therefore \tan \theta = \frac{\omega^2 r}{g} = \left(\frac{12 \times 2\pi}{60}\right)^2 \times \frac{10}{10}$ (சரியான பிரதியீட்டிற்கு)01 = 1.44 $(\pi = 3.14$ ஆயின் $\tan \theta 1.58)$ $\theta = 57^{\circ}40'$ (iii) தொகுதியின் மொத்தச் சுழற்சி இயக்கப்பாட்டுச்சக்தி $=rac{1}{2}I\omega^2$ $=\frac{1}{2} \times 122000 \times 1.44$ = 87840 J.01 (87840 - 87850 J) $[if \pi = 3.14 then 96220 (96220 - 96230)]$ விழிவெண்படலத்தினதும் கண்வில்லையினதும் பலித (பயன்படும்) குவியத் தாரம் ஒரு கண்ணின் குவியத் தூரமாகக் கருதப்படலாம். வில்லையில் வளைவைக் கட்டுப்படுத்தும் தசைகள் கண்ணிலிருந்து வெவ்வேறு தாரங்களில் பொருள்களிலிருந்து வரும் ஒளியைக் கண் விழித்திரை மீது குவியப்படுத்துவதற்கு அனுமதிக்கின்றன. பலிதக் குடைபத் தூரமுள்ள ஒரு கண் வில்லையுடன் கண்ணின் ஓர் எளிதாக்கிய வரிப்படத்தை உரு காட், அறது. நலமான கண் உள்ள குழந்தையின் கண் தசைகள் தளர்ந்திருக்கும்போது கண்ணின் குவியத் தாரம் ஏறத்தாழ 2.5 cm ஆகும். அவனுடைய கண்ணின் அண்மைப் புள்ளி 25 cm தாரத்தில் உள்ளது. (கதிர் வரிப்படங்களை வரையும்போது உருஷில் தரப்பட்டுள்ள வரிப்படத்தைப் பிரதிசெய்து அதலைப் பயன்படுத்துக.)

- (a) நலமான கண் உள்ள குழந்தையின் கண் தசைகள் தளர்ந்திருக்கும்போது அக்கண்ணிக், விழித்திரை மீது ஒரு தூரப் பொருளிலிருந்து வரும் ஒளி குலியச் செய்யப்படும் நிலைமைக்கு ஒரு கதீர் லிழித்திரை மீது கண்வில்லைக்கும் விழித்திரைக்குமிடையே உள்ள தூரம் யாது ?
 (b) அண்ணப் பள்ளியில் கைச்சும்பில் பன்றுக்கு பிடைய மன்று வரைக.
- (b) அண்மைப் புள்ளியில் வைக்கப்பட ஒரு புள்ளி ஒளி முதல் நலமான கண் உள்ள சூழத்தையினால் தெளிவாகப் பார்க்கப்படும் ஒரு நிலைமைக்கு ஒரு கதிர வரிப்படத்தை வரைக இசுகணத்தில் கண்ணின் குலியத் தாரத்தைக் கணிக்க. (c) கண் தசைகள் தளர்ந்திருக்கும்போது நலமான குழந்தையின் குவியத் தாரத்திற்குச் கணிக்க ஒரித்தைக் கணிக்க தாரத்தை உடைய வேறொரு குழந்தை (b) இல் உள்ள நிலைமைக்குக் கணிக்கப்பட்ட குலியத் தாரத்தையும் கொண்டுள்ளான். ஆனால் அவனுடைய விழித்திரையின் தானம் நலமான குழந்தையின் விழித்திரையின் தானத்திற்கு 0.2 cm மின்னால் உள்ளது.
 - (i) மேலே (b) இற் குறிப்பிட்டவாறு ஒரு புள்ளி ஒளி முதலிவால் உண்டாக்கப்படும் லின் ஹதப் பயன்படுத்தி. இரு தனித்தனிக் கதிர் வரிப்படங்களை வழைவதன் மூலம் அவனுடைய அண்மைப் படி வெயயும் சேய்மைப் புள்ளிபையும் காட்டுக. இக்குழந்தையின் கண் வில்லையிலிருந்து அண்மைப் புள்ளிக் __ள்ள துரத்தையும் சேய்மைப் புள்ளிக்கு உள்ள துரத்தையும் கணிக்க.
 - (ii) ஒர் உகந்த வீல்லையைப் பயன்படுத்தித் தேவையான திருத்தத்தை எங்கலம் செய்யலாம் எல்வதை எடுத்துக்காட்டும் ஒரு கதிர் வரிப்படத்தைப் பரும்புஷயாக வரைக. தேவைப்படும் திருத்தும் வீல்லையின் குவியத் தாரத்தைக் கணிக்க வருவர் முதுறை வரை பயிலாக கண்களின் எலியத் தாரத்தை கிருத்தும் வீல்லையின் குவியத் தாரத்தைக் கணிக்க.
- (d) ஒருவர் முதுமை அடையும்போது கண்களின் குவியத் தாரத்தை மாற்றுவதற்கான ஆற்றல் நலிவடைந்து, கண்ணின் அண்மைப் புள்ளிக்கு உள்ள தூரம் அதிகரிக்கின்றது. மேலே (c) இற் குறிப்பிடப்பட்ட குழுந்தை அத்தகைய ஒரு நிலைமையை எதிர்கொள்ளுமெனின், அக்குழுந்தை அணிய வேண்டிய மேலதிகத் திருத்தும் வில்லையின் வகை யாது (ஒருக்கு வில்லையா, விரிவீல்லையா) ? உமது விடைக்கான நாரணங்களைல் தருக.

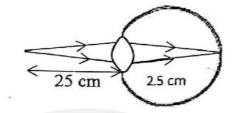
(a)

 \rightarrow 2.5 cm

.

சரியான கதிர் வரிப்படத்தை வரைவதற்கு

12


Strictly confidential

(விழித்திரையில் புள்ளி விம்பம் வரைக்கும் <u>அம்புக்குறிகளுடன் இரண்டு</u> <u>சமாந்தரக்கோடுகளைப்</u> பார்க்க)

Confidential

கண்வில்லைக்கும் விழித்திரைக்கும் இடையேயான தூரம் = 2.5 cm 01

(b) (b)

சரியான கதிர் வரிப்படத்தை வரைவதற்கு01 (விழித்திரையில் புள்ளி விம்பம் வரைக்கும் <u>அம்புக்குறிகளுடன் இரண்டு</u> 'சமாந்தரக்கோடுகளைப் பார்க்க)

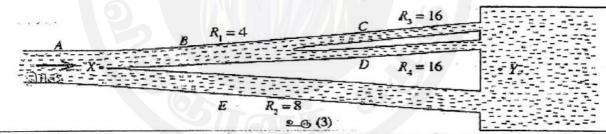
குவியத்தூரம் f என எடுக்க, எனின் Call 1 $=\frac{1}{f}$ (*u* = 25 cm; *v* = -2.5 cm)01 -2.5(சரியான பிரதியீடிந்கு) f = -2.273 cm OR 2.273 cm 01 (c) (1) m (2.27 cm - 2.30 cm) In Lough 1 1. 200 1 shet? 3.1213: 11:41 2.7 cm s. dis 2.7 cm Gist. ஒரு ஃபொருள் சேய்மைப் புள்ளியில் உள்ளபோது சரியான கதிர் வரிப்படத்தை வரைவதற்கு 01(வீழித்திரையில் புள்ளி விம்பம் வரைக்கும் <u>அம்புக்குறிகளுடன் இரண்டு</u> <u>சமாந்தரக்கோடுகளைப்</u> பார்க்க) ஒரு பொருள் **அண்மைப் புள்ளியில்** உள்ளபோது சரியான கதிர் ..01 வரிப்படத்தை வரைவதற்கு (விழித்திரையில் புள்ளி விம்பம் வரைக்கும் <u>அம்புக்குறிகளுடன் இரண்டு</u> சமாந்தரக்கோடுகளைப் பார்க்க) சேய்மைப் புள்ளிக்குள்ள தூரத்திற்கான கணிப்பு: f = -2.5 cm, v = -2.7 cm, u = ?13

	of Examination Confidential
Strictly co	onfidential
*	
	$\frac{1}{12} - \frac{1}{12} = \frac{1}{12}$ 01
-2	$u^{2.7} u^{-2.5} \dots 01$
и	= 33.75 cm. 01
அள	
	ர்மைப் புள்ளிக்குள்ள தூரத்திற்கான கணிப்பு:
f =	-2.273 cm, $v = -2.7$ cm, $u = ?$
1	1 1
-2.7	$-\frac{1}{u} = \frac{1}{-2.273}$
	14.373 cm
(1)0-	4.25 – 14.40 cm)
(II)@#	வையான திருத்தத்திற்குரிய உகந்த வில்லையுடனான கதிர் வரிப்படம்
10 20	
	2.5 cm
÷.	33.75 cm
	2.7cm
ഖിറ്റിഖു	வில்லையைத் தெரிந்தெடுப்பதற்கு 01
விரிவு	
(விழித்	கிலையுடன் சரியான கதிர் வரிப்படத்திற்கு 01 கிலையில் பள்ளி விழ்யும் வனகர்கள் இடங்க
ัปถ่าถ่า	திரையில் புள்ளி விம்பம் வரைக்கும் இரண்டு புய்ளியிட்ட கோடுகள் ஒளிமுதலில் இருந்தும் அம்புக்குறிகளுடன் இரண்டு
சமாந்	தாக்கோடுகளைப் பார்க்க)
	3.75 cm
ſ	01
efter et a	
ු වි ව	தும் வில்லையின் குவியத் தூரம்: $u = -2.5 \text{ cm}, v = -2.7, f = ?$
$-\frac{1}{27}$	$-\frac{1}{-2,5} = \frac{1}{f} \dots 0.9 \dots 1 \qquad 1 \dots 0.1$ $f = 33.75 \text{ cm} \qquad 2 \qquad f \qquad 0.1$
-2.7	-2,5 f 33.7 f 01
, C	f = 33.75 cm
(d)	மேலதிகத் திருத்தும் வில்லை <u>ஒருக்கு வில்லையாகும்.</u>
	குற்காம்:
	கண்வில்லையினால் உருவாகும் விம்பத்தை முன்னோக்கி நகர்த்தி விமக்கிரையான் வாங்கிணைச்சு வல்லை
10	
	കഞ്ഞിര്ത്തെ പ്രതിഖത്വം പ്രത്യാത്ത് പോട്ടും പോട്ടും പോട്ടും പോട്ടും പോട്ടും പോട്ടും പോട്ടും പോട്ടും പോട്ടും പോട്
	ஒரு பொருளின் விம்பம் <u>விழித்திரைக்குப் பின்னால் உருவாகும்</u> .
	் பாலால்
	5

v

•

Department of Examination Strictly confidential


எனவே வில்லையினூடாகச் செல்லும் ஒளி <u>விழித்திரையில்</u> ஒருங்கு<u>தல் வேண்டும்</u>.

- 7. ஒர் அமுக்க வித்தியாசம் Δ P இன் கீழ் ஒர் ஒடுங்கிய கிடை உருளைக் குழாயினூடாக ஒரு தீரவத்தின் பாய்ச்சல் வீதம் Q இற்கான புவாசேயின் சமன்பாட்டை எழுதுக. றீர் பபன்படுத்தும் ஏனைபு எல்லாக் குறிபீடுகளையும் இணங்காண்க மேலே குறிப்பிட்ட நிலைமையின் கீழ் திரவத்தின் பாய்ச்சல் வீதம் Q இற்கு எதிரே குழூயினால் உருற்றப்படும் துடையானது பாய்ச்சல் தடை R = ΔP/Q என வரையறுக்கப்படலாம்.
 - (a) குழாயுடனும் திரவத்துடனும் தொடர்புபட்ட எப்பௌதிகக் கணியங்கள் பாய்ச்சல் தடை R ஐத் துணிகின்றன ?

 - (c) உரு (2) இற் காணப்படுகின்றவாறு சமாந்தரமாகத் தொடுக்கப்பட்ட இரு ஒடுக்கமான கிடைக் குழாய்களினா டாக ஒரு திரவம் ஒரு பொது அமுக்க வித்தியாசம் ΔP இன் கீழ் பாயும்போது குழாய்களினால் உருற்றப்படும்

பாய்ச்சல் தடைகள் R_1, R_2 ஆகும். தொகுதியின் பாய்ச்சல் தடை R_0 ஐ $\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}$ என எழுதலாமௌத் காட்டுக. (முனை விளைவுகளைப் புறக்கணிக்க.)

(d) உரு (3) ஆன்து' புள்ளி X இற்கும் ஒரு பொதுத் தேக்கம் Y இற்குமிடைபே ஒரு திரலம் X இலிருந்து Y இற்குப் பாயுமாறு தொடுக்கப்பட்ட A, B, C, D, E என்னும் ஒர் ஒருக்கமான கிடைக் குழாய்த் தொகுதியைக் காட்டுகின்றது. X, Y ஆகியலற்றில் உள்ள அமுக்கங்கள் மற்றாப் பெறுமானங்களிற் வேணப்படுகின்றன. ஒவ்வொரு குழாயினதும் பாய்ச்சல் தடை வரீப்படத்தில் mmHg s/cm³ அலகுகளில் குறிக்கப்பட்டுள்ளது. குழாய் B ஆனது சம பாய்ச்சல் தடைகள் உள்ள C, D என்னும் இரு குழாய்களாகப் பீரிக்கப்பட்டுள்ளது. எளிதாக்கப்பட்ட இந்த மாதிரியருவானது நாடிகளினூடாகவும் நாளங்களினூடாகவும் உள்ள குருதீப் பாய்ச்சலை எடுத்துக்காட்டுவதற்குப் பயன்படுத்தப்படலாம்.

கீழே (i), (ii), (iii) ஆகிய பகுதிகளுக்கான விடைகளைத் தரப்பட்டுள்ள அலகுகளின் சார்பாகத் நருக. (π = 3 என எடுக்க.)

- (i) (1) B, C, D ஆகிய குழுயித் தொகுதி காரணமாக உள்ள பாய்ச்சல் தடையை X, Y ஆகிய புண்கினடயே கணிக்க.
 - (2) B, C, D, E ஆகிய குழுரும்த் தொருதி காரணமாக உள்ள பாய்ச்சல் தடையை X, Y ஆகிய புள்ளிகளுக்கிடையே கணிக்க.
- (ii) X இற்குக் குறுக்கே திரவத்தின் பாய்ச்சல் வீதம் 6 cm³/s எனின், X, Y ஆகியவற்றிற்கிடையேயுள்ள அமுக்க வித்தியாசத்தைக் கணிக்க.
- (iii) மேற்குறித்த பேறுகளைப் பயன்படுத்திக் சூழாய் E இனுடாகத் திரவத்தின் பாய்ச்சல் வீதத்தைக் காண்க.
- (iv) குறாய் E இன் நீளம் 2 cm எனீன், சூழாய் E இன் உள் ஆனையைக் வாண்க. திரவத்தின் பீசுக்குமை 4.0 × 10⁻³ Pa s ஆரும் [1 mmHg = 133 Pa எனக் கொள்க].
- (ச) மேலே பகுதி (ச) இல் தரப்பட்ட தொகுதியில் உள்ள குழாய்களில் ஒன்றின் வெப்பதிலை தாழ்த்தப்படுமெனின், அக்குழாயில் திரவத்தின் பாய்ச்சல் வீதத்திற்கு என்ன நடைபெறும் என விளக்குக. குழாயில் ஆரையிலும் நீளத்திலும் உள்ள மாற்றங்களைப் புறக்கணிக்க.
 - B. JEE

புவசேயின் சமன்பாடு: இல

*l – கு*ழாயின் நீளம்

 η - திரவத்தின் பிசுக்குமை δ - δ - δ - δ

with. $\frac{1}{2}$ $\frac{1}{2}$

ΔP

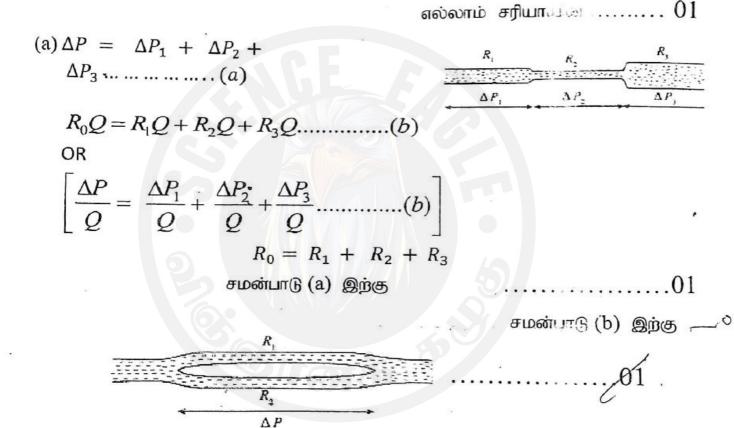
9_15 (2)

15

Strictly confidential

r – குழாயின் ஆரை

எல்லாம் சரியாயின்01


(பாய்ச்சல் Q க்கு எதிரான தடை, $R=rac{\Delta P}{Q}$

$$R=\frac{8\eta l}{\pi r^4})$$

(a) பாய்ச்சல் தடையானது: திரவத்தின் பிசுக்குமை குணகம் குழாயின் நீளம்

குழாயின் ஆரை என்பவற்றால் து ரியப்படுகிறது

Confidential

(b) ΔP ஆனது இரு குழாய்களுக்கும் பொதுவானது

.

Strictly confidential

(c)

(i) (1)
$$R_{CD} = \frac{1}{16+16} = 3$$
, 3005, 8 mmHg s/cm³.....01
(a) $a_{BCD} = 8 + 4 = 12$ mmHg s/cm³.....01
(2) B, C, D, E a, shu gynuig Garagdatarai unuidan gool. (R):
 $R = \frac{1}{12+3} = 4.8$ mmHg s/cm³....01
(2) B, C, D, E a, shu gynuig Garagdatarai unuidan gool. (R):
 $R = \frac{1}{12+3} = 4.8$ mmHg s/cm³....01
(f) $a_{D} = R$ or $\frac{\Delta P}{6} = 4.8$01
 $\therefore \Delta P = 28.8$ mmHg (σf and σ and σ

(d)ஒரு குழாயின் உள்ளே வெப்பநிலை குறையும்போது <u>பிசுகுமை</u> <u>அதிகரிக்கும்</u> எனவே <u>பாய்ச்சல் வீதம் குறையும்</u>. _ _ _ _ O**1**:

41

Department of Examination Strictly confidential

8. பில்லரும் பற்றியை வாசித்து விணக்களுக்கு விடை எழுதுக.

தாண்டல் வேப்பமாக்கல் (Induction heating) தொழினுட்பலியலானது அதன் குறைந்த வெப்பலாக்கல் நேரம். ஒரிடப்படுத்திய வெப்பமாக்கல், தேரடி வெப்பமாக்கல், திரமையான சக்தி துதர்ச்சி போன்ற அனுகலங்களின் விளைவாகப் பல கைத்தொழில், வீட்டு, மருத்துவப் பிரபோகங்களின் தெரிவுக்கு உட்படுக்கைது. தூண்டல் வெட்டிலாக்கலின் தொழிற்பாட்டுக் கோட்பாடு 1831இல் மைக்கல் பரடேயினால் கண்டுபிடிக்கப்பட்ட மின்காந்தத் தாண்டல் விதியை அடிப்படையாய்க் கொண்டது. ஒர் உயர் மீஷான் ஆடலோட்டத்தைப் பெறும்போது நேரத்துடன் மாறும் காந்தப் பலத்தை உருவாக்கும் ஒரு கம்பிச் சுருளும் (பெரும்பாலும் ஒரு செப்புச் சுருள்) வெப்பத்தைப் பிறப்பிக்கக்கூடிய மின்னைக் கடத்தும் திரவியமும் ஒரு தாண்டல் வெட்டிமாக்கல் தொகுதியின் இரு பெரும் கூறுகள் ஆகும். அடலோட்டத்தின் றிசை மாறும்போது காந்தப் புலமும் அதன் திசைபை மாற்றுகின்றது. ஒரு கடத்தும் திரலியம் அத்தகைய நேரத்துடன் மாறும் மாந்தப் புலத்திற்கு உட்படும்போது, கரியல் ஒட்டத்தன் எனப்படும் ஓட்டத் தடங்கள் கடத்தும் திரவியத்தில் மூண்டப்படுகின்றன. காந்தப் புலம் அதன் திசையை வீரைவாக மாற்றும்போது கரியல் ஒட்டங்களும் அவற்றின் றிசைகளை விணுவாக மாற்றுகின்றன. கர்பல் ஒட்டங்கள் கடத்தும் திரவியங்களினுள்ளே மாறும் காந்தப் புலத்திற்குச் செங்குத்தான தளங்களில் மூடிய தடங்களை எப்போதும் உண்டாக்குகின்றல. திரவியத்தில் தடை இருப்பதலால் கரியல் ஒட்டங்கள் யூல் வெப்பத்தைப் (*PR* வகை வெப்பம்) பிறப்பிக்கின்றன.

உண்டாக்கப்படும் காத்தப் புலம் வலிமையாக இருக்கும்போது அல்லது மின் கடத்தாறு உயர்வாக இருக்கும்போது அல்லது காந்தப் புல மாற்ற வீதம் பெரிதாக இருக்கும்போது உருவாக்கப்படும் கரியல் ஒட்டங்கள் பெரித கருளில் உள்ள உயர் மீடிறன் ஆடலோட்டத்தினால் பிறப்பிக்கப்படும் சுரியல் ஒட்டங்கள் தோல் விளைவு (s) . .0 எலப்படுவதன் விளைவாகத் திரவியத்தின் மேற்பரப்புக்குக் கிட்ட ஒரு மட்டுப்படுத்திய தடியினுள்ளே மாத்திரம் .ib, தோல் விளைவு என்றது எந்த உயர் மிழறவ் மின்னோட்டமும் தானாகவே ஒரு கடத்தியில் பரம்பக் வெ ्र जा நாட்டமாகும். இதன்போது ஒட்ட அடர்த்தி கடத்தியின் மேற்பரப்புக்குக் கிட்ட மிகப் பெரிதாக இருப்பதுடன் க ât ஆழத்துடன் மிக விணவாகக் குறைகின்றது. கரிபஸ் ஒட்டங்கள் பரம்பப்படும் இத்தகுப்பு கருவில் உள்ள ஆடணேட் குறுக்கும் கரியல் ஒட்டத் தடங்களுக்குமிடையே உள்ள தம்முள் களர்ச்சியில் விளைவாக மேலும் சிறியதாகின்றது. இது அல்டில விளைவு (proximity effect) எனப்படும். யூல் வெப்பமாக்கலுக்கு மேலதிகமாக, பிள்ளிடைவு விளைவு (hysteresis effect) எலப்படும் ஒரு தோற்றப்பாட்டின் விண்ளவாகத் திரவியத்தினுள்ளே ஒரு மேலதிக வெப்பமும் உண்டாக்கப்படுலின்றது. இது சில கறையில் உருக்கு. வார்ப்பிரும்பு, நிக்கல் போன்ற அபக்காந்தத் திரவிபங்களில் மாத்திரம் நடைபெறுகின்றது. ஆடலோட்டத்தினால் உருவாக்கப்படும் மாறும் காத்தப் புலத்தின் விளைவாக இத்திரவீயங்களில் உள்ள காந்த ஆட்சிகள் (magnetic domains) அவற்றின் திசைகளைத் திரும்பத் திரும்ப மற்றுகின்றன. இறுதியாக அலற்றைத் திருப்புவதற்குத் தேலைப்படும் சக்தியானது வெப்பமாக மாற்றப்படுகின்றது. பின்னிடைவு விளைவு காரணமாக வெப்பம் பிறப்பிக்கப்படும் வீதம் மாறும் காந்தப் புலத்தின் மீடிறனுடன் அதிகரிக்கின்றது. வர்த்தகரீதியாகக் கிலை ககத்தக்க தூண்டல் வெப்பமாக்கல் தொகுதிகள் அண்ணளவாக 60 Hz தொடக்கம் ஏறத்தாழ 1 MHz வரையுள்ள மிலுஸ்களில் தொழிற்பட்டு, சில வாற்றுகளிலிருந்து பல மெகாவாற்றுகள் வரையுள்ள வீச்சில் வலுவை வழங்குகின்றன.

சந்தையில் தாண்டற் சலையல் அடுப்புகளாகக் (cookers) கிடைக்கத்தக்க சமையல் அடுப்புகள் இக்கே ட்பாட்டில் அடிப்படையில் தொடுற்படுகின்றன. ஒரு தூண்டற் சமையல் அடுப்பில் சமையற் பானை வைக்கப்படும் அடுப்பு உச்சியின் மேற்பரப்புக்கு மட்டுமட்டாகக் கீழே அதனைத் தொடாமல் ஒரு செப்புக் கம்பிச் சுருள் ஏற்றப்பட்டு. சுருளிரபாடாக ஒர ஆடல் மீல்லோட்டம் அனுப்பப்படுகின்றது. சலையற் பானையின் முழு அடித்தளமும் வெப்பத்தைப் பிறப்பிக்கும் கடத்தும் திரவியமாகத் தொழிழ்படுகின்றது. சுருவினல் உண்டாக்கப்படும் மாறும் காந்தப் புலம் சமையற் பாலையின் அடியிற் புகுந்து சுரீயல் ஒட்டங்களையும் பில்லிடைவு நட்டங்களையும் ஒற்படுத்தி வெப்பத்தைப் பிறப்பிக்கின்றது. வெப்பத்தைப் பிறப்பீப்பதற்கு இரு விளைவுகளையும் பயல்படுத்தலுதற்குச் சமையும் பானைகள் அல்லது சமையுத் பானைசுலே அடித்தளங்கள் சில கறையில் உருக்கு அல்லது வரப்பிரும்பு போன்ற அபக்காந்தத் திரவியங்களியாற் செய்பப்படுகின்றன.

- (a) பரடேயின் மின்காந்தத் தாண்டல் விதியைச் சொற்களில் கூறுக.
- (b) தூண்டல் வெப்பமாக்கல் பயன்படுத்தப்படும் இரு பீரபோகத் துறைகளைக் குறிப்பிடுக an province (c) தூண்டல் வேப்பமரக்கலுடன் சம்பந்தப்பட்ட இரு வெப்பனக்கற் செயன்முறைகளை STOLD SIS.
- (d) பெரிய சரியல் ஓட்டங்களுக்கு வழிவகுக்கும் மூன்று கருணிகளை எழுதுக.
- (ச) திரவியத்தின் மேற்பரப்புக்குக் கிட்ட ஒரு மட்டுப்படுத்திய தடிப்பினுள்ளே சுரியல் ஒட்டங்களை மட்டுப்படுத்தும் இரு விளைவுகளை எழுதுக.
- (f) தரப்பட்ட வரிப்படத்தைப் பிரதிசெய்து பின்வரும் விணக்களுக்கு விடை எழுதுக. ஒரு குறித்த நேரத்தில் ஆடலோட்டத்தின் திசைபை உரு காட்டுகிறது. இவ்வோட்டத்தின் பருமன் நேரத்துடன் அறிகரிக்கும் ஒரு நிலைமைபைக் சுருதுக. கருளுக்குச் சற்று மேலே உருவில் காட்டப்பட்டுள்ளவாறு ஒரு கடத்தும் ஜிரவியம் வைக்கப்பட்டுள்ளது.
- Bystuio
 - (i) ஒரு புலக் கோட்டில் ஓர் இய்புக்குறியை வரைவதன் மூலம் இந்நிலையையில் உண்டாக்கப்படு 11DODL புலத்தின் திரையைக் காட்டுக.
 - (ii) திரவியத்தில் தானம் O இற்று அண்மையில் சுரியல் ஓட்டத்தின் ஒரு தடத்தை வரைந்து. ஆடலோட்டம் அறிகரிக்கும்போது சுர்பல் ஒட்டத்தின் திசையைக் காட்டுக
 - (iii) மேவே (ii) இல் நீர் வரைந்த கரியல் ஓட்டத் நடத்தின் திசையை நீர் துணிந்த விதத்தை லெல்ந்சின்
- (g) ஆடலோட்டத்றின் மிழ்றன் அதிகரிக்கும்போது திரவியத்தை வெப்பமாக்கும் வீதம் ஓங்கலம் அதிகரில் கல்றது.
- (h) நேரத்துடன் மாறும் காத்தப் பலம் ஆரை R ஐயும் தடிப்பு b ஐயும் தடைத்திரன் p ஐபும் கொலட ஒரு தட்டிலுள்ளே புதும் ஒரு நிலைமையைக் கருதுக. B₀ ஆனது காந்தப் புலத்தின் பாய அடர்த்தியின் விச்சமாகலை ல் ஆனது கோண மிழறவாகவும் / ஆனது நேரமாகவும் இருக்கும்போது பீரபோகிக்கப்படும் காந்தப் புலத்தின் பாப அடரத்தி B ஆனது B = B₀ sin *ou* போன்று சைவ்வளையிமுறையாக மாநமொனின், ஒரு மிகலும் எனிதாக்கிய மாதிரியுதவை அழப்படையாகக் மொண்டு தட்டில் கரியல் ஓட்டங்கவினால் பீறப்பிக்கப்படும் சராசரி வஹ இ $\frac{\pi R^4 b}{16}$ aggib. $k = 0.5 \text{ m}^4 \Omega^{-1}$, $\omega = 6\,000 \text{ cad s}^{-1}$, ஆவது $P = kB_{p}^{2} \omega^{2}$ இனால் நரப்படலாம்; இங்கு k == B₀ = 7.5 × 10⁻³ T எனின், குட்டிற் பிறப்பிக்கப்படும் சராசரி வலுவைக் கணிக்க,

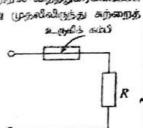
ு (i) நிலைமாற்றிகளில் கழியல் ஓட்டங்களின் விளைவாக அகலி வெப்பஙாக்கப்படுகிறைது. இது வெப்பத்தின் நாணைபாறதாகளாட ஆக்கிற்குப் பங்களிப்புச் செய்கின்றது. நிலைமாற்றிகளில் இச்சக்தி நட்டம் எஸ்கனம் இழிவளவாக்கப்படுகின்றது ?

Strictly confidential (a) பரடேயின் விதி: ஒரு சுற்றில் தூண்டப்பட்ட மி.இ.வி. ஆனது சுற்றின் ஊடாக நேரத்தினுடனான காந்தப் பாய மாற்ற வீதத்திற்கு நேர் விகிதசமமாகும்.. அல்லது ஒரு சுற்றுடன் தொடர்புபடுத்தும் காந்தப் பாயம் மாறும்போது, பாய மாற்ற வீதத்திற்கு விகிதசமமாக அச்சுற்றில் ஒரு மின்இயக்கவிசை தூண்டப்படும். 01 (b) கைத்தொழில், வீட்டு, மருத்துவப் பிரயோகங்கள் يديقا شدين01 (ஏதாவது இரண்டு சரியாயின்)..... Sugar the · . 15 14. (c) யூல் வெப்பமாக்கல் (*I*²*R* வகை), பின்னிடைவு விளைவு (காந்த ஆட்சிகள் திரும்பத்திரும்பு அவற்றின் திசைகளை மாற்றுவதால்) (இரண்டும் சரியாயின்)01 Rills de Witten Torsk 1 (d) உண்டாக்கப்படும் காந்தப் புலம் வலிமையாக இருக்கும்போது, மின் கடத்தாறு உயர்வாக இருக்கும்போது, காந்தப் புல மாற்ற வீதம் பெரிதாக இருக்கும்போது. 01 (மூன்றும் சரியாயின்) (e) தோல் விளைவு, அண்மை விளைவு (இரண்டும் சரியாயின்)01 (f) (i) Conducting material 12.1 641,85 காட்டப்பட்டுள்ளவாறு அம்புக்குறியை புலக் கோட்டில் சரியாக J. Herein 01 வரைவதற்கு 1% -k காட்டப்பட்டுள்ளவாறு ஒரு சுரியல் ஓட்டத் தடத்தை வரைவதற்கு ...01 pendari : ita : (11) சுரியல் ஓட்டத்தின் திசையை அம்புக்குறியை பாவித்து காட்டுவதற்கு Litt Alex .01 1 nietač · valies departments g. Congerse & Glosary

Confidential

Department of Examination	
Strictly confidential	Confidential
	படி, ஒரு கடத்தும் திரவியத்தில் தூண்டப்படும் ஓட்டம்).வி. என்பவற்றின் திசையானது அதை உருவாக்கும் றத்தை எதிர்க்குமாறு ஏற்படுத்தப்படும் காந்தப் புலத் ள்ளது.
ஓட்டத்தின் திசைய இருத்தல் வேண்டுப்	
(g) ஆடலோட்டத்தின் மீடிறன் பாய மாற்ற வீதத்தை அ	அதிகரக்கும்போது கடத்தும் திரவியத்தில் காந்தப் திகரிக்கும்
	அதிகரிப்பு திரவியத்தில் சுரியல் ஒட்டத்தின் பருமனை 01
(h) $P = kB_0^2 \omega^2 = 0.5 \times (7.5 \times 10^{-1})$	$(10^{-3})^2 \times (6000)^2$ W = 1012.5 W
அல்லது	P = 1013 W
	சரியான பிரதியீட்டிற்கு
(அரக்குச்சாயம் அல்லது உ	சரியான விடைக்கு <u>இடராக்கல் என்ற</u> 01 <u>ததி) அடுத்தடுத்து லேமினேட் செய்யாப்படும்</u> லோக ஒக்சைட் போன்ற மின்கடத்தா திரவியத்தை ளுக்கிடையில் பூசுவதன் மூலம்)
	5

Strictly confidential


பகுறி (A) இற்கு அல்லது பகுதி (B) இற்கு மாத்திரம் விடை எழுதுக.

- (A) (a) திலை R ஐ உடைய ஒரு தடையியினூடாக / நேரத்தித்தப் பதுமன் / ஐ உடைய ஒர ுட்டத்தை அனுப்பும்போது அறிஸ் விரபலாக்கப்படும் (dissipated) சக்தி (W) இற்கான ஒடு கோலையை எழுதுக
 - (ச) மின் உருகி என்பது ஒரு மெல்லிய உலோகக் கம்பிபைக் கெண்ட ஒரு சிறிய மூலகமாகும். மிலி இலந்திரனியற் கற்றுகளில் விதந்துரைத்த ஒட்டத்திலும் பாரக்கப் பெரிய ஒட்டங்கள் பாய்வதனால் (மினைச் சுனம ஓட்டங்கள், குறுத் லற்றுகள் ஆகியவற்றின் விளைவாக) ஏற்படும் சேதங்களைத் தவிர்ப்பதற்காக அச்சுற்றுகளுடன் தொடராக மீன் உருகிகள் தொடுக்கப்படுகின்றன. ஒரு குறித்த சுற்றில் உருகியிலாடாக உள்ள ஒட்டம் சுற்றில் விதந்துரைக்கப்பட்ட ஒட்டப் பெறுமானத்திலும் பரிக்கப் பெரிதாக இருக்கும்போது அது எரிந்து (உருகி), வது முதலிலிருந்து கற்றைத் a gydd ains தொடுப்பகற்றுகின்றது. மின் உருகிகளின் வீதப்படானது சுற்றில் வீதந்துரைக்கப்பட்ட ஒட்டத்திற்குச் சமனாக இருக்கத்தக்கதாக உருகிகள் தெரிந்தெடுக்கப்படுகின்றன.
 - (1) உரு (1) களமத் தடை R ஐ உடைய ஒரு சுற்றுடன் ஒர் உருகி தொடுக்கப்பட்டுள்ள விதத்தைக் காட்டுகின்றது. ஒரு குறித்த உருகியில் உள்ள ஒட்டம் 5 A என வீதப்படுத்தப்பட்டுள்ளது. உருகிக் கம்பியின் தீளம் 3 cm ஆகவும் அதன் ஆரை 0.1 mm (குறுக்குவெட்டுப் பரப்பளவு ~ 3 × 10⁻⁸ m²) ஆகஷம் 25 ℃ இல் கம்பியில் நிரவியத்தின் தடைத்திரன் 1.7 × 10^{−8} Ω m ஆகஷம் இருபின், அறை வெட்டறிலை O-25 °C இல் உருகிக் கம்பியின் தடையைக் கணிக்க.
 - (ii) உருகி மேலே (i) இற் குறிக்கப்பட்ட வீதப்படல் தொழ்ந்படுத்தப்படும்போது உருதி நிலையில் உருகிக கம்பியினால் பீறப்பிக்கப்படும் முழு வெங்கமும் உருகியை ஏரிக்காமல் சற்றாடலிற்க அரயமாக்கப்படுகின்றது. இவ்வாறான விதத்தில் ஓர் 5 A உருகியினால் விரயமாக்கப்படும் வலுவைக் கல^{ுக்கு} வெப்பநிலை வீச்சில் ு உருகிக் கம்பியின் தடையின் சராசரிப் பெறுமானம் மேலே (b) (i) இத் கணிக்கப்பட்ட தடையின் ஐந்து மடங்கிற்குச் சமமேனக் கொள்க.
 - (iii) மின் உருகிகளின் உற்பத்தியாளர்களினற் செய்யப்பட்ட ஒரு சோதனை அண்ணவவாக ஒரு மில்லிசெக்கனில் உருகிக் கம்பியை உருகச் செய்வதற்குத் (எரிதல்) தேவைப்படும் ஒர் ஓட்டத் துடிப்பின் வீச்சத்தைத் துணிதலுடன் சம்பந்தப்பட்டுள்ளது. உரு (2) இற் காணப்படும் ஒரு மில்லிசெக்கன் காலநீட்சியுள்ள ஒரு செவ்வக ஒட்டத் துடிப்பைக் கருதுவதன் மூலம் மேலே (b) (i) இல் தரப்பட்டுள்ள உருகிக் கம்பியை உருக்கத் தேவைப்படும் துடிப்பின் உச்ச ஒட்டம் கீழலக் கணிக்க. இத்நிலைமையில் சுற்றாடவிற்கான வெப்ப உரு (2) விரபம் புழக்கணிக்கத்தக்கதொக் கொள்க. மேலே (b) (i) இல் தரப்பட்ட உருகிக் கம்பியின் திணிவு 7.5 × 10⁻⁶ kg எனவும் உருகிக் கம்பியின் தடையின் சராசரிப் பெறுமானம் மேலே (b) (i) இம் கணித்த தடையின் ஐந்து மடங்கு எனவும் கொள்க, உருகிக் கம்பியின் திரவீயத்தின் தல்லெப்பக் கொள்ளவடி
 - 390 J kg⁻¹ °C^{−1} ஆகும். உருகிக் கம்பியின் திரவியத்தின் உருதநிலை 1075 °C ஆகும். (iv) உரு (3) இந் காணப்படுகின்றனாறு 230 V பிரபோக வோல்ற்றளவு உள்ள ஒரு கமைச் கற்று XY இல் குறுஞ் கற்றாக்கப்படும் ஒரு நிலைமையைக் கருதுக. இந்நிலைமையில் ஒர் 5 A உருகியிணுடாக உள்ள ஓட்டத்தைக் கணிக்க. மேலே ···· (b) (iii) இற் பெற்ற பேறுகளைப் பயன்படுத்தி உருகி ஒரு மில்லிசேக்களிற்ற 230 V முன்பாக உருகுமெனக் காட்டுக (பெறப்படும் ஒட்டம் ஒரு செவ்வக ஓட்டத்
 - ப்பிக்குப்பெனக் கொள்க). பிட்டி பல காலநிடர்க்கு நிகழும் ஒர் ஒடுக்கமான செவ்வக ஒட்டத் துடிப்பு 500 A. ஆனது ஓர் 5 A உருகியினூடாகச் செல்கின்றது. இந்நிலைமையில் உருகி வரியுமா ? ஒரு . பொருத்தமான கணிப்பைப் பயன்படுத்தி உழுது விடையை நியாயப்படுத்துக.

(a) $W = \dot{I}^2 R t$

 $\frac{0^{-2}}{2} \qquad \frac{2^{2}}{2} + \frac{1}{1} \times 10^{-2} = 0.01$ (b) (i) $R = \frac{\rho l}{A}$ $=\frac{1.7\times10^{-8}\times3\times10^{-2}}{3\times10^{-8}}\dots$ (சரியான பிரதியீட்டிற்கு)

1 ms

Confidential

Strictly confidential

 (iii) I₀²Rt = mcθ (குறியீடுகள் அவற்றின் வழமையான அர்த்தங்களைக் கொண்டுள்ளன) (mcθ இனை மின்னியற் சக்திக்கு சமப்படுத்துவதற்கு) I₀² = (7.5×10⁻⁶)×390×1050 (1.7×10⁻²)×5×10⁻³
(சரியான பிரதியீட்டிற்கு)
$= 3.6132 \times 10^4$
$I_0 = 1.90 \times 10^2 \mathrm{A} \dots 01$
$(1.900 \times 10^2 - 1.901 \times 10^2 \text{ A})$
(iv) 5 A உருகி இன் ஊடாக ஓட்டம்
$=\frac{230}{1.7\times10^{-2}\times5}$ 01
$= \frac{1.7 \times 10^{-2} \times 5}{2.706 \times 10^3 A01}$
$(2.705 \times 10^3 - 2.707 \times 10^3)$
பகுதி (iii) இல் கண்ட I ₀ இலும் பார்க்க இந்த ஒட்டம் பெர்களை என்பதால் உருகி 1 மில்லிசெக்கனுக்கு முன்னர் உருகும்.
(மேலுள்ள கூற்றிற்கு இரண்டு ஓட்டப் பெறுமானங்களும் முஜையே சரியாக இருந்தால் மட்டு இப்புள்ளியை வழங்கவும்)
(மாற்று முறை:
<i>t</i> ஆனது உருக்கி உருகுவதற்கு எடுக்கும் நேரம் எனின்
$I^2Rt = mc\theta$
$t = \frac{ms\theta}{l^2R}$
$t = \frac{(7.5 \times 10^{-6}) \times 390 \times 1050}{(2.706 \times 10^{3})^{2} \times 1.7 \times 10^{-2} \times 5} \dots $
$= 4.934 \times 10^{-4} s$ (01)
் உருகி 1 மில்லிசெக்கனுக்கு முன்னர் உருகும்(01))

40

22

Department of Examination Strictly confidential

(v)இல்லை

நியாயப்படுத்தல்:

 \sim ஆஉருகிக் கம்பியை உருகத் தேவையான சக்தி = ms heta

 $= (7.5 \times 10^{-6}) \times 390 \times 105....01$

= 3.07 I

உருகியில் விரயமான சக்தி $= 500^2 \times (1.7 \times 10^{-2}) \times 5 \times 10^{-6}$

.....01

$$= 2.125 \times 10^{-2}$$

இப்பெறுமானம் உருகத் தேவையான சக்தியிலும் (3.07 J) மிகக் குறைவானது

எனவே, உருகி உருகாது

(மேலுள்ள இரு பெறுமானங்களையும் ஒப்பிடுவதற்கு) '

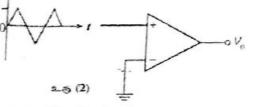
(மாற்று முறை:

. .

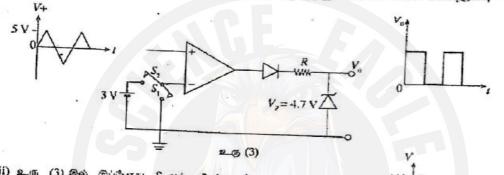
5

உருகியின் வெப்பநிலை அதிகரப்பு θ எனின்,

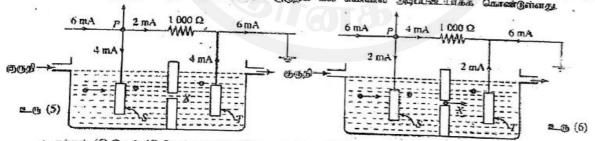
= 7.26 °C


🙃 உருகிக் கம்பியினால் அடைந்த இறுதி வெப்பநிலை

 $25 + 7.26 = 32.26 \,^{\circ}C$01


அது உருகாது.

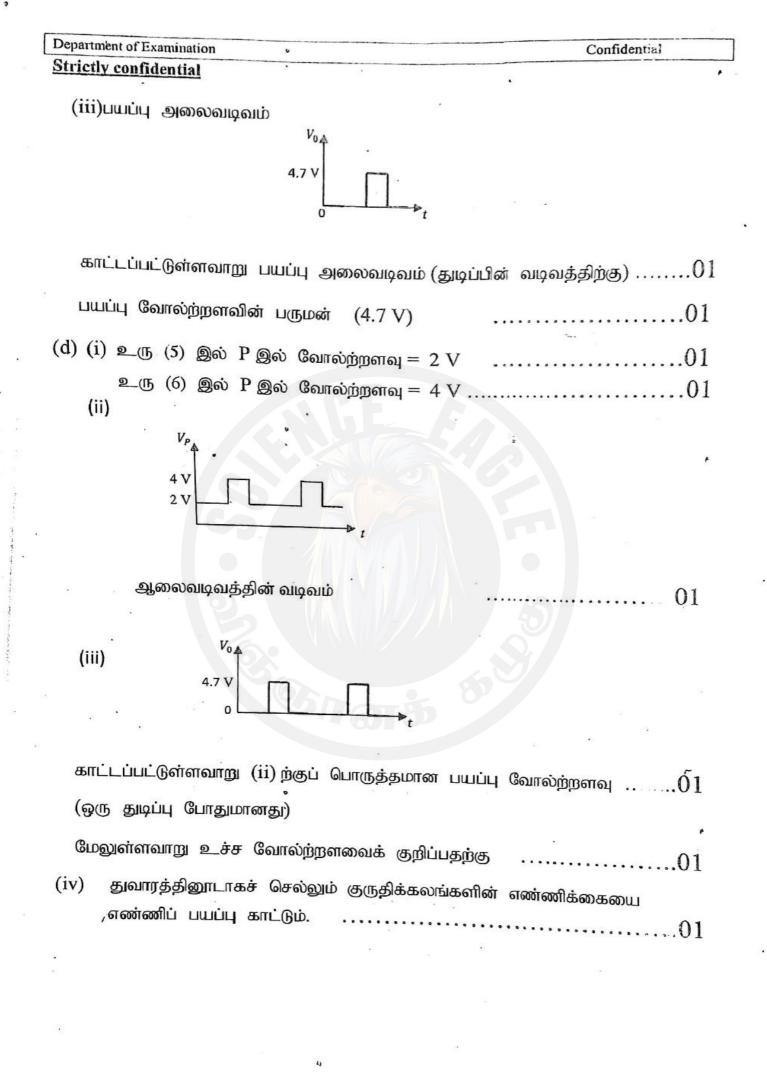
Strictly confidential


- (B) உரு (1) ஆனது திறந்த தட வோண்றதாவு நபம் A மூக் வொண்ட ஒரு செயற்காட்டு விரிபலாக்கியின் சுற்றுக் குறியிட்டைக் காட்டுகிறைது
 - (a) பயப்பு வோலற்றவவு V_0 இற்கான கோனையை V_1, V_2, A ஆகியவற்றின் சுற்பில் (b) செயற்பாட்டு விரியணக்கியின தேர், மறைப் பயப்பு திரம்பல் வோல்ற்றாலுகள்
 - ± 15 V ஆகவும் A = 10⁵ ஆகவும் இருப்பின், அதன் பயப்பை தீரம்பலக்குச் செலுத்தும் குறைத்தபட்சப் பெப்படி வேலற்றளவு வீத்தியாசத்தைக் கணிக்க
 - (c) (i) உச்ச விச்சம் 5 V உள்ள தரப்பட்ட முக்கோண வோல்ற்றவைும் சைகையை உரு (2) இற் காணப்படுக்கறவாறு கற்றின் + பெப்படிக்குப் பிரபோகிக்கும்போது பயர்பு வோலற்றளவு அலைவழவத்தை வரைந்து உச்ச வோலற்றவால் பெறுபாளங்களைக் குறிக்க.
 - (ii) உரு (2) இல் உள்ள சுந்து தப்போது உரு (3) இற் காணப்படுகின்றவாறு மாற்றிபமைக்கப்படுகின்றது. S, மூடப்பட்டு S, திறக்கப்படும்பொது கறது பெட்ட்டி முக்கோணச் சைகைக்கு உரு (3) இர் காணப்படும் பயப்பு அலைவற்றைந் உண்டாக்கும் உரு (3) இல் உள்ள கற்ற முலகங்களின் தாக்கங்களைக் கருதலைக் மூலம் உரு (3) இற் காணப்படும் பயப்பு வோல்று

அமைவடிவத்திற்கும் மேனே (c) (ī) இல் தீர் வணந்த அலைவடிவத்திற்குமிடையே வேறுடாடுகள இருப்பின், அலற்றுக்கான காரணங்களை விளக்குக. உரு (3) இல் பயப்பின் உச்ச வோல்ற்றளவு 👘 💭

- (iii) உரு (3) இல் இப்போது 5₁ ஐத் நிறந்து 5₂ ஐ முடிய நிலைவையில் செயற்பாட்டு விரியலாக்கியின் பெய்ப்புக்கு ஒரு +3 V வோல்ற்றாவு பிரயோகிக்கப்படுகின்றது. செயற்பாட்டு விரியலாக்கியின் ÷ பெய்டிக்கு 2 V உரு (4) இற் காணப்படும் ஒரு கருதுகோள் வேலற்றளவு அலைவரலம் பிரபோகிக்கப்படும்போது சுற்றிலிருந்து எதிர்பார்க்கும் பயப்பு அலைவடினத்தை வரைந்து பயப்பு வோலற்றளவின் பருமனைக் குறிப்பிட்டு எழுதுக
- (d) ஒரு குறீத்த குருதிக் கல எண்ணல் தொகுதி (Blood Cell Counting System)பில்வருமாறு தொழிற்படுகின்றது. குருதி ஒரு தகுந்த வகைக் களைசலில் ஒர் அழிந்த விகிதசமனில் ஐநாக்கப்பட்டு. உரு (5) இற் காணப்படுகின்றலாறு 5. 7 என்னும் இரு மின்வாய்களுக்கிடையே வைக்கப்பட்ட SO யா விட்டத்தின் வரிசையில் உள்ள ஒரு சிறிய துவாரம் X இஹாடாகப் பாய விடப்பட்டது. குருதிக் கலங்களின் மீல் தடைத்திரலாதை கரைசலின் மீன் தடைத்திரனிலாம் பார்க்க உயர்ந்தது என்னும் உண்மையைக் சூருதிக் கல எண்ணல் அடிப்படையாகக் கொண்டுள்ளது.

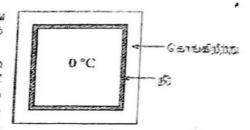
உருக்கன் (5) இலும் (6) இலும் காணப்படுகின்றவாறு தொகுதியினுடிரக ஒரு மாறா ஓட்டம் 6 mA அனும்படுகின்றது. கரைசல் துவாரம் Х இனுடாகச் செல்லும்போது 1000 Ω தடையியினுடாகவும் மில்லாப்களினா.ரகவும் உள்ள ஒட்டங்கள் உரு (5) இற் காட்டப்பட்டுள்ளன. ஒரு குகுதிக் கலம் துவறம் X இனாடாகச் செல்லும்போது 1000 Ω தடையியிலுமாகவும் மின்வாய்களினுமாகவும் உள்ள ஒட்டங்கள் உரு (6) இர் காட்டப்பட்டுள்ளன. உருக்கள் (5) இலும் (6) இலும் காட்டப்பட்டுள்ள சுற்றுகளில் உன்ள புள்ளீ P ஆனது உரு (3) இல் S திறக்கப்பட்டும் S2 முடப்பட்டும் உள்ள நிலைமையில் சுற்றில் உள்ள செயற்பாட்டு விரியலாக்கியின் + முலவிடத்தஉன் தொடுக்கப்படுகின்றது. பயப்பு V₀ ஆன்து ஒரு துடிப்பு எண்ணிபுடன் (counter) (உருவில் காட்டப்படவில்லை) தொடுக்கப்பட்டுள்ளது.


- (i) உருக்கள் (5) இலும் (6) இலும் உள்ள புள்ளி P இல் வோலற்றளவுகள் யாவை ?
- (ii) உரு (5) இல் உள்ள நிலைமை உரு (6) இல் உள்ள நிலைமைக்கு முன்னால் நிகழுமெவின், அந்தலகப நிலைமைகளுக்கு P இல் உள்ள லோலற்றளவு அலைவடிவத்தை வணுக.
- (iii) மேலே (ii) இற்குப் பொருத்தமான உரு (3) இல் உள்ள சுத்றின் பயப்பு வோல்ற்றளவு அலைவடிவத்தை
- (iv) துவாரம் X இனூடாக ஓர் ஐதாக்கிய குருதி அருவி பாய வீடப்படுமெனின், எண்ணிப் பயப்பு எதலைக்

25 (1)

Confidential

Department of Examination Confidential
Strictly confidential
(a) $V_0 = A(V_1 - V_2)$
(b) $(V_1 - V_2)_{min} = \frac{\pm 15}{10^5}$
$= 1.5 \times 10^{-4} V$ 01
'(அல்லது சரியான பெறுமானம் பொருத்தமான வோல்ற்றளவு அலகுகளுடன்)
$(\varepsilon)(i)$ (i) (i)
-15 V -
- காட்டப்பட்டுள்ளவாறு ஒரு அலைவடிவம் அச்சு <i>t</i> பற்றி சமச்சீராக
இருப்பதற்கு
காட்டப்பட்டுள்ளவாறு உச்ச வோல்ற்றளவுப்பெறுமானம் ±15 V ஆகக்
குறிப்பதற்கு01
(ii) <i>V</i> ₀
4.7 V
[இரண்டு அலைவடிவத்திற்குமுள்ள வித்தியாசம் (கேட்கப்படவில்லை)
இரண்டு அலைவடிவத்தந்துமுன்ன வந்துடையை (1) c(i) இல் உள்ள பயப்பு அலைவடிவம் ஒரே அளவான நேர் மறை
அரைச் சுற்றையும் c(ii) ஆனது நேர் சுற்றை மாததிரம
கொண்டுள்ளது.
(2) c(i) இல் உள்ள அலைவடிவத்தின் உச்சப் பெறுமானம் (±)15 V ஆகும் ஆனால் c(ii) இல் உள்ள அலைவடிவத்தின் உச்சப் பெறுமானம +4.7 V ஆகும்.]
காரணங்கள். (1) அலைவடிவத்தில் மறை அரைச் சுற்றுகளின்போது இருவாயி பின்முகக் கோடலுற்றிருக்கும் அத்துடன் அலைவடிவத்தின் மறை அரைச் சுற்றை அதனூடு செல்ல விடாது பின்முகக் கோடலுற்றிருக்கும்போது ஓட்டம் பாயாது.
(2) c (ii)அலைவடிவத்தின் பயப்பு உச்ச வோல்ற்றளவை செனர் இருவாயி 4.7 V இற்கு கட்டுப்படுத்தும்.
1. exa 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

Strictly confidential

10. பகுதி (A) இற்கு அல்லது பகுதி (B) இற்கு மாத்திரம் வீண_ எழுதுக.

- (i) ஒரு திரவியத்தின் பொதிக நிலையானது திண்ம நிலையிலிருந்தி (A) (a) ்திரல நிலைக்கு மாற்றப்படும்போது லெப்பம் எங்களம் உறிஞ்சப்படுகின்றதெனர் கருக்கமாக விளக்குக.
 - (ii) ஒரு குறித்த வெப்ப வலும் பொறியத்தினால் உண்டாக்கப்படும் 10 மெகாயூல் மிகையான வெப்பச் சக்தியானது 420 °C உடுகுறிலையிற் பேலாப்படும் ஒரு காவலிட்ட திண்ம நாகக் குற்றியில் மறை வெப்பமாகத் தேக்கி வைக்கப்பட வேண்டியுள்ளது. முழ மிகையான சக்தியும் நாகத்தை உருக்கப் பயன்படுத்தப்படுமேனின், இந்நோக்கத்திற்குத் தேவைப்படும் திண்டி நாகத்தின் குறைந்துட்சத் திணிவைக் கணிக்க.

நாகத்தின் தன் உருகல் மனை வெப்பம் 1.15 × 10⁵ J kg⁻¹ ஆகும்.

- (b) ஒரு குளிரான நாட்டில் வெளி வெப்பநிலை –30 °C ஆக இருக்கும்போது ஒரு குறித்த வெளிப்பரத்தில் உள்ள மூடப்பட்ட களஞ்சிய அணுயில் உள்ள வெப்பதிலை 0 °C இற் பேடைப்பட வேண்டும். இந்த அறை 20 cm அப்பான கொட்கிற்றுச் களத்களிலால் வெப்பமுறைபாகக் காலைடப்பட்டுள்ளது. உருவீற் காணப்படுகின்றவாறு சுவர்களின் உள் மேற்பரப்புகள் 0 °C இற் பேனப்படும் போதிய தடிப்புள்ள ஒரு சீரான நீரப் படையுடன் தொடுகையில் உள்ளன. நிலையான உறைந்த பனிக்கட்டிப் படைகள் உண்டாவதைத் தவிரப்பதற்கு நீரானது உள்ளே கலக்கப்படுகின்றது (கலக்கும் செயன்முறை நீருக்கு வெப்பம் எதனையும் சேர்ப்பதில்லையெனக் கோள்க).
 - (i) இம்முறையைப் பயன்படுத்திச் சில நேரத்திற்கு அறையின் வெப்பதிலை 0 °C இல் எங்ஙவம் பேணப்படலாம் என்பதைச் கருக்கமாக விளக்குக.
 - (ii) 10 மணித்தீயாலம் வரைக்கும் அறையில் 0 °C இருப்பதையும் இந்நேரத்தின்போது நீரக் திணிவின் 25% மாத்தீரம் பனிக்கட்டியாக மாற்றப்படுவதையும் உறுதிப்படுத்தும் தீரப் படையின் குறைந்தபட்சத் திணினைக் கணிக்க. எல்லாச் சுவர்களினதும் மோத்த இடை <mark>மேந்பரப்பள</mark>வு I20 ா² ஆகும். கொங்கிறீற்றின் வெப்பக்

கடத்தாறு = 0.8 W m⁻¹ ℃⁻¹. பனிக்கட்டியின் தன் உருகல் மறை வெப்பம் = 3.35 × 10⁵ J kg⁻¹.

- (iii) ஏதோவொரு எதிர்பாராத காரணத்தினால் மேலே குறிப்பிட்ட முழு நீர்ப் படையும் உறைந்துள்ளது எனவும் கொங்கிறீற்றுச் சுவரகளின் உள் மேற்கரப்பு மீது 5 cm தடிப்புள்ள ஒரு சீரான பனிக்கட்டிப் படை உண்டாகின்றது எனவும் கொள்க, பணிக்கட்டிப் படை உண்டாகியதும் 0 °C அன்றவிலிருந்து வெப்பம் வெளியே பாயத் தொடங்கும் வீதத்தைக் கணிக்க. பனிக்கட்டியின் வெப்பக் கடத்தாறு = 2.2 W m⁻¹ ℃⁻¹. கணிப்புகளுக்குப் பனிக்கட்டிப் படையினுடாக வெப்பம் வெளியே பாயும்போது உள்ள பனிக்கட்டிப் படையின் வேரத்த இடை மேற்பரப்பனவு 120 m² எனக் கொள்க.
- (a) (i) மறை வெப்பத்தின் ஒரு பகுதி மூலக்கூறுகளுக்கிடையேயான விசையை வெல்ல உபயோகிக்கப்படுகிறது.

....01

(ii) தேவையான குறைந்த திணிவு (m),

$m \times 1.15 \times 10^5 = 10 \times 10^6$	01
06.051	0.1

- m = 86.95 kg
 - (86.95 -86.96)kg
- (b)(i) நீரின் வெப்பநிலையை மாற்றாது கொங்கிறீற்றினால் இழக்கப்படும் ுவெப்பத்தை நீரின் மறைவெப்பம் ஈடுகொடுக்க வல்லது.

....02

(02 அல்லது பூச்சியம்)

Department of Examination	1
Strictly confidential	

Confidential

.

(ii) கொங்கிறீற்றினூடான வெப்ப இழப்பின் அளவு (Q), $Q = 0.8 \times 120 \times \frac{30}{20 \times 10^{-2}} (3600 \times 10) \dots 01$ $\frac{dQ}{dt} = kA \frac{d\theta}{dL}$ எனும் *சமன்பாட்டை மேலுள்ள கோவையில் பாலிப்பதற்கு
$Q = 5.184 \times 10^8 \mathrm{J}$
நீரினால் வழங்கப்படவேண்டிய வெப்பம்= $m \times \frac{25}{100} \times 3.35 \times 10^5$ 01
(மேலுள்ள கோவையை $\frac{25}{100}$ இனால் பெருக்க)
$\therefore m \times \frac{25}{100} \times 3.35 \times 10^5 = 5.184 \times 10^8 \dots \dots$
$m = 6.190 \times 10^3$ kg
$\begin{array}{c} 6.189 - 6191 \\ 6.189 - 6191 \\ 6.189 - 6191 \\ \end{array} = 613 \\ \end{array}$
(iii) θ ஆனது பனிக்கட்டி கொங்கிறீற் இடைமுகத்தின் வெப்பநினை எனின்.
$\frac{dQ}{dt} = k_1 A \frac{0-\theta}{L_1} $
$=k_2A\frac{\theta-(-)30}{L_2}$ (இரு சமன்பாடுகளுக்கும்) $\left(\frac{L_1}{k_1A}+\frac{L_2}{k_2A}\right)\frac{dQ}{dt}=30$
$\left(\frac{5\times10^{-2}}{2.2\times120} + \frac{20\times10^{-2}}{0.8\times120}\right)\frac{dQ}{dt} = 30 \qquad \dots $
$\frac{dQ}{dt} = 1.320 \times 10^4 \text{J s}^{-1} \dots \dots$

4

Department o	Department of Examination Confidential	
Strictly con	fidential	
ເມື່ອບໍ່ມ ຄບຊິ (1) (வளிக்கலங்கள், செய்மதிகள் போன்றவற்றில் மின்னைப் பிறப்பிப்பது க்கிகள் (Radioisotope Thermoelectric Generators (RTGs)) பபன்படுத் எதுதிகளைக் கொண்டுள்ளது. வப்ப முதல்: லது அல்யா துணிக்கையைக் காலும் கதிர்த்தொழிற்பாட்டு முதலைக் கொ லப்பாத் துணிக்கைளினாலும் உண்டாக்கப்படும் இயக்கப்பாட்டுச் சக்தி காள்கலத்தினால் உறிஞ்சப்படுகின்றது.	தப்படுக்கள்தன். RTC ஆன்து அரு என்டுள்ள கொள்கலமாகும். எல்லா
க நிர்த் விண்டு	க்தி மாற்றல் தொகுதி: ஒது கொள்கலத்தினால் உறிஞ்சப்பட்ட வெட்டச் சக்தியை மீன் சக்தியாக மாதா தொழிற்பாட்டு முதலாகப் புளுத்தோனியம் ஒட்சைட்டு (PuO ₂) வடிவில் ²³⁹ வளிக்கலத்தின் ஒர் RTG ஐக் கருதுக. கதிர்த்தொழிற்பாட்டு முதல் 2. PuO ₂ இல் உள்ள ²³⁸ Pu இன் பின்னம் விண்ஷெனிக்கலம் ஏவப்படும்போ	20 ஐப் பல்படுத்தும் ஒரு தொண்டுள்ளது. 38 kg PoO2 ஐக் கொண்டுள்ளது. து 0.9 ஆகும், கொள்கலத்தினால்
²³⁸ Pu ஆய் 6.0 ×	இன் கதிர்ந்தொழிற்பாட்டுத் தேய்வுக்கு உறிஞ்சப்படும் வெப்பச் சக்தி 5. 87.7 ஆண்டுகளும் ஒத்த தேய்வு மாறிலி 0.0079 y ^{−1} (= 2.5 × 10 ^{−10} s ^{−1} 10 ²³ அணுக்கள்/மூல் ஆகும்.) உம் ஆகும். அவகாதரோ எண் சுயிர்பாட்டை Bq இம் காண்க
(ii) (iii)	வெப்ப வலுவை மின் வலுவாக மாற்றும் தற்ன 7% என்கு, வல்லைகள் உள்ள மின் வலுவைக் காண்க (1 MeV = 1.6 × 10 ⁻¹³ J). விண்டுவளிக்கலத்தின் 10 ஆண்டுச் சேவையின் இறுதியில் கதிர்ச்சமதாவி (டூ ^{- 0.079} = 0.92 எளக் கொள்க).	ழதவின் தொழிற்பாட்டைக் காண்க
(v)	இதனையின் இறுதியில் RTG இனால் உண்டாக்கப்படும் மின் வலுவைக் சேவையின் இறுதியில் மின் வலுவில் இழக்கப்பட்ட சதவீதத்தைக் கான விண்வெளிக்கலங்களில் RTG ஐப் பயன்படுத்துவதன் ஓர் அனுகலத்தை	1.00-
	லிலுள்ள ²³⁸ Pu இன் அளவு = 2380 x 0.9 g லலுள்ள அணுக்களின் எண்ணிக்கை $N=rac{2380 x 0.9 x 6.0 x 10^{23}}{238}$ $N=5.4 x 10^{24}$ அணுக்க	
தெ	ுடக்கத் தொழிற்பாடு $A_0 = N\lambda$ = 5.4 x 10 ²⁴ x 2.5 x 10 ⁻¹	01 [°] s ⁻¹ 01
	$= 1.35 \times 10^{15} Bq$	01 ·
(ii) ஒ(, தேய்வின்போது கொள்கலத்தினால் உறிஞ்சப்ப	ட்ட சக்தி <i>E</i> எனின்
உரு	ாக்கப்பட்ட வெப்ப வலு = $A_0 E$	01
C ,	$= 1.35 \times 10^{15} \times 5.5 \times 1.0$	
	$= 1188^{\circ} W$	
ഖിൽ്റിഖ	ரிக்கலம் ஏவப்படும்போது உருவாக்கப்பட்ட மின்	ഖള്ള
	$= 1188 \text{ x} \frac{7}{100} \dots \dots$	
,		
	= 83.2 W	(01)
	(83.1-83.2)	

41

29

14 5 1

a series and the second s

Confidential

Department of Examination Strictly confidential

(iii) 10 ஆண்டுச் சேவையின் பின்னர் முதலின் தொழிற்பாடு (A) = $,-\lambda t$			
(01)			
$= 1.35 \times 10^{15} \times e^{-0.0079 \times 10}$			
(சமன்பாட்டை எழுதுவதற்கு அல்லது பிர ந செய்ய)			
$= 1.35 \times 10^{15} \times 0.92$			
• • • = $1.24 \times 10^{15} \text{Bq}$ (01)			
(iv) சேவையின் இறுதியில் RTG இனால் உருவாக்கப்பட்ட மின் வ			
$= 1.24 \times 10^{15} \times (5.5 \times 1.6 \times 10^{-13}) \times \frac{7}{100} \dots $			
= 76.4 W			
- (76.3 – 76.5)W			
(v) சேவையின் பின்னர் மின் வலுவில் இழக்கப்பட்ட சதவீதம் 🖌			
$=\frac{83.2-76.4}{83.4} \times 100$			
= 8%(01)			

(vi)

1. சூரிய சக்தி இல்லாதபோது RTG ஐப் பாவிக்கலாம்.

2. மற்றைய மின் முதல்களைவிட இதில் நீணட காலத்திற்கு மின் வலுவைப் பெறலாம்.

3. பராமரிப்பு இல்லாமல் பயன்படுத்தலாம்

மேலுள்ளதில் ஏதாவது ..(01)

(8% - 8.2%)
